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Abstract

Atypical observations hidden in the data may play quite an disastrous role in a
fitted regression, especially when commonly used outlier detection techniques like
computing leverages, Mahalanobis distances, ordinary and studentized residuals,
DFFits, cross-validations — do not detect them.

However (multivariate) outliers can be detected quite easily by graphical tech-
niques, e.g. scatterplot matrices, spin plots or dynamic projections using the grand
tour method. We find here specially useful the grand tour.

When we know about the outliers and their location in the multivariate space,
then we may account for them by special regression models.

We illustrate our considerations using the Modified Wood Gravity data from
Rousseeuw and Leroy (1987).
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tion, dynamic graphics

1 Introduction, short review of methods for finding
outliers

The role and influence of atypical observations, called also outliers, has been considered
since long by many statisticians and data analysts. The principal questions are: How
to detect such atypical observations, how to define outliers, how to detect them in the
given data, how to asses their influence [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16].

Graphical methods have been always considered as a great help when identifying the
outliers and their impact in the established model.

Classically the graphical methods are used for constructing various kinds of static
scatterplots displaying various kinds of residuals or so called regression diagnostics (lever-
ages, Cook distances, Mahalanobis distances, DFFits, DFBetas, etc.). Eventually these
diagnostics are visualized in a dynamic spin plot (spinner) displaying 3 variables.



Quite recently a possibility of viewing truly multivariate data using sequentially fast
rotations and projections has been offered [17, 18, 6, 8]. Generally the method is called
the grand tour.

In all these works a non contaminated subset of the data was sought, i.e. a subset
that does not contain any outlier.

The Least Median method (LLM) described in Rousseeuw and Leroy [15] was supposed
to yield one such subset. Another interesting proposals were given a.o. by Atkinson
[1, 2, 3] — by introducing so called stalactite plots, Hadi and coauthors [11, 12, 13, 14] -
aiming at a ‘clean’ subset, Rocke and Woodruff [16] — proposing a hybrid method from
the two mentioned, and Bartkowiak & Szustalewicz [6, 8] using the grand tour method.

In the following we will concentrate on the grand tour method.

2 Data used for illustrations

We will use for our illustrations the modified data on Wood Specific Gravity. These data
may be found in [15], Table 8. They contain data for a regression of one variable (y,
wood specific gravity) on 6 predictors. The data come from a larger data set, however
the set in the book [15] contains only n = 20 data vectors, from which four (no. 4, 6, 8,
19, — called in the following FOUR) were deliberately contaminated.
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Figure 1. Scatterplot matrix illustrating the Specific Wood Gravity data.
Points belonging to the FOUR subset are highlighted



Rousseeuw and Leroy show in their book, that the traditional methods, like the
leverages, Mahalanobis Distances, ordinary and studentized residuals, also robustified
by the leaving—one—out technique do not indicate for any atypical or influential data
vectors. The DFFITS methods points to quite other observations (no. 7, 11, 12) as
influential. Only, when using the robust Least Median (LM) method Rousseeuw &
Leroy have found that the indicated four data vectors are very specific (are big outliers)
and are very influential for the regression.

However, the LM method is very computer intensive. Cook and Hawkins (1990,
quoted after Hadi & Velleman [14]) needed for the Wood Gravity data 57,000 samples
to obtain by the LM algorithm the sought solution.

Then, the LM algorithm does not find always all the hidden outliers.

Briefly speaking, it does not solve all the problems and does not answer all the
questions.

Since then the Wood Gravity data set has received much attention and was discussed,
among others, by [1, 2, 16, 14], who proposed other, not so computer intensive methods.

One may get some idea about this data set by looking at the scatterplot matrix pre-
sented in Figure 1. When looking at this figure one may note, that the points belonging
to the subset FOUR held a special position. They are marked in Figure 1 by filled
squares (remind that these are the points specially modified by Rousseeuw & Leroy).

3 Finding outliers using the grand tour method

The used hereafter grand tour method is fully described in [6, 8]. Here we will only say,
that it works making sequentially fast projections of the multivariate data cloud.

The data are at the begin standardized to obtain centered and reasonably scattered
projections. Then we start to execute the algorithm, which proceeds in the following
steps.

1. Generate the rotation plane <UOV > passing through the center 0 and two ran-
domly generated points U, V located on the unit hypersphere € RP, the p dimen-
sional feature space.

2. Using U, 0,V calculate the rotation matrix A.

3. Using the matrix A rotate the data matrix X obtaining rotated coordinates of the
data points € RP (rotation is equivalent to make a transformation).

4. Project the rotated points onto the plane <&, #3> spanned by the horizontal (%)
and vertical (Z2) axes of the screen.

5. Draw in the plane <Z,%3> a concentration ellipse calculated from coordinates
{&:1, Zs2} of the visible (in the projection plane) point projections P, (1 =1,...,n).
The ellipse may be drawn as a robustified one.

