
B and D are enough to make the

Halpern�Shoham logic undecidable

Jerzy Marcinkowski, Jakub Michaliszyn, Emanuel Kiero«ski

Institute of Computer Science,
University Of Wroclaw,

ul. Joliot-Curie 15, 50-383 Wroclaw, Poland
{jma,jmi,kiero}@cs.uni.wroc.pl

Abstract. The Halpern�Shoham logic is a modal logic of time inter-
vals. Some e�ort has been put in last ten years to classify fragments of
this beautiful logic with respect to decidability of its satis�ability prob-
lem. We contribute to this e�ort by showing (among other results), that
the BD fragment (where only the operators �begins� and �during� are
allowed) is undecidable over discrete structures.

1 Introduction

In classical temporal logic structures are de�ned by assigning properties (propo-
sitional variables) to points of time (which is an ordering, discrete or dense).
However, not all phenomena can be well described by such logics. Sometimes we
need to talk about actions (processes) that take some time and we would like
to be able to say that one such action takes place, for example, during or after
another.

The Halpern�Shoham logic [11], which is the subject of this paper, is one of
the modal logics of time intervals. Judging by the number of papers published,
and by the amount of work devoted to the research on it, this logic is probably
the most in�uential of time interval logics. But historically it was not the �rst
one. Actually, the earliest papers about intervals in context of modal logic were
written by philosophers, e.g., [10]. In computer science, the earliest attempts to
formalize time intervals were process logic [15,17] and interval temporal logic
[13]. Relations between intervals in linear orders from an algebraic point of view
were �rst studied systematically by Allen [1].

The Halpern�Shoham logic is a modal temporal logic, where the elements
of a model are no longer � like in classical temporal logics � points in time,
but rather pairs of points in time. Any such pair � call it [p, q], where q is not
earlier than p � can be viewed as a (closed) time interval, that is, the set of all
time points between p and q. HS logic does not assume anything about order �
it can be discrete or continuous, linear or branching, complete or not.

Halpern and Shoham introduce six modal operators, acting on intervals.
Their operators are �begins� B, �during� D, �ends� E, �meets� A, �later� L,
�overlaps� O and the six inverses of those operators: B̄, D̄, Ē, Ā, L̄, Ō. It is easy

2

to see that the set of operators is redundant: D can be expressed using B and
E (a pre�x of my su�x is my in�x), L can be expressed by A (�later� means
�meets an interval that meets�) and O can be expressed using E and B̄.

In their paper, Halpern and Shoham show that (satis�ability of formulae of)
their logic is undecidable. Their proof requires logic with �ve operators (B,E
and A are explicitly used in the formulae and, as we mentioned above, once
B,E and A are allowed, D and L come for free) so they state a question about
decidable fragments of their logic.

Some e�ort has been put since this time to settle this question. First, it
was shown [12] that the BE fragment is undecidable. Recently, negative results
were also given for the classes BĒ, B̄E, B̄E, AĀD, ĀD∗B̄, ĀD∗B [3,7]. Another
surprising negative result was that OŌ is undecidable over discrete orders [4,5].

On the positive side, it was shown that some small fragments, like BB̄ or
EĒ, are decidable and easy to translate into standard, point-based modal logic
[9]. The fragment using only A and Ā is a bit harder and its decidability was
only recently shown [7,8]. Obviously, this last result implies decidability of LL̄
as L is expressible by A. The last remaining fragment with just one operator is
D � in this case, it was only shown that satis�ability is decidable over dense
structures ([2,6]). Another interesting decidable fragment ABB̄ [14].

In this paper we show that the BD fragment (and so DE) is undecidable. To
make the presentation simpler, instead of D we consider the operator D⊂ (see
Section 2.1), which is more convenient for out purposes. As explained later, our
technique can be easily modi�ed to handle the case of D.

In Sections 2.2 � 2.4 we present the proof of the following result:

Theorem 1. Satis�ability of the BD⊂ fragment of the logic HS is undecidable
over the class of all �nite orders.

In Section 2.5 we show how to modify the proof of Theorem 1 to get:

Theorem 2. Satis�ability of the BD⊂ fragment of the HS logic is undecidable
over the class of all discrete orderings.

Finally, in Section 2.6 we formulate, as exercises for the reader, more results
that can be proved by slight modi�cations of our technique. They concern some
logics similar to BD⊂, most importantly BD, but also B̄D, DE and others, and
di�erent classes of orderings. In Exercise 5 we show that Theorem 2 remains
true even if the class of all discrete orderings is replaced by any nontrivial class
of discrete orderings.

