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THE MEDICAL PROBLEM

Data have been collected in the Wroctaw Coronary Heart Disease (CHD)
Prevention Study, being part of the ERICA programme co-ordinated by the WHO
Collaborating Centre in Heidelberg. After 4 yvears of follow-up a sample
from the monitored cohort of men working in industrial plants of Wroctaw
was taken. It comprised 2433 men, of whom 39 showed CHD symptoms. The
number of variables considered is p = 12: age, body weight, systolic and
diastolic blood pressure, measured casually and in standard conditions,
number of cigarettes smoked daily, cholesterol, high density lipoprotein
(HDL) , triglyceride, uric acid and glucose. The goal is to find variables-
which differentiate between men with and without CHD symptoms. The task is
performed using methods of discriminant analysis. Linear (in p variables)
and quadratic (in p + p variables) discriminant functions have been used.

A subset of variables is sought which best discriminates between the two
groups of men (with and without CHD symptoms). As the criterion of discri-
minative power the Mahalanobis distance is adopted.

THE BRANCH AND BOUND METHOD IN THE SEARCH FOR THE OPTIMAL SUBSET

Discrimination between two groups can be performed using regression
methods (see, for example, Lachenbruch, 1975). Also the Mahalanobis dis-
tance can be evaluated as the residual variance in a special case of
normal equations (see, for example, Bartkowiak, 1984). Therefore the
methods of search for an optimal subset in regression analysis can be trans-
ferred directly to the search for an optimal set in discriminant analysis.

In this case, the algorithm used is one elaborated recently by Bart-
kowiak (1987). It permits the finding of the subset yielding the minimal
residual sum of squares in a linear regression problem. The task is to
find the subset yielding the maximal Mahalanobis distance. It can be shown
(see, for example, Bartkowiak, 1984, p. 59) that the Mahalanobis distance
can be cobtained as a residual sum of squares after reversing the sign of
this residual sum of squares. Therefore the problem of finding the subset
with the largest Mahalanobis distance is equivalent to the problem of
finding the subset with the smallest residual sum of squares in a properly
set linear regression problem. The method of building the regression equa-
tion is described, for instance, by Lachenbruch (1975), or Bartkowiak (1984).
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Let us define an artificial predictor variable y

hy for individuals belonging to the first
n; + n, 9Jroup of data comprising n; individuals

¥y = (1)
) for individuals belonging to the second
n; + n, group of data comprising n, individuals

and consider the regression

y = bD + b1x1 + ...+ bpxp + e (2)
To find the optimal subset we proceed as follows:

First, a new order of the variables 1, 2, ..., p is introduced accor-
ding to the magnitude Q(-1), ..., Q(-p) of their residual sums of squares
o(-i), i =1, ..., p, defined as the residual sum of sguares obtained when

introducing all, but the ith, variables into the regression set. Ordering
the set of Q(-i), the following sequence is obtained:

0(-1) 2 9(-2) 3 ... 3 Q(-p) : (3)

The variables are then relabelled so that their Q(-i)s satisfy the inequali-
ties (1).

Next, the search for the best subset is performed considering k + 1
"branches" of generated subsets of size k:

The (k + 1)th branch comprises only one set: 1, 2, ..., k

The kth branch comprises the integers 1, 2, ..., k - 1 and one of
the integers p -k + 1, ..., p

The (k - 1)th branch comprises the integers 1, 2, ..., k - 2 and
two of the integers p -k + 2, ..., P

... and so on ..., up to
The 15t branch which comprises all k-tuples that can be chosen from
the integers 2, 3, ..., P.

It follows from the definition of the subsets comprising a branch that

the number of subsets contained in the jth branch is equal to (kff53—1)=
: - - - ( P-1
Ny = (number of subsets in the jth branch = {k-—j-+l] (4)

Seeking the optimal subset we proceed as follows:

(i) We start from the (k+ 1)th branch and evaluate the residual sum of
squares RSS for this subset. If RSS < Q(-k), we have found the opti-
mum subset and the search is terminated. Otherwise we retain RSS as
RSSy and we proceed for j = k, k - 1, ..., 1 considering the subse-
quent "branches".

