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A Distance-Based Regression Method as Applied
in Spirometry for Estimation of Residual Volume

We applied the distance-based regression (DBR) for estimation of the residual
volume (RV). Great advantages of DBR are that continuous and discrete predictors
can be simultaneously used. We found that after including additional categorical
variables an essential improvement of the goodness of fit was attained.

Till now the Residual Volume (RV) was estimated by a regression equation
established conditionally on the type of the ventilatory defect stated in the patients.

In the paper we present one uniform algorithm for estimation of the RV for
patients suffering from 3 types of ventilatory disorders (obturative, restrictive or
mixed one) as well as for patients representing “the norm”, i.e. not exhibiting
symptoms of the ventilatory function loss.

The validity of the algorithm was confirmed by a high overall multiple
correlation coefficient, and also by analysis of relative errors. The algorithm was
additionally cross-validated for patients with obturative disorders, the most frequent
pulmonary disease.

K eyword s: residual volume estimation, spirometry, predictions, relative error.

1. Introduction

Residual volume (RV) and total lung capacity (TLC) are the important
spirometric parameters that cannot be measured directly. The problem of
estimating them from other spirometric measurements, which are more easy to
obtain, was addressed formerly a.o. by Liebhart et al. [1, 2] and Krusinska et al.
[3]. This was done using mainly the LSE (Least Square Error) approach with
some refinements considering regression diagnostics and robust estimation of
the relevant regression equation. It has appeared that while the authors
managed to construct models sufficiently well estimating the TLC [3, 4, 1],
corresponding results for RV were unsatisfactory [1]. This inclined us to search
for another method more suitable to the problem under consideration.

The aim of this paper is the evaluation of the distance based regression
method (DBR) proposed by Cuadras and Arenas [5] when applied to the
problem of finding a unified and more concise formula for the estimation of
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Residual Volume. The distance based regression allows for a substantially new
approach that permits to include categorical variables into the set of predictors.
This opens entirely new possibilities not available when using the traditional
regression methods.

2. The Data

We utilize in principle the same data as those analysed by Liebhart et al. [6] or
Bartkowiak and Liebhart [7]. One group of the data (Obturation) was also
examined by methods of exploratory data analysis by Bartkowiak [8]. The data
contains recorded values of 14 variables (Residual Volume, Total Lung
Capacity and twelve other features, from which we will consider in the following
only six, described below) observed in patients classified as belonging to
3 groups of pulmonary diseases and one control group representing the norm.

The group size of our data were as follows:

Group 1. Obturative type of ventilatory defect, n=128 patients.

Group 2. Restrictive type of ventilatory defect, n=21 patients.

Group 3. Mixed type of ventilatory defect, n=28 patients.

Group 4. Nom, i.e. without ventilatory defect, n=28 patients.

One can see that the groups are quite diversed in size. In particular one can
notice the relatively large size of Group 1, which reflects the frequency of
occurrence of the obturative type of ventilatory defect in the population.
Because the distance based methods applied in the present analysis can deal
with mixed-type variables we enlarged the data by four “new” variables being of
categorical type.

The continuous variables are:

RV, Residual Volume [cm3],

TLC, Total Lung Capacity [cm?],

Height [cm],

VC, Vital Capacity [cm7],

VC% evaluated as VC/V Cpegicea X 100 [%0].

Spirometric parameters were measured using Spirograph PT-400, the RV
and TLC values were obtained by helium method.

For the present analysis we have enlarged this set of data by inlcuding
additionally four categorical variables:

Z1: Group membership number of the patient corresponding to the

diagnosis of the ventilatory defect type — as defined below.

Z2: Measuring ventilatory pattern — as defined below.

Z3: Measuring some spirometric features — as defined below.

Z4: Degree of emphysema and lungs hyperinflation — as defined below.
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All these categorical variables can take the values 1, 2, 3 or 4.