What remains open is the status of the D fragment over discrete orders �
a slightly more expressible fragment BD is shown undecidable in this paper,
but on the other hand the DD̄ fragment over dense orderings is known to be
decidable ([2,6]).

3

2 Technical Part

2.1 Preliminaries

Orderings. As in [11], we say that a total1 order ⟨D,≤⟩ is discrete if each
element is either minimal (maximal) or has a unique predecessor (successor);
in other words for all a, b ∈ D if a < b, then there exist points a′, b′ such that
a < a′, b′ < b and there exists no c with a < c < a′ or b′ < c < b.

Semantics of the logic HS. Let ⟨D,≤⟩ be a discrete ordered set2.
An interval over D is a pair [a, b] with a, b ∈ D and a ≤ b. A labeling is a

function : I(D)→ P(Var), where I(D) is a set of all intervals over D and Var is
a �nite set of variables. A structure of the form M = ⟨I(D), ⟩ is called a model.

The truth values of formulae are determined by the following (natural) se-
mantic rules:

1. For all v ∈ Var we have M, [a, b] ∣= v i� v ∈ ([a, b]).
2. M, [a, b] ∣= ¬' i� M, [a, b] ∕∣= '.
3. M, [a, b] ∣= '1 ∧ '2 i� M, [a, b] ∣= '1 and M, [a, b] ∣= '2.
4. M, [a, b] ∣= ⟨B⟩' i� there exists an interval [a, b′] such that b′ < b and

M, [a, b′] ∣= '.
5. M, [a, b] ∣= ⟨E⟩' i� there exists an interval [a′, b] such that a < a′ and

M, [a′, b] ∣= '.

Boolean connectives ∨,⇒,⇔ are introduced in the standard way. We also
use the operators ⟨D⟩' ≡ ⟨B⟩⟨E⟩' and ⟨D⊂⟩' ≡ ⟨D⟩' ∨ ⟨E⟩'. For X ∈
{B,E,D,D⊂} we abbreviate ¬⟨X⟩¬' by [X]'. By B̄, D̄, D̄⊂, and Ē we denote
inversed operators.

A formula ' is said to be satis�able with respect to a class of orderings D
if there exist a structure D ∈ D, a labeling , and an interval [a, b] such that
⟨I(D), ⟩, [a, b] ∣= '. A formula is satis�able in a given ordering D if it is satis�able
with respect to {D}.

2.2 Convenient automata

As for the tool in our undecidability proofs, we are going to use undecidability of
the problem of establishing whether a given two-counter automaton with a �nite
set Q of states, starting from a given initial state q0 and two empty counters,
will ever halt. An instruction of such an automaton has the format:

if the current state is q, 1st counter is/isn't 0, 2nd counter is/isn't 0, then
change state to q' and increase/decrease 1st/2nd counter

Notice that we assume, for simplicity, that exactly one counter is changed in
a single step.

1 Halpern and Shoham consider also partial orders. Our techniques can be easily mod-
i�ed to handle them. See Exercise 7 in Section 2.6.

2 To keep the notation light, we will identify the order ⟨D,≤⟩ with its set D

4

There is, however, from the point of view of our encoding, a slight incon-
venience in this format: being in the con�guration after step k + 1 of the com-
putation, we will not be able to easily check if the counters after step k were
empty or not. For this reason we introduce the following notion of convenient
two-counter �nite automaton (or just convenient automaton):

A convenient automaton is given by four disjoint sets of states Q00, Q01, Q10,
and Q11, and by a set of instructions of the form:

if the current state is q, then increase/decrease 1st/2nd counter and change
the state to one of {q00, q01, q10, q11}, where qij ∈ Qij for i, j ∈ {0, 1}

We assume here that there is exactly one instruction of this form for each
non-�nal state q. For each �nal state there is exactly one instruction of the form
�remain in the current state and do not change the counters�.

Formally, the state-transition relation is given by a set C ⊆ Q2, where Q =
Q00 ∪ Q01 ∪ Q10 ∪ Q11, and a function � : Q → {df , ds, if , is,⊥}, where d/if/s
means �decrease/increase �rst/second counter�, respectively, and ⊥ means �do
nothing�. We assume that there is no q ∈ Q00 ∪Q01 with �(q) = df and there is
no q ∈ Q00 ∪Q10 with �(q) = ds.

