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Abstract. We consider an extension of the guarded fragment in which
one can guard quanti�ers using the transitive closure of some binary rela-
tions. The obtained logic captures the guarded fragment with transitive
guards, and in fact extends its expressive power non-trivially, preserving
the complexity: we prove that its satis�ability problem is 2Exptime-
complete.

1 Introduction

The guarded fragment of �rst-order logic, GF, introduced in [1], is a well-known
generalisation of modal logics. The main idea is to allow only a restricted form
of quanti�cation, simulating local nature of the modal operators ♦, �. GF re-
tains a lot of nice properties of modal logics, including (a generalisation of) the
tree model property, the �nite modal property and the robust decidability. This
makes it a promising starting point for logics for reasoning about programs and
hardware.

Many extensions and variants of GF have been extensively investigated last
years. One important direction is considering satis�ability of GF over restricted
classes of structures, in which some distinguished binary symbols are interpreted
as transitive relations (or, alternatively phrased, satis�ability of GF extended
by positive statements about transitivity of some binary relations). It appeared
([7], [3]) that allowing transitive symbols to appear in arbitrary positions in
formulas leads quickly to undecidability. However, if we restrict the usage of
transitive symbols to guards only, the satis�ability problem becomes decidable
and 2Exptime-complete ([11], [9]). The lower bound can be proved even in the
presence of only two variables. This two-variable version, [GF2 + TG], captures
(and non-trivially extends) modal logics K4, S4 and S5.

Transitivity of some binary relations is a desirable property in many reasoning
tasks. However, to reason about programs it would be nice to have some way of
expressing recursion. One idea is to extend GF by least and greatest �xed point
operators. It was done in [5]. This way we obtain a powerful logic embedding
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modal µ-calculus with backward modalities. Another idea is to add to GF some
form of the transitive closure operator. In this paper we consider [GF2++], an
extension of the two-variable guarded fragment, in which the transitive closure
operator can be applied to some atomic formulas. We note that augmenting
fragments of �rst-order logic even by a week form of the transitive closure leads
quickly to undecidability (see, e. g., [6]). Thus we have to be careful: analogously
to the variant with transitive relations we restrict the usage of the transitive
closure operator + to symbols appearing only in guards. More formally, the
signature has a distiguished subset Σ+, containing binary symbols, which may be
used only in guards, either individually or under the transitive closure operator.
We note that a variant, in which symbols from Σ+ are used additionally outside
guards, but not under the transitive closure, is undecidable.

A tempting idea is to go towards an extension of GF which would be strong
enough to embed propositional dynamic logic, PDL [2]. However, this is not
easy. For example, a variant allowing generalised guards of the form T �S(x, y),
simulating the composition of actions, is undecidable, even if the symbols which
can be used in compositions are allowed only in guards, and there is no transitive
closure operator [8].

[GF2++] easily simulates [GF2 + TG]: in a formula of [GF2 + TG] instead
of a transitive relation T we can simply use a transitive closure of a relation
T ′. However [GF2++] is strictly more expressive than [GF2 + TG]. For example,
consider the formula ∃x(S(x)∧∃y(xT+y∧R(y))), stating that from some point in
S there exists a T -path to a point in R. This is clearly not a �rst-order property
and thus it cannot be expressed in [GF2 + TG].

We prove that the satis�ability problem for [GF2++] is decidable in 2Exp-

time, exactly as [GF2 + TG]. Similarly to the case of [GF2 + TG] the proof is
based on a tree-like model property. However, there are some serious complica-
tions, due to the fact that [GF2++] can speak both about direct successors and
about reachable elements. For example, in contrast to [GF2 + TG], for a given
element its witnesses cannot always be its direct successors.

The paper is organised as follows. In Section 2 we give some basic de�nitions
and introduce a normal form of formulas. In Section 3 we prove a useful result
on the two-variable logic FO2, which will be an important tool in our proof.
In Section 4 we show that every satis�able [GF2++] formula in normal form
has a model of a special, tree-like shape. In Section 5 we outline an alternating
algorithm checking the existence of such a special model for a given normal form
sentence.