(ii) For the jth branch we ask whether the current RSS, is smaller than
Q(-j). 1If yes, then the subset yielding RSS, is the optimal subset
and we stop the search. Otherwise, we generate sequentially the sub-
sets belonging to this branch. Finding an RSS smaller than RSSg
the current RSS is relabelled as RSSg,-

(iii) Having considered all subsets belonging to the jth branch, we dimi-
nish j by one. If j > 0, we start (ii), otherwise RSSy is the
minimal value, and the subset which yielded RSS, is the optimal sub-
set. : :
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THE CONCEPT OF AN £-0PTIMAL SUBSET

The residual sum of squares Q(-i) defined by (1) is a lower bound for
the RSSs evaluated for all subsets belonging to the ith branch and simulta-
neously for branches with a smaller index than i. If for a particular
subset found in the (i + 1)th branch the RSS is smaller than Q(-i), then no
subset belonging to the branches 1, 2, ..., i can give a smaller RSS.

Instead of considering the inequality

RSS < Q(-1i) (5)
we could verify another inequality

RSS < Q(-i) + ¢ (6)

In practice we consider instead of (6) a modified inequality

RSS < Q(-i) + ess(y)., (6a)

where SS(y) is the total adjusted sum of sguares of the variable y intro-
duced in (1):

n
Ss(y) = Z (vi - ¥) » n= ny + n, (7)

A subset with RSS satisfying (6) or (6a) is said to be e-optimal (its
RSS differs from the RSS of the optimal subset not more than by €).
RESULTS FOR THE CHD DATA

We consider first p = 12 and next p = 24 variables with the artificial
regression functions (see (2))

v bD + blx1 + oeee + blle2 + e, (8a)

vy b0 + blxl toees F byox, + bl3x% * s bquiz + e (8b)
The two regressions lead appropriately to linear and quadratic discriminant
functions, respectively. We have been locking for optimal subsets of size
k = 3, 4, 5. The total number of subsets to be evaluated when using the
traditional all-subset search is given in Table 1. The branches and the
st, the number of subsets in these branches, are given in Table 2 (the Nys
were evaluated using (4)).

Table 1. The Number of Subsets to be Evaluated in the All-
subset Search. (p - number of variables, k - size
of the subset)

K p =12 p = 24
3 (li] = 220 (2§} = 2024
4 [12] = 495 [23) = 10626
5 [1§] = 792 {zi) = 42504
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It can be seen that the totals of the numbers of subsets in the
branches numbers k+1, k, k-1, ..., 1 are equal to the numbers of subsets

given in Table 2.

Table 2. Branches and the Numbers of Subsets in These Branches When
Seeking Subsets of Size k = 3, 4, 5 Out of p = 12 and
p = 24 Variables

gzmﬁiz Considering p = 12 Variables Considering p = 24 Variables
b ; Nj - number of subsets Nj - number of subsets
ranch j
size of the subset: k = 3
. 8
j=4 = 1 [28} = 1
5 =3 )= o D= =
j=2 (') = s (*2) = 2
{28 (1§] = 165 ] [2§) = 1771
Total 220 ’ 2024
size of the subset: k = 4
0 - S
8
j =4 ;)= 8 (2(1)]= 20
j =0 (2] = 36 [2;] = 210
j=2 [lg] = 120 [22) = 1540
j =% [li) = 330 [Zi] = 8855
Total 495 10626
size of the subset: k =5
i-6 © - 2 (9= 1
j=s D) - 7 (9= 1
i =4 : (i} = 28 [2(23] = 190
j =3 {2] - 84 2;] = 1330
jo= 2 : (12) = 210 (zi] = 7315
§=1 ' [lé) = 462 (22] = 33649
Total 792 42504
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Table 3. Results of the Search for an €-Optimal and Optimal Subset Con-
sidering p = 12 Variables