De�nition 1. A con�guration ⟨q, x, y⟩ of a convenient automaton is admissible,
with q ∈ Qij being a state and x, y being the numbers on the counters, if i =
0⇔ x = 0 and j = 0⇔ y = 0. We assume that q0 ∈ Q00, where q0 is the initial
state of the automaton.

The halting problem is the problem of establishing whether, for a given con-
venient automaton with a single �nal state qF , there exists a computation start-
ing from ⟨q0, 0, 0⟩, consisting only of admissible con�gurations, and ending in
a con�guration with the �nal state. By an obvious simulation of a standard
two-counter automaton we get:

Lemma 1. The halting problem for convenient automata is undecidable.

In Section 2.4 we are going to write, for a given convenient automaton with
a single �nal state, a formula of logic BD⊂ which will be satis�able if and only
if the automaton halts, in the sense of the above lemma.

In Section 2.5 we will consider automata with two �nal states qF and qG. We
say that qF accepts and qG rejects. The formula we are going to write for such
an automaton will be satis�able if and only if the automaton does not reject.
Clearly such non-rejectance problem is also undecidable.

2.3 Finite orders. Intervals, slices, and con�gurations.

In this and the next section, we will prove Theorem 1. Suppose a convenient
automaton A, with the set of states Q = Q00 ∪ Q01 ∪ Q10 ∪ Q11, is given. We
consider any �nite total order consisting of N+1 elements 0, . . . N , in this order.
Let I(D) be the set of all the intervals with endpoints in the set D = {0, . . . N}.
The intervals will be labeled with a set Var of propositional variables consisting
of the following elements

5

� A variable q for every q ∈ Q. Variables of this kind will be called, not
surprisingly, states.

� A variable cq,q′ for each pair q, q′ such that there is an instruction in A,
allowing changing a state from q to q′. Variables of this sort will be called
step controllers. The set of all step controllers will be denoted as C.

� Variables f0, f1, f
l
0, f

l
1, f

u
0 , f

u
1 , called f -marks. Variables f1, f

l
1, f

u
1 will be also

called f-ones and f0, f
l
0, f

u
0 will be also called f -nulls. Variables fu1 , f

u
0 will

be called f -upper critical and variables f l1, f
l
0 will be called f -lower critical.

� Variables s0, s1, s
l
0, s

l
1, s

u
0 , s

u
1 called s-marks. Variables s1, s

l
1, s

u
1 will be also

called s-ones and s0, s
l
0, s

u
0 will be also called s-nulls.

The letter f above stands for �the �rst counter� and the letter s stands for
�the second counter�. From now on, we will usually only bother with �rst counter
� the way one deals with second one is completely analogous.

For any i, with 0 ≤ i ≤ N , the set of intervals vi = {[i, i], [i, i+ 1], . . . [i,N]}
will be called a slice. Slices are going to serve us as devices to store the con�gura-
tions of A. Slices vi and vi−1 will be called consecutive. We will force consecutive
slices to store consecutive con�gurations of A. Notice that if slices w and w′ are
consecutive, then w′ is longer by one element than w � this is as it should be,
since to store future con�gurations of A we may possibly need more and more
room for counters (notice that the direction of time is slightly counterintuitive
here).

De�nition 2. Let : I(D) → P(Var) be a labeling of intervals with proposi-
tional variables. We will say that is slicewise correct if for each slice vi there
exist q, q′ ∈ Q, with cq′,q ∈ C, such that the following conditions hold:

(i) q ∈ ([i, i]) and for all other pairs q′′, j, where q′′ ∈ Q and i ≤ j ≤ N , we
have q′′ ∕∈ ([i, j]).

(ii) cq′,q ∈ ([i, i + 1]) and for all other tuples q1, q2, j, where q1, q2 ∈ Q and
i ≤ j ≤ N , we have cq1,q2 ∕∈ ([i, j]).

(iii) For each j, where i ≤ j ≤ N , there is exactly one f -mark y such that
y ∈ ([i, j]).

(iv) If y ∈ ([i, j]) for some j > i and y ∈ {f1, f l0, f l1}, then f1 ∈ ([i, k]) for
each i ≤ k < j . If y ∈ ([i, j]) for some j > i and y ∈ {fu0 , fu1 }, then for
all i ≤ k < j if z ∈ ([i, k]) then z ∈ {f1, f l0, f l1}.

(v) If f0 ∈ ([i, j]) for some j > i, then y ∈ ([i, k]) for some i ≤ k < j and
upper-critical y. If y ∈ ([i, j]) for some j > i and upper-critical y, then
z ∈ ([i, k]) for some i ≤ k < j and lower-critical z.