2 Preliminary

2.1 Logics

We work on First Order Logic (FO) with purely relational signatures, containing
no constants and functional symbols. Let GF stand for the Guarded Fragment
of First Order Logic de�ned as follows.
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� every atomic formula belongs to the language of GF
� GF is closed under boolean operators
� if ψ belongs to the language of GF, x,y are vectors of variables and α(x,y)

is an atomic formula that contains all variables from x and y, then formulas
∀x.α(x,y) ⇒ ψ(x,y) and ∃y.α(x,y) ∧ ψ(x,y) belong to the language of
GF

Formulas α(x,y) are called guards. Note that x = x is a special case of a guard.
Logic with the Transitive Closure In Guards ([GF++]) is an extension of

GF in which some generalised guards are allowed. We divide the signature Σ
into three disjoint parts Σ = ΣU ∪ ΣB ∪ Σ+. Σ+ and ΣB are sets of binary
symbols, where symbols from Σ+ cannot appear outside guards, and ΣU is a set
of symbols with arity di�erent than 2. For a given symbol T ∈ Σ+ we can form
a guard in a usual way, e. g. xTy, or by adding operator + to T , e. g. yT+x.
The semantics of the operator + is de�ned as usual: T+ denotes the transitive
closure of T .

We work with two-variable variants of the logics only. We denote them by
FO2, GF2, [GF2++]. Without loss of generality we assume that signatures con-
tain only unary and binary symbols.

2.2 Terminology

1-types and 2-types of elements in a structure over a signature Σ are de�ned in a
standard way. The (atomic) 1-type of an element v is the set of atomic formulas
with free variable x satis�ed by v. Similarly, the 2-type of a pair of elements
v, w is the set of atomic formulas with free variable x, y satis�ed by v, w. We
assume that 2-types are proper, i. e. contain x 6= y. For a 1-type t, let t[x/y]
stand for the set that contains the formulas from t in which each occurrence of
x is replaced by y. For a 2-type t let t|B, which is called a restriction of t to
family B, stand for the set that contains exactly those atomic formulas from t
that either have only one free variable or their relation symbol belongs to B.
Similarly, tB = t|{B} is called a restriction of t to the relation B.

To simplify the notation, we introduce for a binary symbol R a auxiliary
symbol R−1, whose intended meaning is to denote the inverse relation of R. Let,
for a given set of binary relations or binary relation symbols T , T −1 be the set
{R−1|R ∈ T }.

For a given logic, the satis�ability problem of this logic is de�ned as follows:
for a given formula ψ without free variables, is there any structure M such that
M |= ψ (model M satis�es ψ)?

2.3 Normal Forms

De�nition 1. We say that a formula ψ ∈ FO2 is in Scott normal form[10] if it
is a conjunction of formulas in the following forms:

(i) ∃x.ρ(x)
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(ii) ∀xy.δ(x, y)
(iii) ∀x.∃y.δ(x, y)

where both ρ(x) and δ(x, y) are quanti�er-free.

Every formula ψ of FO2 can be transformed, in polynomial time, to a formula
ϕ in Scott normal form over am extended signature, such that ψ is satis�able if
and only if ϕ is satis�able. Furthermore, ψ has models of the same size as ϕ.

De�nition 2. We say that formula ψ ∈ [GF2++] is in normal form if it is a
conjunction of formulas in following forms:

(i') ∃x.α(x) ∧ ρ(x)
(ii') ∀xy.β(x, y)⇒ δ(x, y)
(iii') ∀x.α(x)⇒ ∃y.β(x, y) ∧ δ(x, y)

where both α(x) and β(x, y) are proper guards and neither ρ(x) nor δ(x, y) con-
tains quanti�ers.

Lemma 1. Every formula ϕ of [GF2++] can be e�ectively transformed to a set
of formulas ∆ of [GF2++] over extended signature in normal form such that

� ϕ is satis�able if and only if
∨
∆ is satis�able

� |∆| = O(2|ϕ|), Σ′ = O(|ϕ|) and for each ψ ∈ ∆ we have |ψ| = O(|ϕ| log |ϕ|)
� ∆ can be computed in exponential time, and every ψ ∈ ∆ can be computed

in polynomial time.

The proof of this lemma is identical to the proof of Lemma 3.2 from paper
[11] about normal form for [GFk + TG], because that proof does not depend on
guards. Additionally we assume that a conjunct in form (i') appears exactly once
in the whole formula.

We say that w is a witness for an element v, if for some conjunct of the
form (iii) the formula δ(v, w) is satis�ed or for some conjunct in the form (iii')
formulas α(v) and β(v, w) ∧ δ(v, w) are satis�ed.

