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1 Introduction

1.1 DNA sequences — the code for life functions of the organism

The mystery contained in the sequences (ORF’s) is that they may code a life function of
the organism. For some ORFs it is exactly known, which life functions are governed by
the code written in the ORF. In such case the sequence contained in the ORF is called
gene.

The DNA code is a great challenge to contemporaneous research, especially for bio-
chemistry and genetics, also for the information theory and data analysis in general.

The ‘life” information hidden in chromosomes is coded in so called DNA (deoxyribonu-
cleic acid) sequences with four bases (nucleotides) denoted by A, G, C, T. This is the
alphabet of the code. The code is organized in triplets called codons.

It is known that the coding information is contained in some pieces of the sequences
called ORFs (Open Reading Frames). Each ORF starts with a specific codon (the start
codon ATG) and ends with one of three specific stop codons: TAG, TAA, TGA. The cod-
ing information is contained within the ORF. Each of the 61 codons (including the start
codon) codes for one aminoacid.

The DNA sequences, in particular the order and succession of the codons have been
extensively investigated using various methods of mathematical statistics and stochastic
processes.

A review of the problems — from the point of mathematical statistics — may be found
in Braun & Miiller (1998). Some specific topics, to mention a few out of many published
in mathematical journals, were considered by Avery & Henderson (1999), Muri (1998),
Prum & al. (1995), Kamb & al. (1995).

1.2 The yeast genome

In our investigation we are concerned with the yeast genome. It contains 16 chromosomes,
containing sequences totalling about 13 millions bases, which yields really a great amount
of data.
The DNA sequences of the yeast chromosomes are exactly known and are put into data-
banks accessible through the internet (genome-ftp.stanford.edu or http://mips.biochem.mpg.de).
As for June 1999 there were known together n = 7472 ORFs. From these n; = 2733
were known as coding a life function. For the remaining ny = 4739 ORFs the meaning of
the code was not exactly recognized, or recognized only partially.



The biochemists have found — by some alignment methods, that some of the ORFs
with not recognized life function are very similar to some genes. Based on this similarity
six classes of homologies with genes were established. The classes and their frequencies
encountered in our data are:

Homology Class Frequency

H1 290
H2 857
H3 705
H4 860
H5 421
H6 1606

Total 4739

ORF's contained in class H1 are highly similar to some genes, while ORF's from classes
H5 and H6 are most dissimilar.

The problem we are concerned is the following one: Is it possible — on the basis of
their statistical properties — to recognize genes, i.e. sequences coding some life functions
of yeasts, in the second group of data?

1.3 The data

We have statistical data which were gathered in the Institute of Microbiology, University
of Wroctaw, by prof. S. Cebrat and his team.

Firstly, each ORF was represented in a spider —plot. Two exemplary spider plots — for
a coding and non coding ORF's are shown in Figure 1.
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Figure 1: Spider plots. Left: for a coding Orf; Right: for a non-coding ORF

Next each ORF was characterized by 13 variables v; — v13 which were gathered from
the spider plot:
vy — vs - angles of the legs,
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v10- length of the entire ORF — in codons,
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v11 — v13 - normalized length for each of the legs, namely
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In Figure 2 we show how the length and the angle of a leg was taken from the ’spider’
plot:
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Figure 2: Spider plots. Measuring length and angle of a leg

In such way we got a rectangular table X,,y,. Each row of this table characterizes one
ORF, ready for statistical analysis.

Our goal is to investigate statistically the formal difference between the genes and the
rest of the ORF's on the basis of some features characterizing the frequency and consecution
of appearing the bases and codons. Results obtained by S. Cebrat and his team (see, e.g.
Cebrat Cebrat & al. 1997, 1998, and Mackiewicz & al.) are encouraging.