(vi) Let y ∈ ([i, i]) be an f -mark. Then y is an f -null if and only if q ∈
Q00 ∪Q01.

(vii) Let y ∈ ([i, j]) for some f -upper critical y. Then y = fu1 if and only if the
instruction of A concerning the action from the state q′ tells that the �rst
counter must be increased (i.e. �(q′) = if).

6

(viii) Let y ∈ ([i, j]) for some f -lower critical y. Then y = f l0 if and only if the
instruction of A concerning the action from the state q′ tells that the �rst
counter must be decreased (i.e. �(q′) = df).

(ix) Conditions (iii)-(viii) hold analogously for s-marks and the second counter.

The way the conditions are written is not the simplest possible one. Actually,
they are not meant to be simple. They are meant to be expressible in the logic
BD⊂ (we will make use of it in Section 2.4). So we feel we owe the reader some
explanation.

A labeled slice which satis�es the conditions from the above de�nition can
naturally be understood as an admissible con�guration of the convenient au-
tomaton A. We imagine vi as a tape of N − i + 1 cells, where the interval [i, i]
represents the �rst cell, [i, i+ 1] represents the second, and so on. If the labeling
is slicewise correct, then in each of those cells we keep one f -mark (and one
s-mark). The number of f -ones on the tape is understood to be the value of
the �rst counter. Conditions (iii)-(v) imply that the marks occur in some �xed
order: �rst there are f -ones in the cells [i, i] to [i, j], for some j, and then f -nulls
in the cells [i, j+ 1] to [j+ 1, N]. Most of those f -marks are either equal f1 or f0
� only near the border between ones and nulls typically there are two f -critical
marks: one lower, and one upper (this follows from the conditions (iv) and (v)).
Those critical marks can be both ones, both nulls or the lower can be a one
and the upper a null � depending on the action of A in the state q′ which is
assumed to be the previous state of A. This is a crucial part of a mechanism that
will be used in Lemma 2. In fact, for technical reasons, in some borderline cases
(namely, in slices representing initial con�gurations, and successor con�gurations
of con�gurations with empty counter) one of critical marks will not appear.

Notice that the condition (vi) together with its counterpart concerning the
second counter, imply that the con�guration described by the labeling is admis-
sible (in the sense of De�nition 1).

In the �gure below we present a slicewise correct labeling of I(D) for D =
{0, 1, . . . , 8}. The intervals are arranged in the triangular table, such that interval
[i, j], is located in the i-th row and j-th column. Notice that each row corresponds
to a slice. For transparency we do not present the values of s-marks.

0 1 2 3 4 5 6 7 8

f l
0, q8 fu

0 , cq7,q8 f0 f0 f0 f0 f0 f0 f0 0

f1, q7 f l
0, cq6,q7 fu

0 f0 f0 f0 f0 f0 1

f1, q6 f1, cq5,q6 f l
0 fu

0 f0 f0 f0 2

f1, q5 f1, cq4,q5 f l
1 fu

0 f0 f0 3

f1, q4 f l
1, cq3,q4 fu

1 f0 f0 4

f1, q3 f l
1, cq2,q3 fu

0 f0 5

f l
1, q2 fu

1 , cq1,q2 f0 6
fu
1 , q1 f0, cq0,q1 7

fu
0 , q0 8

In fact, this model represents the following computation of an automaton

(again, we consider only one counter): q0
+1−→ q1

+1−→ q2
=−→ q3

+1−→ q4
=−→

7

q5
−1−→ q6

−1−→ q7
−1−→ q8. It appears that the labeling is also stepwise correct in

the following sense.

De�nition 3. Let : I(D) → P(Var) be a labeling of intervals with proposi-
tional variables. We will say that is stepwise correct if it is slicewise correct
and for each two consecutive slices vi+1, vi the following conditions hold:

(i) If q, q′ are states, such that q ∈ ([i + 1, i + 1]) and q′ ∈ ([i, i]), then
cq,q′ ∈ ([i, i+ 1]).

(ii) For each j, where i < j ≤ N , the two conditions are equivalent:

� y ∈ ([i+ 1, j]) for some y being an f -null;
� f0 ∈ ([i, j]).

(iii) Same as (ii) but for the second counter.

The following crucial lemma establishes the correspondence between stepwise
correct labelings and computations of the automaton A.