3 Exponential Model Property for Strongly-connected

FO2

In this section we show a lemma about FO2, which in fact is an extension of the
exponential model property [4]. This lemma will then become a crucial tool in
our construction.

We say that a structure M is T -strongly-connected if the digraph obtained
from M by removing all edges except T is strongly-connected. Note that a struc-
ture is T -strongly-connected if and only if the transitive closure of T contains
every pair of di�erent elements of this structure.

Lemma 2. Let ϕ be a sentence from FO2 in Scott normal form over signature
Σ, with a distinguished binary symbol T , and let M be a T -strongly-connected
model of ϕ. Then ϕ has a T -strongly-connected model M′ of size bounded by
24|Σ|+5, such that
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� M′ contains all 1-types realized in M

� for every point v from M′ of 1-type tv and every 1-type tw such that there
is a 2-type t in M that contains tv, tw[x/y] there is a point w from M′ such
that the pair v, w has the 2-type t.

Proof. Let ΣU = {U1, U2, . . . , Uu} be a set of unary relation symbols, ΣB = {T ,
B1, B2, . . . , Bb} be a set of binary relation symbols and Σ = ΣB ∪ΣU . Let us
�x a sentence from FO2 in Scott normal form over a signature Σ

ϕ = ∃xρ(x) ∧ ∀xyφ(x, y) ∧
k∧
i=1

∀x∃yψi(x, y)

such that M is a T -strongly-connected model of ϕ with universe M .
We will now build a T -strongly-connected model M′ with universeM ′, where

|M ′| ≤ 24|Σ|+5. This construction can be seen as an extension of the construction
for the exponential model for FO2 [4]. However we have to work much harder to
preserve strong-connectivity of the model.

De�nitions 1. � Kings are these points which have a unique 1-type in the
model.

� An R-path v1, v2, . . . , vk is a substructure generated by pairwise di�erent
elements v1, v2, . . . , vk such that for each i < k we have M |= viRvi+1.

� A path s, v1, . . . , vn, s
′ is non-royal, if none of the elements v1, . . . , vn is a

king.
� A shortcut of a path s, . . . , vpi, vi, . . . , vj , vnj , . . . , s

′, where vertices vi and vj
have the same 1-types, is the path s, . . . , vpi, vi, vnj , . . . , s

′, where vi and vnj
are connected in the same way as vj with vnj .

� We say that a path s is a compression of a path s′ if s has no shortcut and
there exists a sequence r1, r2, . . . , rn where r1 = s′, rn = s and ri+1 is a
shortcut of ri for 1 ≤ i ≤ n.

Note that if the signature is �nite, then every path can be compressed to a
path of length bounded exponentially in the size of the signature.

The universe M ′ contains the following parts: the royal palace Vk, the court
Vd and three cities V1, V2 and V3. Their construction proceeds as follows:

1. We insert into the royal palace Vk copies (i. e. elements of the same 1-type)
of all kings from M. If none of the kings satis�es ρ, then we add to the royal
palace one copy of a point that satis�es ρ in M. We preserve the connections
between these elements from M.

2. The court contains all witnesses for kings. More precisely, for each royal 1-
type tr, non-royal type tn and 2-type t that contains tr and tn[x/y], and
appears in M, we insert into the court Vd a new point of 1-type tn and
connect it with the point of type tr from royal palace as in t.

3. We build three cities. First, for each city we add 22|Σ| copies of every non-
royal point from M.
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4. For each point v′ from the court or one of the cities, we �nd in M a T -path
s1 from a point that has the same type as v′ to the point k1 from the royal
palace, and a path s2 from the point k2 from the royal palace to a point that
has the same type as v′, where both s1 and s2, do not contain kings except
k1 and k2, respectively. We add the compression of the paths s1 and s2 to
the V1, if v was from the court, or to the city of v′, if v′ was from a city, by
replacing extreme points with v′ and the copies of k1 and k2. Similarly, for
each pair (v′, w′) from the royal palace which has not been yet connected by
a T -path, we �nd in M a non-royal T -path s from the copy o v′ to the copy
of w′ and add a copy of a compression of s to the court. Finally, for each
newly-added element u′ that is connected directly (i.e. by some relation, not
only by the transitive closure of some relation) with a king of 1-type tk, we
�nd in M an element u which has the same 1-type as u′ and is connected
with the king of the 1-type tk in the same way as u′. We set connections
between u′ and VK as between u and all kings from M.