The “Group membership” variable Z1 obtained the values 1, 2, 3 or
4 depending on the type of ventilatory defect (see e.g. [9]):

1. Obturation,

2. Restriction,

3. Mixed type,

4. Norm.
The “ventilatory pattern” variable Z2 obtained the values 1, 2, 3 or

4 depending on the values of X4 and X6:
if X4>75 and X6 <75 then Z2:=1,
if X4<75 and X6>75 then Z2:=2,
if X4<75 and X6 <75 then Z2:=3,
if X4>75 and X6>75 then Z2:=4.

The “spirometric index” variable Z3 obtained the values 1, 2, 3 or
4 depending on the difference 6 =X6— X11:

if 6<0 then Z3:=1,
if 0<6<10 then Z3:=1,
if 10<6<20 then Z3:=3,
if 20<é then Z3:=4.

The “hyperinflation or emphysema’ variable Z4 obtained the values 1, 2,
3 or 4 depending on the ratio p=RV/TLC:

if p<0.25 then Z4:=1,
if 0.25<p<040 then Z4:=2,
if 040<p<0.55 then 2Z4:=3,
if 0.55<p then Z4:=4.

The variable Z1 was obtained as a result of the complex examination of
a patient. The diagnosis of ventilatory defect type was done on the basis of
anamnesis, physical examination and laboratory findings including spirometry,
blood gases analysis, chest X-ray, and — in some cases — bronchoscopy.

The variable Z2 was established by use of the traditional Miller’s algorithm
[10] that allows for differentiation between “norm’” and different types of
ventilatory defects using V'C and FEV | measurements.

The variable Z3 is thought as a kind of an index that, in the author’s
opinion, should be additionally helpful in discrimination patients with the
obturative type of ventilatory function loss from those with the mixed one.
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The variable Z4 need more detailed description. It was introduced in order
to evaluate the presence or absence, and the degree of emphysema and lungs
hyperinflation.

The values of this variable can be assigned on the basis of medical examination;
the ratio p=RV/TLC used here is a rough approximation of this variable.

We proceeded with our analysis as follows: Firstly we performed the
classical LSE analysis using the continuous variables. Secondly we carried out
the distance-based (DB) regression analysis with both the continuous and
categorical variables.

We considered the following combinations of variables and methods
referred hereafter as variants of the evaluations:

A: X1+ X4; computing the LSE regression.

B: X1+ X4; computing the DB regression.

C: X1+ X4 and Z4; computing the DB regression.

D: X1-+X4 and Z2, Z3; computing the DB regression.

E: X1+ X4 and Z2-+ Z4; computing the DB regression.

In Table 1 we show the means (4 V) and standard deviations (SD) of the two
predicted variables Y1 =RV, Y2=TLC, and of the four continuous predictors
X1, X2, X3, X4.

Table 1. Means (4V) and standard deviations (SD) in the original full data set and in the five
Balanced Training Groups

Original data

1. Obstruction 2. Restriction 3. Mixed type 4. Norm
n=128 n=21 n=28 n=28
AV SD AV SD AV SD AV SD
RV - 2277 663 1516 417 2213 646 1566 483
TLC 5530 997 4027 929 4924 937 5415 1142
X1 48 11 53 10 54 9 41 11
X2 165 8 165 9 169 6 164 8
X3 3261 894 2416 771 2718 687 3851 841
X4 77 15 56 12 59 13 93 12
Balanced Training Groups
BTG 1 BTG 2 BTG 3 BTG 4 BTG 5
n=105 n=105 n=105 n=105 n=105
AV SD AV SD AV SD AV SD AV SD
RV 1913 616 1970 676 1877 632 1880 632 1910 652
TLC 4981 1086 5029 1205 5026 1145 5041 1172 5030 1127
X1 49 12 49 11 48 11 49 12 49 11
X2 165 8 166 8 166 8 166 8 166 8
X3 3052 905 3043 1020 3134 959 3147 1009 3100 967

X4 72 19 71 20 74 20 73 20 72 20
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Some former investigations (Liebhart et al. [3, 4]) have shown that the
regression equation aiming at the estimation of 7LC and RV was markedly
dependent on the type of ventilatory defect. This means that the appropriate
one out of the four constructed equations could be chosen only after previous
ventilatory function diagnosing.