1.4 Methods of our analysis

The specificity of our analysis is that we have two groups of data, for which it can be said:
One group contains the coding ORFs and the situation with them is more or less clear.
The other group contains ORFs which may be coding or non—coding sequences. Thus

the ORFs contained in that group have no clear group assignment. We suppose that at

least a part of them is not coding (there may be some mutants or some relicts from past
mutations). Nonetheless we will try to separate both groups of data.
We will apply here canonical discriminant analysis with orthogonal jitter. This is

described in Section 2.

Next, in Section 3, we will estimate the proportion of coding and not—coding ORF's in
the yeast genome — by using a mixture decomposition of the first canonical variate.



2  Canonical Discriminant Variate with Orthogonal Jitter
2.1 Considering entire set of 7472 ORFs

We consider generally two groups of data defined as:

Group 1. Genes, n = 2733,

Group 2. Other Orf’s, called in the following non-genes, n = 4739.

For these data the canonical discriminant analysis was performed. We have used for
that purpose a special method ’canonical analysis with orthogonal jitter’ described in the

paper [3].

Let x = (21,...,2,) denote generally the analyzed data vector. We seek for a new
variable
z =xu
being a linear combination of the observed variables z1,...,z, and such that the derived 2

discriminates mostly among the considered two groups of data. The discrimination power
of the derived variable is defined as the ratio of the between group to the within group
variance of z (Fisher’s discriminant criterion).. It is known, that in the case of two-group
data only one such variate can be obtained. The vector u establishing the transformation
z = xu indicates at the same time a direction in the p — vartate data space, which yields
a greatest separation between data points belonging to different groups.

We built a second variate establishing a second direction in the data space; this second
direction does not have any discriminative power, none the less it is very useful in seeing
more clearly the analyzed points. We call this variate ’orthogonal jitter’.

Using the described method we have calculated the first canonical discriminant variate
and the orthogonal jitter for the considered two groups: Genes and Other ORFs, taking
into account the entire data set with all 7472 ORFs.

In Figure 3, top, we show scatterplot based on these two variables. The genes are
depicted using red color; the remaining ORFs are represented by black dots. The genes
are overlying the other ORFs.

One can see how helpful is the second variate. Albeit it has no discriminative power,
it is very helpful in detecting outliers.

One may notice also that the non-recognized ORFs are scattered much more as the
recognized genes.

In Figure 3, bottom, we show a scatterplot containing all recognized genes (n; = 2733).

Again one may notice the great spread, mainly in the northern direction. On the other
hand, the distribution seems to be somehow cut in the south-west direction of the figure.
It seems as not all of the points belonging to the genes were displayed.

Generally, looking at the scatterplot exhibited in the top of Figure 3 one may notice
that there exist a shift in the location of the two groups of data: points denoting genes
are located more to the right.

One may notice in the same exhibit that the non-genes are much more scattered. There
are at least two big outliers belonging to the second group of data.

Thus: the orthogonal jitter permitted in our case to identify enormously atypical obser-
vations, which — considering only the first discriminant variate would remain undiscovered.
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Figure 3. Top: Genes as red squares and remaining ORF's as black dots; a total of
n = 7472 points are exhibited; Bottom: Only points corresponding to recognized genes
are displayed



2.2 Differentiation between Genes and classes of Homologies

In previous subsection we have carried out the analysis using the entire data set.

Now we turn to the groups of homologies described in Subsection 1.2 of the paper.

We consider in turn each class of homologies and match it with a sample of n=1000
genes (for a sampling scheme, see [2]).

The methodology of investigation is the same as in previous Subsection. However,
let us say it clearly, the evaluations of the first discriminant variate and of the variate
denoting orthogonal jitter were carried out separately for each pair of groups (each pair
composed from the sample group of genes and one homology class).

It is interesting to see, how — with increasing homology class number — the separation
between both groups of data is increasing.

Below we show scatterplots obtained when taking into account very near homologies
(H1UH5), then the most distant H5 and H6 classes.