5. We ensure that all non-royal points have non-royal witnesses. For each non-
royal point v′ from M′ of 1-type ts, each non-royal 1-type tr and each 2-type
t from M which contains ts and tr[x/y], we copy connections from t to M′ in
the following way. If v′ was in Vd or V3, then we connect it with points from
V1, if it was in V1 then with V2, and if it was from V2 then with V3. Each
city contains 22|Σ| elements of 1-type tr, so for each 2-type we can choose a
di�erent element.

6. We ensure that all non-royal points have the requested witnesses among
kings: for each non-royal element w′ from M′, if a connection between w′

and the royal palace is not set yet, then we �nd in M an element of the same
1-type and copy connections between this point and kings to M′. Note that
we always can �nd such a pair, because all points in M′ are copied from M′

and, moreover, if some 1-type appears in M only once, then it appears also
only once in VK and it does not appear in the court or in any city.

7. For each pair v′, w′ of points from M′, if the connection between v′ and w′

is not already set, we copy some connection beetwen points of the same 1-
types from M. Again, a proper connection can be found because of special
treatment of kings (as in step (6)).

Note that |Vk| ≤ 2|Σ|, |Vd| ≤ 22|Σ||Vk|+2|Σ||Vk|2 and |Vi| ≤ (1+2|Σ|)·22|Σ|+
2|Σ||Vd| for i ∈ {1, 2, 3}, so |M | ≤ 24|Σ|+5. Let us observe that:

� The formula ∃xρ(x) is satis�ed in M′, because a point that satis�es this
formula was added in step 1.

� All 1-types and 2-types from M′ appear also in M; thus, φ is satis�ed.
� Every point has all witnesses it needs, so each ψj is satis�ed in M′.
� The royal palace is a T -strongly-connected subgraph (because of step 4) and

moreover each courtier and citizen is on a T -path from the royal palace to
the royal palace because of paths added in step 4.

Therefore, M′ satis�es ϕ and is T -strongly-connected. The construction also
implies that in M′ there appear all 1-types from M are realized. ut
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Theorem 1. Let ϕ be a an FO2 formula over a signature Σ with a distinguished
symbol T , and let M be a T -strongly-connected model of this formula. Then ϕ
has a T -strongly-connected model of size exponential in |Σ|.

This Theorem is a straightforward consequence of Lemma 2 and the obser-
vation about Scott normal form.

4 Rami�ed model property for [GF2++]

The proof of a special model property of [GF2++] has the common outline with
the idea presented in [11] for [GF2 + TG]. In both proofs we at �rst prove that
each satis�able formula has a model of a tree-like shape. This is done in the
following way:

1. Take a satis�able formula in normal form and a model M of this formula.
2. Take one point from the model M and start building the new model M′ from

this point.
3. If this point is in some clique whose edges are de�ned by a one of transitive

relation (a transitive closure of a relation fromΣ+), take this clique, compress
it and add it to M′.

4. If the current point needs a witness outside its cliques, �nd a path to this
witness in M, compress it and add it M′.

5. Process recursively the newly-added points (as in points (3) - (5)).

The most important di�erences between the proofs are in points (3) and (4).
The reason why the part (3) of the proof is more di�cult in the case of [GF2++]
is that the connections de�ning cliques are not atomic relation as in [GF2 + TG],
but paths. To overcome this di�culty we use the result of Section 3. The part
(4) is more complicated because in [GF2++] some witnesses cannot allways be
direct successors of an element.

It is important to underline why we take care about cliques. Our point is to
construct a model which looks like a tree. However, in [GF2++] logic we can
write a sentence ψ which is a conjunction of following formulas:

� ∀x(S0(x) ⇒ ∀y(xR+y ⇒ S0(y) ⇒ x = y)) (if a point v satis�es S0, then
there is no point reachable from v by relation R that satis�es S0, except,
possibly, v)