Our aim was to construct a general prediction algorithm permitting
to estimate RV in all patients, independently of their type of ventilatory
defect.

We decided to use a balanced training sample as the basis for construc-
tion of the overall algorithm (i.e. suitable for all groups). Such a sample
should contain patients with all types of ventilatory defects (including the
norm) represented by groups of nearly equal size — otherwise a very large
representation of one type of ventilatory disorders (as the large obturation
group in our data) would influence the algorithm to be in the first place
suitable for the largest group.

To attain our goal — of obtaining a balanced training group — we sampled
at random (sampling without replacement) from the large group 1 (Obturation)
nn=28 different patients and added them to the whole groups 2, 3 and 4 being
nearly of the same size. In that way we got the first balanced training group,
denoted in the following as BTG 1, containing n=28428+21+28=105
patients. Next we sampled from the patients belonging to the big group 1, and
which were not chosen to enter BTG 1, another nn=28 different patients to
form an additional test group (TEST 1) to be used later for an external check
cross-validation of the validity of the algorithm constructed on the basis of the
data contained in BTG 1.

In a similar way we constructed another four balanced training groups
named BTG 2, BTG 3, BTG 4 and BTG §5; to each of them corresponding test
groups TEST 2, TEST 3, TEST 4 and TEST 5 were assigned.

The means (4 V) and standard deviations (SD) for the five balanced training
groups are shown in the lower part of Table 1.

All the evaluations described hereafter were carried out in parallel on the
five balanced training groups and checked externally on the correspondent test

groups.

3. Methods used

3.1. Computing Distances Between Individuals

The distance-based approach has a long tradition in exploratory data
analysis (see, e.g. [11, 12]); nonetheless, in the context of regression, it was firstly
proposed by Cuadras and Arenas [5].
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The distance-based regression starts from the distance matrix D evaluated
from the predictor variables. The distances can be defined for sets of predictors
containing continuous, binary and categorical variables as well. In the paper we
will use for this purpose the Gower Distance (see, e.g. [5, 11, 13, 14]) which is
defined as follows.

Suppose, we consider p continuous and ¢ categorical variables. Let
X; = (XigsererXiphy X;=(Xjtsee00Xjp) A0 Z;=(Zj1;---Zi), z;=(z;1,...,Zjq) denote the vec-
tors of the continuous and categorical variables observed for the i-th and j-th
individual. Let G=(G,,....G,) be the vector of ranges of the continuous
variables, i.e.

G,=max (xz)—min (xg), [€[l,..,n), ke[l,....p].
l i

The similarity s(i,j) between the i-th and the j-th individual is evaluated as

(i, )= [<§: (1—|xu— xjkI/Gk)) -+ Mi;]/(P“F 9),

where M;; denotes the number of matches (identities in the categories), i.e.
number of occurrences z;=z; counted over the ¢ categorical variables
(h=1,...,q) when considering the vectors z; and z,.

Then the squared Gower distance d2(i, ) between the i-th and j-th individual
is evaluated as [14, 11]

dé(i,)=1—5G,j). M

Alternatively, the Euclidean distance could be computed; however, this can
be done using the continuous variables only. The squared Euclidean distance
d%(i, /) between the i-th and j-th individual is computed as:

83,1 3. (=3 @

Usually it is more reasonable to compute the Euclidean distance using
standardized values of the considered variables:
P Xigk— Xj 2
25 p=y, B
k=1 Sk
where s? denotes the sample variance of the k-th variable.