k, Size of Branches Subset Chosen Fraction of Sub-
the Subset Considered (notation as above) sets considered

g-optimal subset with € = 0.02 according to (6a)

j =3 1, 11, 12 10:220 = 0.045454
4 j=4 1y 85 11, 12 9:495 = 0.018182
5 j =5 1, 4, 6, 11, 12 8:792 = 0.010010C

optimal subset

3 5 =3 1, 11, 12 10:220 = 0.045454
4 j=4vi=3 1, 8, 11, 12 45:495 = 0.090909
5 i=5vi=4 1, 4, 6, 11, 12 36:792 = 0.045454

From Table 3 it can be seen that the e-optimal sets and cptimal sets
comprise the same variables. Generally, the optimal algorithm worked for
p = 12 variables very rapidly and the difference in time between the two
algorithms is not very large.

When considering p = 24 variables the e-optimal subset was found very
speedily. When seeking the optimal subset we were not lucky and had to
evaluate all subsets. The subset of size k = 3 is the same for both
methods. The subsets of size k = 4 and k = 5 differ by one variable. Per-
forming the calculations for p = 24 variables and seeking a good subset,
the great advantage of searching for a e-optimal subset can be seen:
the gain in time here was tremendous! The details are given in Table 4.

Table 4. Results of the Search for an €-Optimal and Optimal Subset Con-
sidering p = 24 Variables

k, Size of Branches Subset Chosen Fraction of Sub-
the Subset Considered (notation as above sets considered
and (8b))

e-optimal subset with € = 0.02 according to (6a)

3 5 =3 1, 12, 23 22: 2024 =0.010870
4 =4 1, 4, 12, 23 21:10626 = 0.001976
5 j=5 1; 4, 12, 23; 24 20:42504 = 0.000471

optimal subset

3 j=3vij=2v 1, 12, 23 all = 1.0
3 =1

4 j=4vi=3w 1, 12, 23, 24 all = 1.0
j=2vj=1

5 i=5vi=4v Ly M 0 28, 99 all = 1.0
j=3vj=2vw
j=1
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DISCUSSION OF THE RESULTS

The method described shows a great advantage over the traditional one.
The application of the branch and bound method for discriminant analysis
was possible only because the Mahalanob.s distance, taken as the criterion
of the discriminative power of variables under investigation, has the pro-
perty of being a monotonic function of the number of variables in the dis-
criminative set being considered: adding a new variable to this set, the
Mahalanobis distance between the two groups of data can never be decreased,
but it may possibly increase.

The results obtained for the detailed medical problem are, at first
sight, a little surprising. The most discriminative features here are:
age, uric acid and glucose. These (except perhaps for age) are not judged
as the most important risk factors for Coronary Heart Disease (Multiple
Risk Factor Intervention Trial Research Group, 1982). In particular, the
variable "uric acid" is somehow questionable, although there are some
reports on the importance of this variable when considering CHD (Persky et
al., 1979). It is surprising that the feature "smoking" was not revealed
by the search procedure. One possible explanation could be that the ques-
tion, "How many cigarettes dc you smoke per day?", was not precise enough
and did not give much information on the smoking history of the interviewed
individual. Another possibility is that the groups of data considered are
truly not differentiated at all and that the results obtained are spurious.

It should be remembered that the people considered were still in the
working age group and were employed in industrial plants. It can be con-
cluded that the CHD symptoms stated in these people (men) were not very ad-
vanced because they were still able to carry out their professional activi-
ties. Therefore, the final (medical) conclusion that these people with
stated CHD symptoms do not differ statistically from those with no CHD
symptoms - at least with regard to the 12 parameters considered - is not
surprising.
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