Lemma 2. Let be a slicewise correct labeling. The following two conditions
are equivalent:

(1) is stepwise correct.
(2) Any pair of consecutive slices vi+1, vi represent two consecutive (in the sense

of the transitions of the convenient automaton A) admissible con�gurations
of A.

Due to the space limit we are not able to present all details of the formal
proof. Instead, using our example, we only illustrate the mechanism required for
the ⇒ direction.

Consider for example the transition from slice v5, which represents the au-
tomaton in the con�guration in state q3 and the counter equal to 2. At this
point our automaton should increase the value of its counter. Let us see that v4
needs to look exactly as in our �gure. Conditions (i) and (ii) of De�nition 2 and
condition (i) of De�nition 3 say that the state variable and the step controller
of v4 agree with the transition function, so in our case they have to be q4 and
cq3q4 , respectively. By condition (ii) of De�nition 3, the two rightmost positions
in v4 must be f0-s. The same condition forbids f0-s at earlier positions in v4. By
condition (v) of De�nition 2, f0-s have to be preceded by a lower-critical and by
an upper-critical marks. Since we impose a speci�c order on marks, they have to
be located exactly at intervals [4, 6] and [4, 7]. By (vii) and (viii) those critical
marks have to be f l1 and fu1 , respectively. Finally, by (iv) the critical positions
may be proceeded by f1-s only.

Once we know how to simulate the steps of the automaton, it is time for:

De�nition 4. Let : I(D) → P(Var) be a labeling of intervals with proposi-
tional variables. We will say that is globally correct if it is stepwise correct and
there exist 0 ≤ i < j ≤ N such that q0 ∈ ([j, j]) and qF ∈ ([i, i]).

8

By Lemma 2, a globally correct labeling of D exists for some N if and only
if the convenient automaton A halts after at most N computation steps.

What remains to be done, in order to end the proof of Theorem 1, is writing
down a formula of logic BD⊂ which is satis�able if and only if a globally correct
labeling exists for some N .

2.4 Finite orders. The formula.

The formula � we are going to write will be of the form �1 ∧ �2 ∧ �3, where �1
will be satis�ed in models whose labeling is slicewise correct, �2 will be satis�ed
in models whose labeling is stepwise correct, provided it is slicewise correct, and
�3 will be satis�ed in models whose labeling is globally correct, provided it is
stepwise correct. Formulae �1 and �3 are straightforward to write. To be able to
write �2 we need one more easy lemma:

Lemma 3. Let be a stepwise correct labeling, and let 0 ≤ i < j ≤ N .
Then the following two conditions are equivalent:

(1) y ∈ ([i+ 1, j]), for some f -null y.
(2) There exists i < k ≤ j and an f -null variable x such that x ∈ ([k, j])

Proof. Obviously (1) implies (2). Implication in the opposite direction follows
from condition (ii) of De�nition 3. But one can also think, that it re�ects the
fact, that if the �rst counter (in vk) stored a number smaller than j − k + 1
k− i−1 moves ago, then now (in vi+1) it stores a number smaller than j− i. ⊓⊔

First notice that we can de�ne, as ⟨BG⟩ = ∨ ⟨B⟩ , an operator saying
that holds true in some (interval which is) pre�x of the current interval. Let
also atMostOne(X) =

⋀
x∈X(x⇒

⋀
x′∈X∖{x} ¬x′) be an operator saying that at

most one variable from the set X is true in the current interval. Another useful
abbreviation is the operator �globally� [G]' = '∧ [D⊂]'∧ [B]' - it says that '
is satis�ed in every (reachable) interval.

Now we are able to write �. De�ne �1 = �1(i) ∧ �
1
(ii) ∧ . . . ∧ �

1
(viii) ∧ �

1
(ix),

where the subformulae mimic the conditions from De�nition 2:

�1(i) = [G](([B]⊥ ⇔
⋁
q∈Q

q) ∧ atMostOne(Q))

�1(ii) = [G](
⋁
c∈C

c⇔ ⟨B⟩⊤ ∧ [B]
⋁
q∈Q

q) ∧ [G]atMostOne(C)

�1(iii) = [G](atMostOne({f1, f0, f l1, fu1 , f l0, fu0 }) ∧ (f1 ∨ f0 ∨ f l1 ∨ fu1 ∨ f l0 ∨ fu0))

�1(iv) = [G]((f1 ∨ f l1 ∨ f l0)⇒ [B]f1) ∧ [G]((fu0 ∨ fu1)⇒ [B](f1 ∨ f l1 ∨ f l0))