It is known [5] that the results (i.e. multiple correlation coefficients and
residuals when computed from a regression with p variables) obtained by the
DBR method using Euclidean distances are the same as those obtained by the
classical LSE regression.
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3.2. Computing the Distance-Based Regression

Suppose, we have already established the distance matrix D between the
individuals contained in the training sample. The computed distance matrix
is formally of size nx n, nevertheless, since the distances are symmetric, i.e.
d(i,j)=d(j,i), we need only one halve, it is the lower (or upper) triangle of
this matrix. From this distance matrix we evaluate by methods of Multi-
dimensional Scaling [5, 12] the corresponding principal coordinates. General-
ly we obtain / principal coordinates, with /=rank(B), where B denotes the
inner product matrix derived from the distance matrix D. Next we perform
an ordinary regression analysis taking as explanatory variables (predictors),
those principal coordinates that are mostly correlated with the predicted
variable Y.

‘The number of principal coordinates included in the regression model
depends on our decision. Statistical significancy tests for models with mixed
type of explanatory variables are not known. Including a higher number of
principal coordinates we obtain a better approximation of Y in the given data
set; however, including too much of them we cause overfitting — and making
predictions in another data set we might get a worse prediction then.

Let¥,,... ¥, (¥,= W ¥u)", k=1,...,m) denote the principal coordinates
retained for further analysis. Then the considered regression model is described
by the equation:

Y=8,+B¥ +..+8,¥,+e. 3)

The regression model is then elaborated by well known regression methods,
e.g. using the LSE method [15].

3.3. Validation of the Distance-Based Regression

We will consider three statistics permitting to verify the goodness of fit of the
established regression:

(a) The squared multiple correlation coefficient, called also the coefficient
of determination (denoted by R?). ,

(b) Residuals computed for the same (own) and foreign data sets.

(c) Relative errors computed for the same (own) and foreign data sets.

Below we describe briefly these statistics.

(a) The Squared Multiple Correlation Coefficient

The multiple R? gives a measure of fit of the constructed regression in the set of
data from which the regression equation was evaluated. R? shows how large
part of the total (corrected for the mean) sum of squares of the predicted
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variable Y is reduced when accounting for the established regression (see e.g.
Sen & Srivastava [15], p. 39).

Obviously 0< R?< 1. High values of R? indicate a strong linear relationship
between the predicted variable Y and the predictors.

(b) Residuals

When speaking about residuals we have to distinguish between two situations:

(i) The prediction is made for an individual no. i belonging to the training
sample, i.e. belonging to the own data set.

(ii) The prediction is made for an individual no. j belonging to the test
sample, i.e. to a foreign data set.

In the first situation the residuals e; (i=1,...,n) are computed as the
difference between the observed and predicted values of the variable Y:

€=y —y5?, @)

with the prediction done by use of equation (3). The estimates fio,. ..,ﬁm needed to
carry out these evaluations have been obtained from the same data set to which
the individual no. i is belonging.

In the second situation the residuals are also computed as the difference
between the observed (y$°) and predicted (y5) values of the variable Y;
however, the prediction is now done on the basis of principal coordinates
obtained from a different data set. Speaking more exactly, the individual no.
J has now number j in the test sample, while the prediction algorithm was
evaluated on the basis of a totally different training sample.

The algorithm for predicting by the DBR method the value of Y from a new
data vector (x, z;) observed in a foreign data set is more complicated; the proper
algorithm is shown in the paper by Cuadras and Arenas [5].

Generally it is expected, especially when one uses a high number of principal
coordinates, that in the first situation the fit of the regression would be quite
good. This is not expected to be true in the second situation: the fit of the
regression, when measured by the magnitude of the residuals, is usually much
worse.

In both situations, before evaluating the residuals, we should fix the
regression equation (3) needed to evaluate the predicted values of Y. Among
others, we should fix m, the number of principal coordinates included into the
regression equation.

Let us also notice, that the applied DB regression in its final pace is in fact
carried out as the ordinary LSE regression, only computed on some specifically
constructed variables called principal coordinates. As such, it gives the
guarantee that the mean value of the residuals computed from the same data set,
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from which the parameters of the regression equation were estimated,
equals to zero for any number of retained principal coordinates. Moreover,
the residual sum of squares of the residuals decreases (strictly: does not
increase) when considering increasing numbers (m) of retained principal
coordinates.

