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Abstract

Distance-based regression reduces finally
to computation of ordinary LSE regression
from principal coordinates. We compare the
performance of two methods of assessing the
importance of subsequent PC’s in the final
LSE regression: Cuadras’ CP coefficient and
the broken stick’ rule. This is done by con-
sidering some real heliophysical data.

1. The distance-based regression

We are concerned with predicting the val-
ues of a variable Y from p explanatory vari-
ables (predictors) X1, ..., Xp, which can be of
mixed type, i.e. continuous and/or categori-
cal. We have observations of these variables
for n individuals (items).

Cuadras and Arenas (1992) have proposed
an interesting method, the distance-based re-
gression (DBR), working as follows:

1. Firstly, a distance matrix D of size n xn
is evaluated from the explanatory vari-
ables (a variety of distances can be used
here). The distance matrix D is con-
verted to the inner product matrix B.

2. Next, some principal coordinates (PC’s),

denoted in the following as I'y,...,T'p,
are constructed. The matrix B is de-
composed into rank one matrices built
from principal coordinates:

B = i,\iFiI‘,T = Eil;fzf‘;[7 (1)

with ITT; = §;;, T; = AT

3. Finally, an ordinary LSE regression is
evaluated from the established PC’s. Usu-
ally, a reduced number k£ < m of all the
PC’s is taken into consideration:

Y = fo+ BTy +"'+ﬂkf"ik+€(k) (2)
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2. The number of relevant PC’s

How many PC’s can be obtained from the
inner product matrix B?

Let us suppose that the recorded data do
not reveal any linear dependence among val-
ues of the considered predictors, i.e. among
the columns of the data matrix. Moreover,
suppose that n > p, and all the data vec-
tors for the recorded individuals are different.
Data satisfying these conditions will be re-
ferred to as one being in standard conditions.

Now suppose that our recorded data are
in standard conditions, and we calculate from
them the matrix B and the decomposition
given by eq. (1).

Using Euclidean distances we obtain un-
der standard conditions p PC’s. Then, the re-
gression defined by (2) yields exactly the same
multiple correlation coefficient and residuals
as the ordinary classical LSE method. Since
the last method is much easier and faster to
calculate, there is no need and no advantage
to use the DBR in that case.

Using L1-norm or Gower distances we ob-
tain under standard conditions m = n — 1
PC’s. Moreover, we obtain a complete expla-
nation of Y by the derived m PC’s, what is
due to overfitting of the model. Therefore a
smaller number k& < m of all the PC’s should
be taken into consideration.

Usually we put into the regression (2) those
PC’s which are mostly correlated with Y. It
is known that they are not exactly the first k
PC’s, i.e. those connected with the k largest
eigenvalues of B. So, to be safe, we should
compute all the eigenvectors of B and next
choose those with the highest correlation with
Y. On the other hand, computing all the m
PC’s is cumbersome and much inconvenient
for large values of n.

To assess the relevance of subsequent PC’s
in (2) we could perform a statistical test of
significance, e.g. a F test. However, this is
questionable, because statistical tests used for
this purpose need assumption of normality,



what is again doubtful in the case of DBR,
especially when dealing with mixed type of
predictors.

In the following we will be concerned with
two aspects of choice of the relevant PC’s:

1. Looking for a cutting rule allowing to
state at some stage of decomposition of
B (formula 1), that all the relevant PC’s
are already obtained;

2. Finding a distribution-free substitute of
statistical test allowing to judge the rel-
evance of the extracted PC’s.

Cuadras et al. (1993) have proposed an
empirical procedure based on the defined by
them CP coefficient of predictability.

We propose another empirical procedure
using the broken stick rule.

In the following we will explain in more de-
tail the two mentioned empirical procedures
of selection of a smaller number of PC’s. We
will apply them to the data described by Bart-
kowiak & Jakimiec (1994), or Jakimiec & Bart-
kowiak (1994), and compare the number of
PC’s indicated as relevant by these two meth-
ods.

3. CP, the coeflicient of predictabil-
ity

The coefficient of predictability, introduced
by Cuadras et al. (1993), is defined as follows:

yIBguy .

CP(i) = —rg

4 =100 00, 0 (3]

with B =B-3T, /\jI‘jI"jT and y denot-
ing the n X 1 vector of observed values of the
variable Y.

The denominator of (3) can be decom-
posed as:

yI'By = Z T]z/\j,
i=1

with r; being the Pearsonian correlation co-

efficient between y and I';. Obviously 0 <
CP(#)<1,CP(m)=1,CP(:) <CP(i+1).