�1(v) = [G](⟨B⟩⊤ ⇒ (f0 ⇒ ⟨B⟩(fu1 ∨ fu0)) ∧ ((fu0 ∨ fu1)⇒ ⟨B⟩(f l1 ∨ f l0)))

�1(vi) = [G]([B]⊥ ∧ (f0 ∨ f l0 ∨ fu0)⇔
⋁

q∈Q00∪Q01

q)

9

Let us split C into Cif , Cis, Cdf , Cds, C⊥ where Cif contains variables related to
instructions that increase the �rst counter, Cdf contains variables related to in-
structions that decrease the �rst counter, Cis and Cds contain variables related
to instructions increasing and decreasing second counter, respectively, and C⊥
contains variables related to the remaining instructions.

�1(vii) = [G]

⎛⎝(
⋀

c∈Cif

⟨BG⟩c⇒ ¬⟨BG⟩fu0) ∧ (
⋀

c∈C∖Cif

⟨BG⟩c⇒ ¬⟨BG⟩fu1)

⎞⎠
�1(viii) = [G]

⎛⎝(
⋀

c∈Cdf

⟨BG⟩c⇒ ¬⟨BG⟩f l1) ∧ (
⋀

c∈C∖Cdf

⟨BG⟩c⇒ ¬⟨BG⟩f l0)

⎞⎠
And �1(ix) is analogous to a conjunction of �1(iii) to �

1
(viii), but concerns the

second counter.
De�ne �2 = �2(i)∧�

2
(ii) where �

2
(i) re�ects condition (i) from De�nition 3 and

�2(ii) re�ects conditions (ii) and (iii):

�2(i) = [G]
(⋀

cq1,q2∈C
cq1,q2 ⇒ ⟨B⟩q2 ∧ ⟨D⊂⟩q1

)
�2(ii) = [G]

(
f0 ⇔ ⟨D⊂⟩(f l0 ∨ fu0 ∨ f0)

)
∧ [G]

(
s0 ⇔ ⟨D⊂⟩(sl0 ∨ su0 ∨ s0)

)
Finally, let �3 = ⟨B⟩qF ∧ ⟨D⊂⟩q0.
Now, it follows from the construction, that the formula � is satis�able over

some �nite ordering if and only if the convenient automaton A halts. This ends
the proof of Theorem 1.

2.5 In�nite discrete orders

The formula � we wrote in Section 2.4 works �ne for orders in which each interval
(with endpoints among the elements of the ordered set) contains only �nitely
many points � for example for �nite sets. But if arbitrary discrete orders are
allowed, then it may very well happen that � will be satis�able even if A does
not halt. Actually, as the following example shows, it will be satis�able if there
exists a con�guration c of A, which is �nal, in the sense that the state is qF , and
such that there exists an �in�nite computation� which ends in c but never begins
(we mean here an in�nite sequence c= c0, c1, c2 . . . of con�gurations, such that
for each i the con�guration ci is a result of one computation step performed in
ci+1).
Example. Fix an �in�nite computation� as above and imagine an order ⟨V,≤⟩
consisting of elements a0, a1, a2, . . . and b0, b1, b2, . . . with ai < aj and bj < bi for
i < j and with ai < bj for any i, j. Let d ∈ V . Like in Section 2.3, we can view
the set of sequences {[d, x] : x ≤ b0} as a slice, and encode any con�guration
of A as a labeling of this slice. Let us label the slice {[ai, x] : x ≤ b0} as the
con�guration ci of the above in�nite sequence, and the slice {[bi, x] : x ≤ b0}
as the con�guration which is reached by A after i computation steps, if started
in the beginning con�guration. The described labeling turns out to satisfy �.

10

Obviously, some details are left here for the reader to �ll � for example how to
label the intervals of the form [aj , bj]. ⊓⊔

Still, the proof of Theorem 1 from Sections 2.2 - 2.4 can be easily modi�ed
so that it proves Theorem 2.

It is enough to consider convenient automaton with two �nal states: qF (the
accepting state) and qG (the rejecting state). Let us remind that we assume that
there is one instruction of automaton for each state � also for the two �nal
states � but in the �nal states the instruction tells the automaton to freeze,
that is to leave the counters unchanged and remain in the same state.