Quite different properties are found when considering residuals, evaluated
in a different set of data as that which has served as the basis for constructing
the prediction algorithm. Now the mean of the residuals does not need to be
equal to zero. The residual sum of squares of the residuals does not need to
decrease with increasing number of the retained principal coordinates. As
a matter of fact, the function expressing the relation of the variance (of the
residuals) from m (number of the retained principal coordinates) should first
decrease (adding relevant factors to the regression should diminish the varian-
ce), and then increase (when adding superfluous factors reflecting white noise).

(¢) Relative Errors

Apart from characterizing the residuals by their means and standard deviations,
we consider also their relative errors defined as follows:

| ysobs) _ y(?red)l
yﬂ"bs)

relative error= x 100. )

The relative error shows — for the given individual no. i —how large part of
the observed value of Y observed for this individual, is correctly predicted by
the applied regression algorithm.

We do not use for validation of the constructed model any leaving-one-out
method, because the second author believes strongly that this method yields the
relevant information on stability of the established regression only in the case of
one influential individual. When there are more of them, then the leav-
ing-one-out method may give very unprecise results.

4. Results of Evaluations

The evaluations were conducted in five variants dealing with different com-
binations of the considered variables. The variants are denoted A, B, C, D,
E (see Section 2).

In variant A and variant B only the variables X1 — X4 were considered as
predictors. In variant A we computed the DB regression using Euclidean
distances (hence equivalent to the classical LSE regression); while in variant
B we computed analogous regression with X1— X4 using the Gower distance.
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The other three variants were using Gower distances with mixed variables
considering X1 — X4 and some of the variables Z2—Z4.

For each variant the regression predicting RV on the basis of the approp-
riate predictors was computed.

(a) Considering the Multiple Correlation Coefficient

The squared multiple correlation coefficients R? obtained when retaining m=1,
2,4, 8 and 12 principal coordinates are shown in Table 2. The respective values
are recorded for the five variants A, B, C, D, E of the evaluations.

For the DB regression based on Euclidean distances and using data with p=4
predictors only p=4 principal coordinates can be computed. The corresponding
squared multiple correlation coefficients range 0.20 —0.30, which indicates that
the linear dependence between RV and the variables X1, X2, X3, X4 is poor.

Table 2. Squared multiple correlation coefficients observed in five balanced training groups when
taking m principal coordinates for predicting the Residual Volume

Variants m= 1 2 4 8 12 max
(%)
A: LSE with X1—X4 BTG 1
B: DBR with X1—X4 A 018 019 020 - —  4(20)
C: DBR with X1—X4, Z4 B 017 023 035 046 0.57 56(95)
D: DBR with X1—X4, 22, Z3 C 036 053 066 075 0.80 41(95)
E: DBR with X1 —X4, Z2— 74 D 010 0.18 030 044 0.57 56(95)
E 023 036 052 0.72 0.82 36(95)
m= 1 2 4 8 12 max m= 1 2 4 8 12  max
(%) (%)
BTG 2 BTG 3

A 023 024 024 — — 424 A 025 026 027 — —  4(20)
B 019 026 035 048 0.57 54(95) B 023 030 040 054 0.62 52095)
C 025 048 071 078 083 3795 C 026 043 064 075 081 35095)
D 013 017 025 039 049 5695 D 008 017 031 047 0.58 53(95)
E 022 035 057 074 079 3895 E 020 032 052 068 0.78 37(95)

m= 1 2 4 8 12 max m= 1 2 4 8 12 max

(%) (%)