Cuadras et al. have proposed to watch the
diminishing of C'P(¢) when subsequent PC’s
are extracted from B. The PC’s that diminish

Table 1: Values of 1-CP(i) indicating the un-
explained part of YT BY when working with
Ll-norm and Gower distances

Ll-norm dist. Gower dist.

1 Y=Mv Y=Fs i1 Y=Mv Y=Fs
I .0770 .0269 | 1  .0937 .0301
2 .0355  .0260 2 .0355  .0253
3 .0355  .0260 3 .0355  .0252
4 0342  .0248 4 .0341 .0240
5 .0341 .0248 5 .0341 .0237
6 .0193 .0103 | 6  .0200 .0104
7 .0184  .0098 i .0191 .0097
8 .0184  .0098 8 .0190 .0097
9 .0131  .0073 9 .0141 .0078
10 .0131  .0073 | 10 .0138 .0075
11 0127  .0072 | 11 .0120 .0068
12 .0109  .0055 | 12 0111 .00567
13 .0103  .0055 | 13 .0107  .0057
14 0098 0054 | 14 .0100 .0056
15 .0098  .0050 | 15 .0100 .0051

the values of CP relatively 'much’, are sup-
posed to be ’relevant’ in prediction of Y.

The quantity 1 — C P(¢) shows the amount
of the denominator in (3) that is not explained
yet. Cuadras et al. have proposed to watch
the graph of 1 — C'P(i) as put against 7. If
the abscissa is near 0, then all relevant infor-
mation on predicting Y is already accounted
for and we are justified to stop the process of
extracting the further PC’s.

We have applied this method to the helio-
physical data described in the paper of Bart-
kowiak and Jakimiec (1994), hereafter called
B&J. They tried to predict two variables,
Y1 = Mvand Y2 = Fs denoting: Mv - the
maximum value of solar flare X-ray flux (fs),
and F's - the total sum of the fs amount.
Similarly as B&J, we consider here also Eu-
clidean, L1-norm and Gower distances. The
values of 1 — C'P(¢) for Euclidean distances
are shown in the last column of Table 2, the
respective values for L1-norm and Gower dis-
tances are shown in Table 1. The values of
1 — C'P(¢) that differ from 1 — CP(i — 1) by
more than 0.01 are underlined (it is assumed
that 1 — CP(0) = 1.00).

One can see that in all cases the first PC is
the most relevant: it reduces the initial value
of CP by more than 90%. The impact of the
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Table 2: Euclidean distances. Eight highest
r?, limits (LO, UP) from broken stick rule,
and values 1 — CP(1); h denotes original id
number of the PC

1 r? h LO UP 1-CP(i)
Predicted: Y=Mv
1 *293 1 .095 .161 .0288
2 044 5 .064 .099 .0133
3 015 2 .044 .072 .0125
4 014 4 .030 .053 .0079
5 010 7 .020 .041 .0005
6 002 3 .012 .030 . .0005
7 .000 6 .006 .020 .0000
8 .000 8 .001 .011 .0000
Predicted: Y=Fs
1 *418 1 .121 .208 .0122
2 032 5 .083 .126 0114
3 026 4 .057 .091 .0104
4 .003 3 .039 .069 .0041
5 003 7 .025 .052 .0001
6 001 8 .014 .037  .0001
7 001 2 .006 .025 .0000
8 .000 6 .001 .014 .0000

remaining PC’s is really a small one. It can be
seen that the results obtained for the L1 norm
and Gower distances are very similar (this has
been already pointed out by B&J).

The first PC constructed from Euclidean
distances allows for reconstruction of yIBy
in more then 97% both for Y = Mwv and
Y = Fs; analogous first PC from L1 norm
or Gower distances makes this in more then
90% for Mv and about 97% for Fs.

The second PC seems to have an impact
only when considering Y = Mv and using L1
norm or Gower distances.

The 6th PC seems to be relevant for both
variables, however only when working with L1
norm or Gower distances.

4. The broken stick rule.

Suppose, we have a stick of unit length,
which is broken, at random, into p segments.
Then it can be shown that the expected length
I; of the ith longest segment is (ctf. Jolliffe
1986, p. 95):

L =

=B |-
S|

Z - (4)

Table 3: Ll-norm distances. Fifteen highest
r2’s and limits (LO, UP) from broken stick
rule; h denotes original id number of the PC

ilr2Mv h ¢ Fs h| LO UP
11 *.279 1 *.416 11(.033 .051
2| *.043 36 *.054 6 |.029 .040
3| *042 43 024 80 | .027 .034
4| *.039 2 022 43| .025 .031
5|1 *039 6 022 62| .023 .029
6| *029 9 020 12| .022 .027
71 *.027 51 .019 91 .021 .026
8| *.026 46 .018 52 | .020 .024
9 021 21 018 36 | .019 .023
10 019 24 018 24| .019 .022
11 .018 62 017 84 | .018 .021
12 017 57 .017 21| .017 .020
13 .016 83 016 29 | .017 .019
14 015 12 015 111 | .016 .019
15 .014 170 .014 46 | .016 .018

The standard deviation of the :th longest
segment can be obtained by simulation. We
have used 2000 repetitions.