The undecidable problem we will use now, is the problem if this new con-
venient automaton A ever rejects. More precisely, we write a formula �′ such
that �′ is satis�able in some discrete order if and only if A (started from the
beginning con�guration and visiting only admissible con�gurations) does not
reject (i.e. it accepts or runs forever). As it turns out, the only change we
need to make in � concerns the subformula �3: let �′ = �1 ∧ �2 ∧ 3, where
 3 = ⟨B⟩qF ∧ ⟨D⊂⟩q0 ∧ ¬⟨D⊂⟩qG.

Now, supposeA does not reject. There are two possible cases: either it accepts
(after some �nite number of steps reaches a con�guration with qF) or it does not
halt. In the former case we can build a �nite model, like in Section 2.3. In the
latter, we proceed like in the example above � notice that, since the automaton
can freeze in the state qF , we can be sure that an �in�nite computation� c exists.

What remains to be proved is that if A rejects then �′ does not have a model.
Suppose it rejects after N steps, and that there is a model ⟨I(D), ⟩ of �′ where
a < b are such elements of D that qF ∈ ([a, a]) and q0 ∈ ([b, b]). Let qi be
the state of A after i steps of the rejecting computation (so that q0 = q0 and
qN = qG.)

Let b0 = b and let bi+1, for 0 ≤ i < N , be the predecessor of bi in the order,
if such a predecessor exists. Actually, this is exactly what we need qF for �
to make sure that there are many enough elements of D (smaller than b), to
accommodate the rejecting computation:

Lemma 4. Let 0 ≤ i ≤ N

(1) If bi exists then qi ∈ ([bi, bi]).
(2) If bi exists and 0 ≤ j ≤ i then qF ∕∈ ([bj , bj]).
(3) If bi exists then a < bi.
(4) If bi exists then bi+1 exists.
(5) bN exists, and qG ∈ ([bN , bN]).

The proof of the lemma is by easy induction. Claim (1) of the induction step
follows from the construction of �′ � remember that the interval [bi, b] is �nite
and all the arguments from Section 2 apply. Claim (2) follows from (1), and
from the fact that a rejecting computation of A never enters the state qF . Claim
(3) follows from (2) and from the inequality a < b. Claim (4) follows from (3)
and from the assumption that each element of D is either the smallest or has a
predecessor. Finally, since qN = qG claim (5) follows from (4).

11

But it follows from the lemma, that there exists d ∈ D such that qG ∈
([d, d]), which is not allowed by �′. This contradiction ends the proof of Theorem
2.

2.6 More results (in exercises).

Exercise 1. Show that the satis�ability problem for the logic BD⊆ is unde-
cidable, where D⊆ is the re�exive variant of D, i.e., M, [a, b] ∣= ⟨D⊆⟩' i� there
exist a′, b′ such that a ≤ a′ ≤ b′ ≤ b′′, and M, [a′, b′] ∣= '. Hint : In our proof
we use the convenient property that intervals visible by B are not visible by
D⊂. This is not the case for BD⊆. Use an additional variable p and formu-
lae [G](⟨B⟩p → p) ∧ [G](⟨B⟩¬p → ¬p) and [G]((

⋁
c∈C C) ⇒ ⟨D⟩p ∧ ⟨D⟩¬p) to

distinguish between the current slice and the previous one.
Exercise 2. Show that the satis�ability problem for the logic BD is undecidable.
Recall that ⟨D⟩' ≡ ⟨B⟩⟨E⟩'. Such variant of D is called strict. Hint : The idea
is to use three �critical levels� instead of two.
Exercise 3. Show that the satis�ability problem for the logic B̄D over discrete
orderings is undecidable. Hint : Modify the formula for BD. The formula �1, can
be easily expressed � use B̄ to de�ne the order on the marks and D to label
intervals with the states and the step controllers (note that the property �1(v)
needs to be slightly modi�ed). Finally, formula �3 can be replaced by ⟨D⟩(qF ∧
⟨B̄⟩⟨D⟩q0), and �2(i) can be adjusted in the same way.