BTG 4 BTG 5

A 028 029 030 -— —  430) A 025 028 028 — —  4(28)
B 027 031 039 051 059 520955 B 020 025 033 046 0.57 52095)
C 021 042 066 0.75 0.79 4295) C 034 0.56 0.72 0.79 0.82 38(95)
D 016 022 032 047 0.57 54095 D 010 019 031 048 0.58 56(95)
E 028 041 0.57 070 0.77 4095) E 034 049 0.65 0.75 0.80 42(95)

For the DB regression based on Gower distances it is theoretically possible
to compute n—1 principal coordinates, with n being the size of the training
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sample. In our evaluations we started from one principal coordinate and
continued to add more and more of them, till either a 95% reduction of the total
variance was achieved, or the number of extracted principal coordinates equaled
to n— 1. Then we stopped the process. In Table 2 under the heading MAX (%)
either the maximal number of principal coordinates possible to obtain — or that
number of principal coordinates which gave a 95% reduction of the total
variance are shown. Using the sets B we got extracted 52—57 principal
coordinates satisfying the above specified conditions (let us remember that the
sample sizes were 105).

Comparing the results from B with A one can state that for every BTG the
values of R? obtained when using Gower distance are higher as those obtained
from an analogous Euclidean distance. The differences in R? range 0.05—0.15,
which means that the DB regression with Gower distances can decidedly
improve the quality of description of the relations between the predicted RV
and the predictors appearing in the considered data set.

Adding the categorical variables Z4 or Z2, Z3, Z4 the quality of prediction
improves even more: we obtain then multiple correlation coefficients ranging
0.52—0.72 for m=4 principal coordinates. This is really a great improvement.

The above conclusion is valid in the context when the considered goodness
of fit measures is evaluated for the same data on which the regression equation
was constructed.

(b) Considering Residuals from Own and Foreign Data Sets

Obviously the own residuals will decrease with increasing number of principal
coordinates included into the regression equation (3). Therefore the inves-
tigation of these residuals is not so much interesting for us.

A much more interesting task yielding non obvious results is to investigate
some foreign residuals. In our analysis we had 5 test samples corresponding to
5 BTG group. We decided to proceed in such a way, that after evaluating the
predicting regression, say, in the first BTG group we used the established
regression for evaluating residuals in the corresponding first test group. In turn
we did it for the pairs of groups (BTG 2—Test 2), (BTG 3—Test 3), (BTG 4
—Test 4), BTG 5—Test 5).

The distributions of the residuals evaluated in the first two test samples are
shown in Figs. 1 and 2 in the form of box-and-whisker plots.

The plots for the remaining test groups look very similar.

From these plots one can see that the most favourable variant for estimation
of RV are variants C and E. These variants yield residuals with the smallest
spread.

However, let us notice, that all the means are above 0, hence the predicted
values are somehow underestimated.
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RESIDUALS PREDICTED FROM BTG 1
A4 B4 B10 Cc4 C10 D4 D10 E4 E10
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Fig. 1. Box-and-whisker plots of residuals evaluated in Test group 1 for various subsets of
predictors. Letter symbols denote subsets of variables (see Table 2 or Section 2), digits denote
numbers of principal coordinates (obtained from BTG 1) used for prediction

RESIDUALS PREDICTED FROMBTG 2
A4 B4 B10 C4 C10 D4 D10 E4 E10

2400.00

-1500.00

Fig. 2. Box-and-whisker plots of residuals evaluated in Test group 1 for various subsets of predictors.
Letter symbols denote subsets of variables (see Table 2 or Section 2), digits denote numbers of
principal coordinates (obtained from BTG 2) used for prediction

(c¢) Considering Relative Errors in Own and Foreign Data Sets

We have investigated the relative errors in all the 5 test groups. In Table 3 we
show the means of these errors — in dependence of m, the number of principal
coordinates introduced into the regression equation.
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Table 3. Means (4V) and standard deviations (SD) of relative errors computed in own and foreign
data sets when retainingm=2, 4, 6, 8, 10 and 12 principal coordinates. Key to variants A, B,
C, D, E — see Table 2

| Groups m=2 m=4 m=6 m=38 m=10 m=12
Variants | AV SD AV SD AV SD AV SD AV SD AV SD