� every point satis�es exactly one of the relations S0, . . . , Sn−1

� there exists a point that satis�es S0

� ∀x.Si(x)⇒ ∃y(xRy ∧ S(i+1) mod n(y)) for each i < n

It is easy to see that every model of ψ contains a cycle of length n. In fact, we
can obtain a cycle of length 2n, using S0, . . . , Sn−1 to encode a binary number
and request that every successor of a point v encodes the value greater by 1
modulo 2n. As we see, the structure must sometimes have fragments that do not
look like a tree. We will see that the size of each such fragment can be bounded
exponentially.
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4.1 Construction of a rami�ed model for [GF2++]

Let ϕ = ∃xρ(x) ∧
∧j
i=1 ∀xyδi(x, y) ∧

∧k
i=1 ∀x.αi(x) ⇒ ∃y.ψi(x, y) be a �xed

formula in normal form from [GF2++] over the signature Σ = ΣU ∪ ΣB ∪ Σ+,
where Σ+ = {T1, . . . , Tn}.

First, we de�ne some properties of connections:

De�nitions 2. � Let t be a 2-type. We say that t is k-positive if there are
exactly k di�erent relations R ∈ Σ+ such that t satis�es xRy ∨ yRx.

� We say that a structure is 1-positive, if every 2-type that appears in this
structure is either 1-positive or 0-positive.

� An extended 1-type of a point v in a structure A is the set that contains the
1-type of v and the pairs 〈R, t〉, where R ∈ Σ+ ∪ Σ−1

+ and for some w 6= v
of 1-type t formula vR+w is satis�ed in a structure A.

Note that a restriction of a 2-type t to a binary relation B, t|B , is at most
1-positive. Now we de�ne cliques and some operations on them.

De�nitions 3. � An R+-clique in a structure M is a subset K of elements
from M, such that for each v, w ∈ K we have M |= vR+w.

� The maximal R+-clique that contains v is denoted by R+-clique(v).
� A path of R+-cliques 〈C1, v

in
1 , v

out
1 〉, 〈C2, v

in
2 , v

out
2 〉, . . . , 〈Ck, vink , voutk 〉 is a

substructure generated by pairwise disjoint cliques C1, C2, . . . , Ck, where for
each 1 ≤ i ≤ k the clique Ci is the maximal R+-clique containing distin-
guished vertices vini and vouti , and for i < k, M |= vouti Rvini+1.

� We say that a vertex v is in the clique-distance m from w if the shortest (i. e.
of the minimal length) path of R+-cliques from R+-clique(v) to R+-clique(w)
has the length m.

� A path of R+-cliques 〈C1, v
in
1 , v

out
1 〉, . . . , 〈Cz, vinz , voutz 〉, 〈Cd, vind , voutd 〉, . . . is

a shortcut of a path of cliques 〈C1, v
in
1 , vout1 〉, . . . , 〈Cz, vinz , voutz 〉, 〈Cp, vinp ,

voutp 〉, . . . , 〈Cd, vind , voutd 〉, . . . if vinp and vind has the same 1-types.
� A compression of a path of R+-cliques s is a minimal path of R+-cliques

obtained by an iterated shortcutting of s.

Note that for any R ∈ Σ+ a single vertex is a R+-clique.
Now we de�ne an operation on a structure that is usefull to express its tree-

likeness. Intuitively, a �attening of a model M is a graph G = 〈V,E〉, such that
V contains one vertex for each clique from M, and E connects cliques C1 and
C2 if at least one of the following conditions holds:

� C1 has a common vertex with C2 in M
� C1 is connected in M with C2 by some relation from Σ+

� C1 is connected in M with C2 by some relation from ΣB and is not connected
by the transitive closure of any of relation from Σ+.

The formal de�nition is more complicated. Each vertex is in n cliques (one for
each relation from Σ+), so connecting cliques with a common vertex lead us to
cliques of size n. We want to show that some �attening are trees, so we arbitrary
choose relation T1 and connect cliques with common vertex only if one of this
cliques is T+

1 -clique.
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De�nition 3. We say that an undirected graph G = 〈V,E〉 is a �attening of a
model M, if

� V = {R+-clique(w)|R ∈ Σ+ ∧ w ∈M}
� {T+

i -clique(w), T+
j -clique(w′)} is in E if T+

i -clique(w) 6= T+
j -clique(w′) and

at least one of the following conditions holds:
• w = w′ and i = 1
• i = j, and M |= wTiw

′ holds
• i = j = 1, for some S ∈ ΣB ∪ Σ−1

B we have M |= wSw′ and for each
S ∈ Σ+ ∪Σ−1

+ condition M |= wS+w′ is not satis�ed

We are ready to de�ne a property of models that will be used to build an
algorithm that checks if a given formula from [GF2++] has any model.