Exercise 4. Show that the satis�ability problem for logic DE and DĒ over
discrete orderings is undecidable. Hint : Actually, no hint is needed here. Just
replace every occurrence of B by E in the formula.
Exercise 5. Show that for any class of discrete orderings D, BD is undecidable
over D i� D contains orderings with arbitrarily large chains. Hint : For undecid-
ability result, consider two cases: if there exist D ∈ D and a, b ∈ D such that
{c∣a ≤ c ≤ b} if in�nite, then you can use the proof of Theorem 2, otherwise you
can use the proof of Theorem 1. For decidability result observe that the number
of non-isomorphic chains with bounded size is bounded.
Exercise 6. Show that BDD̄ logic is undecidable over the class of all ordering.
Hint : Consider the formula [G](lengtℎ0 ⇒ ⟨D̄⟩(p∧lengtℎ1)∧⟨D̄⟩(¬p∧lengtℎ1)),
where lengtℎi is true in intervals with the length i.
Exercise 7. In this paper we focused on total orderings. Originally, HS logic was
de�ned for any order that satisfy the following condition. For each a1, a2, a3, a4
if a1 ≤ a2, a1 ≤ a3, a2 ≤ a4, and a3 ≤ a4, then a2 ≤ a3 or a3 ≤ a2. Show that
our theorems still hold in this case. Hint : Again, no hint is needed here � just
read carefully the de�nition above.

References

1. J. F. Allen, Maintaining knowledge about temporal intervals, Communications of
the ACM 26 (11) (1983) 832-843.

12

2. A. Montanari, G. Puppis, P. Sala, A decidable spatial logic with cone-shaped car-
dinal directions, in: 18th Annual Conference of the EACSL, Vol. 5771 of LNCS,
2009, pp. 394-408.

3. D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, G. Sciavicco, Decidable
and Undecidable Fragments of Halpern and Shoham's Interval Temporal Logic:
Towards a Complete Classi�cation, in: Proc. of 15th Int. Conf. on Logic for Pro-
gramming, Arti�cial Intelligence, and Reasoning, Vol. 5330 of LNCS, Springer,
2008, pp. 590-604.

4. D. Bresolin, D. DellaMonica, V. Goranko, A.Montanari, G. Sciavicco, Undecidabil-
ity of Interval Temporal Logics with the Overlap Modality, in: Proc. of 16th In-
ternational Symposium on Temporal Representation and Reasoning - TIME 2009,
IEEE Computer Society Press, 2009, pp. 88-95.

5. D. Bresolin, D. DellaMonica, V. Goranko, A.Montanari, G. Sciavicco, Undecidabil-
ity of the Logic of Overlap Relation over Discrete Linear Orderings. Proceedings
of M4M 6: 6th Workshop on Methods for Modalities, November 2009.

6. D. Bresolin, V. Goranko, A. Montanari, P. Sala. Tableau-based decision procedures
for the logics of subinterval structures over dense orderings. Journal of Logic and
Computation, vol. 20, n. 1, 2010, pp. 133-166.

7. D. Bresolin, V. Goranko, A. Montanari, G. Sciavicco, Propositional Interval Neigh-
borhood Logics: Expressiveness, Decidability, and Undecidable Extensions, Annals
of Pure and Applied Logic, Vol.161(3), 2009, pp. 289-304.

8. D. Bresolin, A. Montanari, P. Sala, G. Sciavicco, Optimal Tableaux for Right
Propositional Neighborhood Logic over Linear Orders, in: Proc. of the 11th Euro-
pean Conference on Logics in AI, Vol. 5293 of LNAI, Springer, 2008, pp. 62-75.

9. V. Goranko, A. Montanari, and G. Sciavicco. A road map of interval temporal
logics and duration calculi. Journal of Applied Non-Classical Logics, 14(1-2):9-54,
2004.

10. C. L. Hamblin. Instants and intervals. Studium Generale, 27:127-134, 1971.
11. J. Halpern, Y. Shoham, A propositional modal logic of time intervals, Journal of

the ACM 38 (4) (1991) 935-962.
12. K. Lodaya. Sharpening the undecidability of interval temporal logic. In Proc. of

6th Asian Computing Science Conference, volume 1961 of LNCS, pages 290-298.
Springer, 2000.

13. B. C. Moszkowski. Reasoning about Digital Circuits. PhD thesis, Stanford Univer-
sity, Computer Science Department, July 1983

14. A. Montanari, G. Puppis, P. Sala, G. Sciavicco. Decidability of the Interval Tem-
poral Logic ABB̄ on Natural Numbers. In Proc. of the 27th Symposium on Theo-
retical Aspects of Computer Science (STACS 2010), pp. 597-608.

15. R. Parikh. A decidability result for second order process logic. In Proc. 19th FOCS,
pages 177-183. IEEE, October 1978.

16. A. Pnueli. A temporal logic of programs. In Proc. 18th FOCS, pages 46-57. IEEE,
October 1977.

17. V. R. Pratt. Process logic. In Proc. 6th POPL, pages 93-100. ACM, January 1979.
18. A. N. Prior. Past, Present and Future. Clarendon Press, Oxford, 1967.