Own data set

BTG 1

A 27 (21 271 (290 - - - — )
B 26 (28 25 (26) 24 (24 22 (23) 21 (22 20 (22
C 21 (@) 18 (0 16 (15 15 (@13) 14 (13 13 (12
D 27 (25) .24 (25 23 (22 22 (200 21 (18) 20 (18)
E 24 (2 21 (@21) 17 (00 16 (@4 14 (an 13 11
BTG2 A 28 (31) 27 (32 - - - -
B 27 (@27 25 (25 23 (22 22 (22) 21 (200 19 (18)
cC 23 (@) 17 (@18 16 (@15 14 (@14 13 @11 13 (0
D 29 (30) 27 (28 25 (26) 24 (27) 23 (28) 22 (26)
E 2 (26) 20 (23 18 (18 16 (16) 15 (14 14 (13)
Foreign data set
TEST1 A 21 (6) 21 (15 — — - —
B 23 (249 28 (23 29 (23 30 (200 29 (21) 28 (23)
C 12 (9 11 (8 12 (8 12 (8 14 @10 13 (9
D 26 (@21) 27 (@25 26 (200 28 (7 27 (15 26 (14)
E 16 (09 15 (@0 14 @11 14 (@0 18 (@13 17 (12
TEST2 A 17 (13) 18 (13) — - - -
B 18 (15 26 (220 21 (12 22 (15 24 (15 26 (15
C 23 (10) 10 (8 10 @0 10 (8 9 (& 12 (9
D 20 (9% 18 (@12 19 @0 23 (@10 23 (11 20 (13)
E 19 (@12) 16 (100 10 (8 9 (5% 9 (6 11 (7

In Table 3 we show only the results for the first two test groups. Again one
can note the steady diminishing of the relative errors depending on the number
of principal coordinates used for construction of the regression function.
Surprisingly, we got in the test groups smaller relative errors as in the original
BTG groups. :

Let us emphasize once more that the above conclusion is valid in the context
when the considered goodness of fit measure is evaluated on the same data on
which the regression equation was constructed. The behaviour of the establish-
ed regression applied to another set of data is more important. To evaluate the
true practical importance of the established regression we should look at the
residuals and the relative errors evaluated in test groups.

In Figures 3 and 4 we show graphs exhibiting the relative errors as function
of m, the number of PC’s used for construction the respective regression. Again
we show only the graphs obtained from the first two test groups, since the other
graphs exhibit the same pattern. \
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Fig. 3. Test group 1.

Relative errors versus m, the number of principal coordinates included into the
predicting regression equation constructed from BTG 1

PREDICTIONS FROMBIG 2
30.00 _
o JR—— .
o \\ ”’, """ ‘~\~\
o o
w [N N
. ) \\ \\\
% \\\ R _"’Ol
O------- B T T iy
555 NUMBER OF COORDINATES
R "4 '6 '8 "0 12
e T T I =B
0---0 =C ---- =D
——— =E

Fig. 4. Test group 2.

Relative errors versus m, the number of principal coordinates included into the
predicting regression equation constructed from BTG 2
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One can see in these graphs two systematic features:

— The magnitude (level) of the error does not depend much on m, the
number of principal coordinates.

— The variants C and E yield markedly lower errors as the variants A,
B and D.

Summarizing the results of this section, one can say that calculating DB
regression with Gower distance we generally improve the goodness of fit of the
established regression. Adding to the continuous variables X1, X2, X3, X4 the
categorical variables Z2, Z3, Z4 and Z4 alone we can improve substantially the
goodness of fit.

5. Discussion

This study was designed to assess whether the DB regression method can deal
with the problem of nonhomogeneous data and nonlinear relations, with the
future goal to propose an algorithm of RV estimation ready to be used in daily
medical practice. The latter can be achieved only after collecting the data anew
as to include the information that appeared to be necessary in the light of
present analysis.