De�nition 4. We say that a model M of a formula ϕ is r-rami�ed, if M is
1-positive, the size of each R+-clique in M for R ∈ Σ+ is bounded by r and the
�attening of M is a tree.

Theorem 2. Every satis�able sentence from [GF2++] over a signature Σ has
a r-rami�ed model for r = 24|Σ|+5, in which every point has all the required
witnesses in clique-distance not greater than 2|Σ|.

Proof. Let ϕ = ∃xρ(x) ∧
∧j
i=1 ∀xyδi(x, y) ∧

∧k
i=1 ∀x.αi(x) ⇒ ∃y.ψi(x, y) be a

�xed formula from [GF2++] in normal form over the signature Σ = ΣU ∪ΣB ∪
Σ+, where Σ+ = {T1, . . . , Tn}. Furthermore, let M be a model of ϕ. Now we
de�ne a recursive procedure that, for a given 24|Σ|+5-rami�ed structure M′,
point v ∈ M′ and function from : M′ → M, extends M′ to a 24|Σ|+5-rami�ed
structure where v and every newly-added vertex have all needed witnesses. Si-
multaneously, it extends the function from. Intuitively, from(v) indicates a
point �similar� to w.

1. Build the cliques of v, modifying the cliques of from(v), proceed as follows.
For each relation R ∈ Σ+ if v is not inside an R+-clique with size greater
then 1, then we take from M the R+-clique(from(v)) and we restrict all
2-types in this clique to the family of relations {R} ∪ΣB . Such a structure
is an R-strongly-connected component. If this component has more then 1
vertex, then, using Lemma 2 for formula (∃x>)∧

∧j
i=1 ∀xyδ′i(x, y) and this

component, where δ′i is obtained from δi by replacing all guards xR+y by
>, we transform this component to a structure H ′ with an exponential size,
such that in H ′ all witnesses are preserved. Then we choose from H ′ an
element w with the same 1-type as v and add H ′ to M′ by identifying v with
w. Finally, for each element u′ 6= w from H ′ we �nd in H an element u with
the same 1-type and we set from(u′) = u.

2. We ensure that v has required witnesses outside its cliques. In order to do
that, for each formula ψi = γi ∧ δi, where γi is a guard, vertex v satis�es
αi and ψi is not satis�ed in M′ yet, we choose from M a point w′ that is a
witness of this formula for v′. Observe that w′ is not in any clique with v′.
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(a) If γi = xRy or γi = yRx for some R ∈ ΣB ∪Σ+, then we add a copy w
of a point w′ to the model M′ and we set connections between v and w
in the same way as it was in M after restriction to R. Moreover, we put
from(w) = w′.

(b) If γi = xR+y or γi = yR+x for some R ∈ Σ+, then we choose from M
a full path that provides the ful�lment of γi, with all R+-cliques that
appear on this path. We do it in following way.
Assume that γi = xR+y. We take a path of R+-cliques from R+-
clique(v′) to R+-clique(w′) with minimal length, we restrict every 2-
types on this path to R, and then we compress this path, obtaining a
path 〈R+-clique(v′), v′, v

′out〉, 〈C1, v
in
1 , v

out
1 〉, . . . , 〈Ck, vink , voutk 〉, where

Ck = R+-clique(w) and voutk = w′.
We compress every clique Ci to C

′
i in the way presented in step 1, ob-

taining cliques in which points v′
in
i and v′

out
i have the same 1-types as

vini and vouti , respectively. Then, in the R+-clique(v), we �nd a vertex

vout with the same 1-type as v
′out. We add to M′ path 〈C ′1, v′in1 , v′

out
1 〉,

. . . , 〈C ′k, v′ink , v′
out
k 〉 and we connect vout and v′

in
1 in the same way as

v
′out and v′

in
1 were connected.

For each i we put from(v′ini ) = vini and from(v′outi ) = vouti . Moreover,
for each vertex u′ ∈ C ′i such that from(u′) is not set yet, we �nd in Ci
a vertex u with the same 1-type and put from(u′) = u.
When γi = yR+x, we do the same for R−1.