In Figure 4 we show scatterplot exhibiting the differentiation between the genes (only
a sample of 1000 genes was taken) and the homologue groups of ORFs H1 and H2 (we
have taken these classes together, because class H1 is very small).

As we know already, the classes H1 and H1 contain ORFs which are much similar to
genes. The same may be noticed when looking at the Figure 4 where it can be seen, that
both groups are much overlapping.

One may also notice in Figure 4 two big outliers belonging to the HIUH2 group.
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Figure 4: Displaying two groups of DNA data: Filled red squares denote a sample of 1000
ORFs identified as genes. Open circles denote ny = 1147 ORF's belonging to HIUH2. The
open circles are overlying the filled squares
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Figure 5. Displaying homologies classes H5 (top) and H6 (bottom) together with a sample
of n=1000 genes. Notice the differentiation visible in each plot. Top: ns = 421 ORFs
belonging to H5. Bottom: ng = 1606 ORF's belonging to H6. The open circles (homologies)
are overlying the filled red squares denoting genes



3 Decomposition of the density of the canonical discrimi-
nant variate into a mixture of two gaussians

We have stated at the begin of our paper that we have to do essentially with two groups
of data. One of these groups contains recognized genes. The other group contains the
rest of the ORFs; among these may be genes which code some life function of the yeast
organism, and possibly there are some other DNA sequences which do not code any life
function.

One might expect the the fact of coding and not coding life functions may be somehow
reflected in the statistical characteristics of the ORFs. In particular one might imagine
that the genes occupy mostly one region of the data space, and the non-genes are somehow
shifted in that space to other location. The scatterplots exhibited in Figure 3, top, Figure
4 and Figure 5 confirms that supposition.

On the other hand, the canonical variate is a linear function of several (in our case of
13) originally observed variates, and as such should be distributed normally (or very near
to the gaussian distribution).

Taking into account these presumptions we have investigated the distribution of the
first discriminant variate Z. We have taken into account all the 7472 ORFs. We have
approximated the density of Z by a non—parametric method by performing a kernel density
smoothing. We have used for this purpose the KDE package by Frederic Udina [13, 12].

Let zq,...,z, denote the observed values of a variable X. The kernel density esitmate
of X is then defined as [12]

Fateymay Bimt e K (). (1)
To apply this definition we have to chose and define the function K, called the kernel
function, and the bandwidth h.

In our case we have substituted for the observed values zq,...,z, the values zy,..., z,
calculated as the values of the first canonical discriminant variate.

We have stated that the choice of the kernel had little impact on the shape of the
obtained density. We have chosen biweight kernel.

The smoothed density is shown in all 3 exhibits of Figure 6. One can see clearly, that
the density looks like composed from two components.

We have assumed that these components are gaussians ¢(p, o) with unknown mean p
and standard deviation o, different for each component.

Thus we have assumed the model:

z~ fre(pr, o) + (1 = fi)e(pe, 02). (2)

The parameters f; and 1 — f; are called mixing coefficients.

We have tried to estimate the parameters fi,p1,01, t2, 02 appearing in the above
equation. This was done in an interactive mode by trial and error. Depending on some
other parameters needed by the smoothing technique obtained slightly different density
curves. Three of them are shown in Figure 6.

Looking at the exhibits in Figure 6 one may see quite clearly that the density visible
in the plots looks really like a mixture composed from two normal distributions.

Below each exhibit we have put the parameters of the two gaussians (i.e. their means
and standard deviations) and the mixing coefficients f; and fo =1 — fi.

How many genes are in our data? Taking n X f; we obtain we obtain 5529, 6276 and
5828 as a guess. Remind, only 2733 were identified so far.

Thus much unknown waits still for discovery.
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Figure 6. Distribution of the first canonical variate viewed as composed from two

gaussians. 3 trials are shown. The derived gaussians contribute to their sum in propor-
tions f1 and 2. Symbols ml:s1 and m2:32 denote means and standard deviations
of the two contributing gaussians in each trial.
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