We have applied this rule to our data when
considering the squared correlations rf, & =
1,...,m between the vector y and the con-
structed principal coordinates T' = (T'y, ..., ).
Using Euclidean distances we got m = 8 PC’s,
using L1-norm or Gower distances we got m =
129 PC’s.

Since the constructed PC’s are mutually
uncorrelated, the total squared multiple cor-
relation coefficient R? between y and the set

T can be decomposed as

R'(y,T) = Z i (5)

Taking this into account we apply the bro-
ken stick rule to the ordered r2’s. The results,
i.e. the ordered r%’s and their respective one-
sigma lower and upper limits obtained from
the assumption of a random subdivision - are
shown in Table 2 (for the Euclidean distances),
Table 3 (for the L1-norm distances) and Table
4 (for the Gower distances).

When working with Euclidean distances
we got R*(y,T') equal to 0.3800 and 0.4846
for Y = Mv and Y = F's, respectively. Then
we have assumed, that we have to deal with



Table 4: Gower distances. Fifteen highest 72’s
and limits (LO, UP) from broken stick rule; h
denotes original ¢d number of the PC

i]r?Mv h r?Fs h|{ LO UP
1] *.266 1 *.413 1] .041 .043
2| *.055 2 *.052 6 | .034 .035
3| *038 6 .024 22 | 030 .031
4| *037 46 022 46 | .028 .028
51 *.035 36 .021 84 | .026 .026
6| *.027 9 .020 61| .024 .025
71 *.026 22 .019 57| .023 .024
8 .022 43 .018 36 | .022 .022
9 019 24 .018 81 | .021 .021
10 017 57 .015 91 .020 .020
11 016 73 .014 124 ] .019 .020
12 .015 51 .014 111 | .019 .019
13 .015 44 013 12| .018 .018
14 .014 84 .013 80| .017 .018
15 013 11 013 29| .017 .017

sticks of 0.3800 and 0.4846 length broken into
8 parts.

When working with L1-norm or Gower dis-
tances we have R%(y,T') = 1, a strict linear
dependence for both Y = Mv and Y = Fs,
what means that putting into equation (2) all
the m PC’s we are able to predict accurately
the values of Y, i.e. with 0 error. This fantas-
tic result due to overfitting is a spurious one
and is true only when making self validation,
i.e. when predicting the values of Y in the
same data set from which the PC’s were eval-
uated. When making predictions in a foreign
data set the situation might be quite different.
What we really want - is to find the essential
PC’s that describe the model of the analysed
data. We suppose that those that exceed in
magnitude the segments of the broken at ran-
dom stick might have this property.

Let us look now at Tables 2, 3 and 4. We
have assumed that values which exceed the
one-sigma bound (LOW,UPP) can be judged
as signicative, i.e. coming from a non-random
subdivision of the total. Values satisfying that
condition are marked by an "*’ sign.

One can see, that using Euclidean distances,
only the first PC, yielding a correlation coef-
ficient 72 = 0.293 for Y = Mv and r? = 0.418
for Y = F's, appears to be significant.

Using Ll-norm and Gower distances we
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obtain 7-8 significant r2’s for Y = Mw and
two significant r?’s for Y = Fs.
Thus, it appears that for Y = Fs both

methods (i.e. the CP method and the broken
stick method) indicate the same signicative
PC’s.

5. Discussion of the results

The CPrule is much more economical than
the ’broken stick’ method, because subsequent
PC’s are extracted stepwise, i.e. when re-
quired. For our data certainly not more than
15 PC’s (from total 129) are needed. How-
ever, the stopping rule is based on some sub-
jective judgment. It happened in our data
(with p variables) that the first 8 PC’s reduce
the initial value of the criterion by about 98%.

The broken stick rule seems to indicate
more PC’s that are truly relevant. This method
is more difficult to carry out, because the com-
puting of all PC’s is needed. The gain is, that
it specifies an objective rule of choosing the
relevant PC’s.

It remains to the purview of the user to
make the proper choice.
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