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Abstract. We consider two sets of data known to be benchmarks for regression
in presence of outliers. These are: the stackloss data and the Hawkins-Bradu-
Kass data. The statistical methodology stresses the importance of detecting and
accounting for the outlying and/or influential data vectors. The neural network
methodology hopes that the problem will be tackled automatically by itself. We
investigate in more detail the two approaches. We obtain the same goodness of
approximation provided that we know about the outliers.
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1 Introduction

Predictions are made usually on the basis of an equation constructed using a regression al-
gorithm (statistical methodology) or more complex convolution formula using “weights”
“biases” and “activation functions” (neural network methodology).

It is widely believed that the approach by neural networks is more universal and
depends less on specific assumptions on the form of the model underlying the investigated
data.

We are doubtful about this belief.
In the following we consider two particular examples known as benchmark data for

the problem of regressional predictions. The data sets are known to contain observations
which are influential for the constructed regression equation.
Important problems to be considered are:
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1. Which criterion to choose for minimizing the error of the approximation? It is knowy
that the least square criterion is a very bad one. ’

2. How to establish the model used for predictions, how to choose the architecture of
the network?

3. Suppose, the model (its size) is already fixed, how to estimate the parameters ap
pearing in the model?

In last years it has been observed, that many statistical ideas infiltrate the neura]
network methodology [7, 5, 3].

We will show the results (goodness of the predictions measured by the residual sum
of squares) obtained using bdth the statistical and the neural (radial basis) network
approach.

The general conclusion is, that we may obtain similar results, when we know about
the outliers. Without this knowledge we may have some problems.

It is advisable that the analysis will accompanied with a graphical inspection of the
data. In case of multivariate data the grand tour [4] proves to be especially useful.

2 Analysis of the stackloss data

The data contain n = 21 data vectors, each comprising values of 3 predictors and 1
predicted variable called stackloss. The data are described a.o. by Atkinson [2, 1]. Four
data vector: #1, #3, #4 and #21 are known to be influential for the regression. The
multivariate structure of the data may be seen in plots retained when running grand
tour. Such plots may be found in [4].

Statistical approach

When performing ordinary computations of the regression equation and looking at
the obtained residuals, nothing very special about the 4 mentioned data vectors is found.
Their special role may be discovered only by applying some special methods (see, e.g.
(2, 1, 6, 4]).

The ordinary LSE method with 3 predictors yields a residual sum of squares RSS =
178 with df = 17 degrees of freedom. Introducing into the regression equation two extra
terms for the presence of #1, #3 and #4 (first term) and #21 (second term), the residual
sum of squares drops to RSS = 22.20 with df = 15 degrees of freedom.

This means an enormous improvement of the fit.

Neural network approach

We have used for the analysis the radial basis network [9, 5] implemented in MatLab
[8]. The procedure solverb needs a.o. the following inputs: spread of the radial base
functions (spread), maximal number of neurons (maz_neur), and the minimum level of
error to be attained (err_goal).

Putting as err_goal the value RSS = 22 obtained from the ordinary LSE method, and
taking maz_neur=15 we have run the procedure for spread from the range 1:0.5:14. We
obtained in all runs, that the number of neurons needed to achieve the presumed accuracy
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was nr=14. The value of spread had no very great impact on the results, although the
values RSSS were the best for values of spread lying somewhere in the range of 1-5.

The procedure works by choosing in the space of the predictors some prototypes of
the data vectors. The procedure introduces sequentially one neuron (= one radial basis
function centered at one chosen data vector) in each iteration (epoch). These were always
the 4 outlying points chosen as basis of the radial functions, and next — after all the 4
selected — some others were chosen too. The decay of the RSS value as a function of the
number of the chosen basic neurons is given below (run assuming spread=35.0:

RSS 732.0 552.4 250.0 246.9129.9 125.6 111.7 40 4
# of neurons 1 2 3 4 5 6 7 8
RSS 394 394 35.2 28.7 27.7 12.3

# of neurons 9 10 11 12 13 14

The number of parameters in the model is enormous: each radial neuron is character-
ized by p = 3 parameters of its position. Remind, there are s1 = 14 neurons in the model.
Additionally, there are s1 weights and one bias necessary to make the final prediction
with the accuracy comparable to those by the ordinary LSE method. In the considered
case this needs 57 parameters of the neural network model (we have together 84 data
values), while using the LSE method we need only 6 parameters.

3 Analysis of the Hawkins—Bradu—-Kass data

The data contain n = 75 data vectors with p = 3 predictors and 1 predicted variables.
10 from the 75 vectors are high leverage points very influential for the regression equa-
tion. Additionally there are 4 other high leverage points however not influential for the
regression. When using the grand tour it may be clearly seen that the data set contains
3 distinct groups of data points [4].

Statistical approach

The ordinary LSE method yields residual sum of squares RSS = 359.5 with df =71
degrees of freedom. After introducing 1 artificial variable indicating for the presence of
the 10 high leverage points the residual sum of squares has dropped to RSS = 18.93
with df = 70 degrees of freedom.

Neural network approach

The analysis was carried out similarly as with the stackloss data. The err_goal was set
equal to the RSS obtained when using the LSE method with the additional term for the
first 10 data vectors, i.e. err_goal=19.0. To achieve this goal we need 10 neurons (radial
basis functions). 8 from them are centered at data points belonging to the “bad” high
leverage points. The decay of the residual sum of squares as a function of the number of
neurons in the network is shown below(run assuming spread = 5.0):

RSS 34.531.322.622.121.721.320.620.219.5 18.8
#ofneurons 1 2 3 4 5 6 7 8 9 10
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One may see, that already one neuron gives a remarkably smaller residual sum of
squares (= 34.5) as that obtained by the ordinary LSE method with 3 predictors (RSS =
359.5). The decay of the RSS when adding additional neurons is very slow.

4 Conclusions

Considering two benchmark data sets we stated that we may obtain the same goodness
of approximation (residual sum of squares) both by the statistical and the neural network
approach, provided that we know about the outliers.

The statistical approach is much simpler. On the other hand, the radial basis neural
network approach is very appealing. None the less: the NN approach is much more
uncertain and leaves us always with doubts whether we have attained the proper optimum
and there is always the danger of overfitting.

Some complementary graphical displays of the interdependence structure of the in-
vestigated data (e.g. running a grand tour) are always advisable.
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