6. Notify, which points are found outside the concentration ellipse.

The steps 1-6 are carried out continuously several hundred times. The points found
outside the concentration ellipse are suspected to be atypical (i.e. outliers). The fact of
being noticed beyond the border of the concentration ellipse is recorded in a neighboring
count plot.



Figure 2 shows three snapshots from a run of the described algorithm — when con-
sidering the Wood Gravity data and taking all the 6 variables.
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Figure 2. Three snapshots from the grand tour projections obtained for
the Wood Gravity data.
Left: Projection planes <%y, %> containing point projections, with robusti-
fied concentration ellipse superimposed.
Right: Count plots recording how many times the given point has been no-
tified outside the concentration ellipse.
Notice, that the numeration of points starts in the plots from 0!

The left plots of Figure 2 show the point projections visible in the projection plane
<¥1,T3> — in 3 selected phases of run of the grand tour algorithm.

In the plot (a) we see just, how the points belonging to the FOUR are far apart from
the main cloud of the data.



In the plot (b) they keep still an outstanding position, however their separation from
the other data points is very mediocre (this may, in a sense, correspond to their position
visible in the scatterplot matrix shown in Figure 1).

In the part (c) the subset FOUR is in fact absorbed in the entire data cloud.

The count plots visible in the right part of Figure 2 show, that really the points
belonging to the FOUR were notified quite frequently outside the concentration ellipse.

4 Regression in presence of outliers

We know already that the analysed data set contains 4 serious outliers. Will they be
discovered by an analysis of the residuals?

In the following we present the results of the regression analysis carried out in 3
variants:

I.  Entire data set.
II. Dropping from the entire data set the FOUR subset.
ITII. Adding to the model special variable accounting the outliers.

In the first (I) variant we calculate the regression in the traditional way using the
model:
y=bo+biz1+ ...+ bszs + e,
using for the estimation all 20 data vectors.

In the second (II) variant we use the same model, however for the estimation of the
parameters by, by, ..., bs we drop from the entire data set the FOUR subset, and carry
out the estimation with the 16 remaining data vectors.

In the third (III) variant we consider the following model:
y=bo+ b1+ ...+ bszs + b,y + e,
with 4 being an artificial variable defined as follows (: = 1,...,n):

vi = 1, fore € FOUR,
= 0, for: ¢ FOUR.

The variable v accounts for the special effect of the four outliers. We know from the
graphical analysis that they belong to one group — thus we introduce only one additional
variable. If the outliers were subdivided into several distinct subgroups then we would
use for each outlier group a separate additional variable (whether the outliers appear in
several subgroups, may be seen in the grand tour visualization).

The goodness of fit of these 3 models is shown below:

Variant R? o df F
I. Entire data 0.808 0.0241 14 11.81
IT. Dropping FOUR 0.958 0.0074 10 46.00

IT1. Additional variable v 0.9435 0.0136 13 36.17




Looking at the results above we state firstly a high value of R? (the squared multiple
correlation coefficient). The F' values indicate for a highly significant fit of all the assumed

regression models.
It is striking that after dropping the FOUR subset the goodness of fit improves much

(the residual standard deviation & drops from 0.0241 to 0.0074).
Introducing addition variable v (variant III) improves also the fit, as compared to
the basic (I) model; however we do not attain the goodness of the second (II) model.
Let us look more closely at the residuals as put against the fitted values. They are

shown in Figure 3.
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Figure 3. Studentized residuals against fitted values for variants I and
II of the calculations (upper plots), and for variant III (lower plots). In the
lower left plot also the ordinary residuals are shown

The Studentized residuals put against fitted values — are shown in Figure 3, upper two
plots. The left plot in Figure 3 shows the results obtained when executing variant 1. The
studentized residuals for the FOUR subset does not differ whatsoever from the remaining

data points.



However, the residuals evaluated from regression obtained in the II variant of calcu-
lations show a striking difference for the FOUR and the remaining data points, which
may be seen the upper right plot of Figure 3.

The lower plots in Figure 3 show the ordinary and the studentized residuals put
against fitted values obtained when using the variant III with the additional variable
accounting for the outliers. Here the residuals for the FOUR (especially for the points
#3 and #18) differ from the others, which indicates for an inadequacy of the model.

5 Final Remarks

The grand tour method permits quite easy to identify atypical multivariate observations.
This might be of great help for the data analyst, who may then use a regression model
accounting for the outliers.

Other method of making predictions (calculate the fitted values) in presence of out-
liers is provided by neural networks. Especially useful are here neural networks with
radial basis activation functions (r.b. network) [7]. However, neural network does not
permits for identifying atypical data vectors and is deficient in this respect.

For the regressional calculations the XLispStat module R-code [9] was used. It permits
easily for deleting indicated subsets of data vectors and recalculating the modified models.
The Figures 1 and 3 were obtained using that module.

The grand tour evaluations were done also by a module in XLispStat [18], so were
also obtained the plots shown in Figure 2.
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