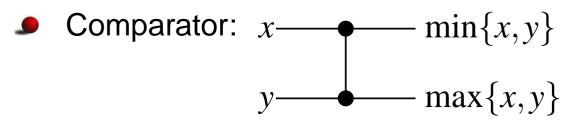
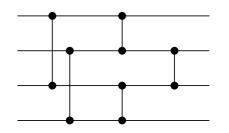
Fast Periodic Correction Networks

Grzegorz Stachowiak University of Wrocław

Comparator Sorting Networks

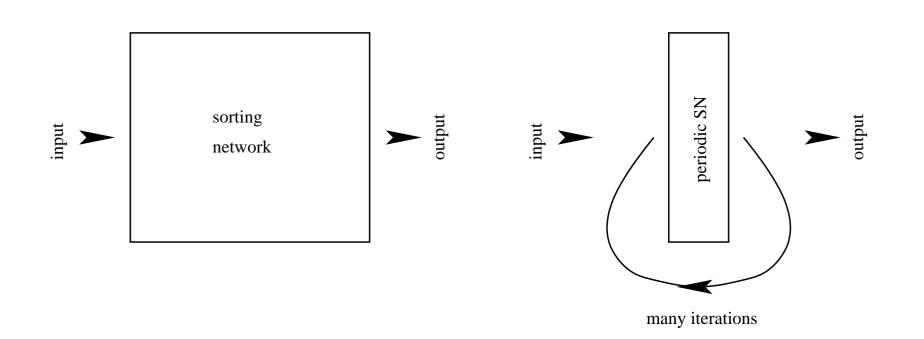


In a sorting network comparators are arranged into a series of layers.



- Zero-one principle: It is enough to check if a comparator network sorts all 0-1 inputs.
- Batcher sorting network has depth ~ $1/2\log^2 N$ and AKS sorting network has depth $O(\log N)$.

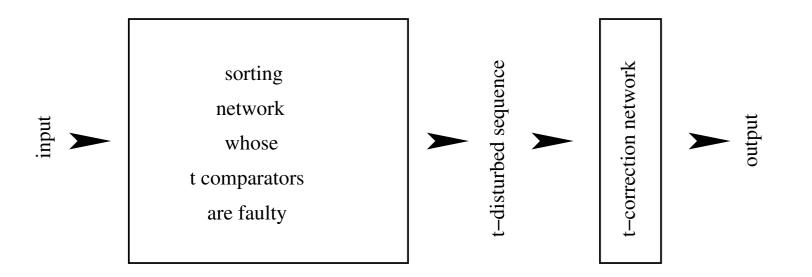
Nonperiodic & periodic sorting



- **Dowd**, Perl, Saks, Rudolph depth: $\log n$ and $\log n$ iterations
- Loryś et al. depth: 3–5 and $O(\log^3 n)$ iterations.

Correction networks

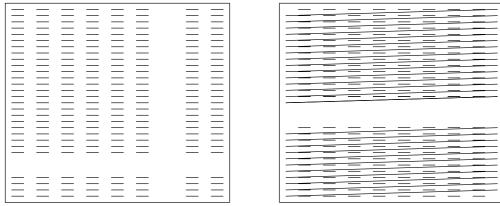
- *t-correction* network sorts all *t*-disturbed inputs.
- **Best result:** depth $1.44 \log N$ for constant *t*.
- main application:

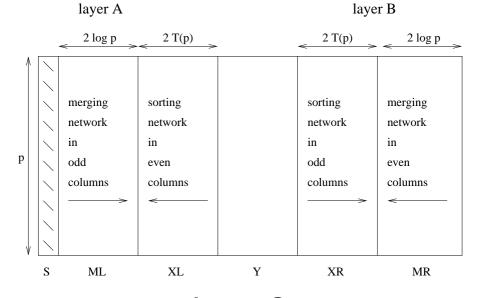


Periodic Correction Networks

- A periodic t-correction network is a periodic compatator network which sorts any t-disturbed input.
- Kik, Piotrow constructed periodic *t*-correction networks of 6-8 layers and requring $O(\log N + t)$ iterations.
- This work: 3 layers and $O(\log N + (\log \log N)^2 (\log t)^3)$ iterations.

3-layer periodification scheme





layer C

Layer C in our network

_log t	< log t+T(t) $>$	<pre>enough columns to embed a semi-correction network ></pre>	$< \frac{\log t + T(t)}{>}$	log t
	S M	floor 1	S M	
×	M S	floor 2		
		floor 3		
		floor 4		
	M S	floor 5		
vork	M S	floor 6		vork
partial merging network			M	partial merging network
par	S M		S M	par
	M S		S M	
	S		S C	
S ML	XL	Y	XR	MR

How it works

- We have $q = O((\log N + (\log \log N)^2 (\log t)^3) / \log t)$ columns.
- We divide rows into floors having O(t) rows each.
- Comparators are arranged so that a right running displaced 1 goes 1 floor down passing X_R, M_R, S, M_L, X_L .
- The same happens to a displaced leftrunning 1 if it remains left running.
- All 1s that are close to the border do not go down 1 floor anymore, but if akk displaced 1s are close to the border then $O(\log N + (\log \log N)^2 (\log t)^3)$ rounds are enough to finish sorting.
- We divide floors into families of floors. Family r consists of all floors with numbers $r + k \log t$.

How it works

- $O(\log N + (\log \log N)^2 (\log t)^3)$ rounds are enough for a right running 1 to get to the family 1.
- Passing all areas in family r a right running 1 reduces its distance to the border from $2N^{1-(r-1)/\log t}$ to $2N^{1-r/\log t}$ due to a semi-correction network embedded in this family and then gets to the family r+1.
- $O(\log N + (\log \log N)^2 (\log t)^3)$ rounds are enough to reduce this distance to $\log t$ floors.
- Next $O(\log N + (\log \log N)^2 (\log t)^3)$ rounds are enough to reduce this distance to 2 floors.
- The same happens to a left-running 1 as long as it stays left-running.