DB regression, by use of Gower distances, performed without introducing
any categorical variables, did not bring about any substantial improvement in
RV prediction expressed by relative errors values when compared to ordinary
LSE regression (Tables 2, 3).

We first introduced to the data set analysed by DB regression two
categorical variables Z2 and Z3. The former was constructed on the basis of the
Miller’s algorithm for ventilatory defect types differentiation, the latter, in our
opinion, should be helpful in discrimination between obturative and mixed
ventilatory defect types. From Tables 2, 3 and Figures 1—5 is evident that the
results appear unsatisfactory. This is in agreement with earlier suggestion of
Liebhart et al. [2] that Miller’s algorithm is too simplified to give sufficiently
precise diagnosis of ventilatory function loss.

The detailed analysis of individual patients data showed that the error of
estimation was dependent on the presence and the degree of lungs hyperin-
flation or emphysema.

To cope with this problem we decided to introduce additionally a categorical
variable describing this type of disorder. This variable is denoted in our analysis
as Z4.

The results obtained for the present data with variables Z2, Z3 and Z4 and
particularly with variable Z4 alone, showed amazing improvement in cor-
relation coefficients between the measured and estimated RV values, in the
mean relative error as well as relative error variance. This confirmed our
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presumption about the significance of lungs hyperinflation and emphysema in
the regression of RV from other spirometric parameters. The decrease in
relative error of estimation from about 25% to 10—15% can be considered
satisfactory, especially when remembering that the helium method of RV
measurements is burdened with an error ranged about 15% (see, e.g. Cotes [9]).
From Figs. 1 and 2 is difficult to assess which is the optimal number of principal
coordinates. It seems to lie somewhere between 4 and 10 coordinates.

It is a nice feature of the residuals obtained in our analysis that they are
somehow stable within the considered range. Nonetheless, some more rigid rule
for choosing the relevant principal coordinates are needed. Some work in this
respect is in progress (Bartkowiak [16]).

The categorical variable Z1, defined as the disease group category (see
Section 2) was not used so far in the constructed regression. It is possible that
Z1 contains some useful information on the shape of the established regression
and, when included into the evaluations, would yield a further substantial
improvement of the fit. This topic was investigated in another study by
Bartkowiak and Liebhart [17]. They stated that Z1 plays a considerable role in
predicition of RV — however only then if it is combined with the variable Z4.
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Regresja metods ,,distance’” zastosowana w spirometrii do wyznaczania objgtosci
zalegajacej (RV)

Zastosowano regresj¢ metoda ,,distance” (DBR) do estymowania trudno mierzalnego wskaznika
spirometrycznego — objgtosci zalegajacej (RV). Wielka zaleta metody DBR jest to, ze umozliwia
ona jednoczesne wykorzystanie zar6wno iloSciowych ciagtych, jak i dyskretnych zmiennych
objaéniajacych. Po wiaczeniu do zbioru regresji zmiennych skategoryzowanych stwierdziliSmy
znaczaca poprawe jakosci estymacii.

Dotychczas RV probowano estymowac przez zastosowanie rownan regresji swoistych dla
kazdego z 3 typow upoSledzenia wentylacji ptuc oraz dla normy (réwnanie ogodlne okazalo sig
bardzo niedoktadne). W pracy przedstawiamy uniwersalny algorytm wykorzystujacy regresje
metoda ,,distance”, pozwalajacy na estymowanie RV u chorych z obturacyjnym, restrykcyjnym
i mieszanym typem uposledzenia wentylacji pluc oraz u oséb bez niewydolnosci wentylacyjne;j.
Jakos$¢ estymaciji potwierdzaja wartosci wspolczynnikéw korelacji wielokrotnej (Table 2) oraz
wyniki analizy bledéw wzglednych (Table 3). Dodatkowo dla chorych z najczgstszym, tj.
obturacyjnym typem upoSledzenia wentylacji pluc omawiany algorytm poddano ocenie przez
,cross validation™.