3. We connect vertices from M′ by relations from ΣB using some patterns from
M. More precisely, for each two vertices v, w:

(a) If for some R ∈ Σ+ condition vR+w ∧wR+v occurs, then these vertices
are in the same clique and the connections are already established.

(b) If these vertices are connected by R+ for some R ∈ Σ+, the con-
nection is asymmetric (without loss of generality we may assume that
vR+w ∧ ¬wR+v holds) and connections between these points were not
established yet, then we �nd in M a vertex w′ which has the following
property: in M there is a R-path from from(v) to w′ and w′ has the
same 1-type as w. Such a vertex exists, because the 1-type of w belongs
to the set of the 1-types that are reachable by relation R, written in
extended 1-type of from(v). We add connections from ΣB between v
and w in the same way as from(v) and w′ were connected.

(c) If these two points are not connected by the transitive closure of some
relation from Σ+, then either all connections between this points were
already set, or they are not connected at all � then we set empty con-
nection between this elements.

4. We repeat steps 1-4 for all vertices added in this stage.

We take from M a point v′, that satis�es ρ, add its copy v to M′, set
from(v) = v′ and apply the procedure above to v. The structure built by this
procedure is a model of ϕ. The proof is omitted in this version due page limit.

ut
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5 Algorithm

In this section we describe an alternating algorithm working in exponential space
that checks if a given formula has a rami�ed model. From Subsection 4.1 we know
that every satis�able formula in [GF2++] has a rami�ed model, so this algorithm
resolves the satis�ability problem. At �rst, let us introduce some de�nitions:

� 1-types of elements are de�ned as above.
� full 1-type of an element contains the following information: 1-type of ele-

ment, list of 1-types of all direct successors for each binary relation, and, for
each relation R which appears under the transitive closure in the formula, a
list of 1-types of vertices reachable by R, and the information about 1-types
of vertices reachable by R−1, except for vertices that are in R+-clique with
considered element.

� type of a clique, containing the following information: its size, full 1-types
of all the vertices in the clique, information about connections between the
vertices and function promise, which for a given 1-type t and b ∈ {−1, 1}
returns the length of the path of (Rb)+-cliques from the current clique to a
clique that contains a vertex of type t (or 0, if there is no such path).

Note that every two cliques of the same type are isomorphic. For the sake of
simpli�cation, in this section we look upon a type of a clique as a clique of this
type with the attached function promise. This function is needed because the
algorithm guesses in each stage only cliques from a direct neighbourhood, while
Theorem 2 guarantees only that all needed witnesses are in clique-distance not
greater than exponential in the size of the signature.

Step 1. For a given formula ϕ = ∃xρ(x) ∧
∧j
i=1 ∀xyδi(x, y) ∧

∧k
i=1 ∀x.αi(x)⇒

∃y.ψi(x, y), the algorithm starts from guessing (i.e. existentially choosing) type
of a starting clique K containing an element satisfying ρ. Then it checks if local
properties of K are correct: if connections between vertices in the clique satisfy
δi for each i, if all successors from the full 1-type of points in the clique can be
connected with points from the clique in a way that satis�es each δi, and if the
promise function and full 1-types of vertices are not inconsistent.
Step 2. The algorithm �nds direct witnesses for each vertex in the clique
by guessing types of the cliques containing witnesses and connections between
guessed points and K. The algorithm checks if new cliques are locally proper.
Then, for each R+-clique K ′, which is connected with the previous clique by
R, the algorithm checks if 1-types of every vertex from K ′ are included in full
1-types of vertices from K to make sure that these vertices can be connected by
binary relations in a way that satisfy each δi. Furthermore, the algorithm checks
if the sets of 1-types reachable by R from vertices in K ′ are subsets of the sets
reachable by R from vertices in K and vice versa. Then the algorithm checks if
the type of K (including the promise function) and guessed cliques guarantee
all witnesses for each vertex from K.
Step 3. The algorithm guesses types of cliques that are on paths of cliques to
some clique that contains points of 1-types guaranteed in the promise function
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from K. For the easier control of dependencies, the algorithm guess on this stage
only the �rst clique from this path and check if the guessed clique has less value
of the promise function or realizes this 1-type.
Step 4. The algorithm checks the counter of stages. If the value of the counter is
greater then 28|Σ|, then algorithm stops and return �Yes�, because then we know
that some type of cliques occurred twice and another computation would be
the same as previously. In the other case the algorithm increments the counter,
universally chooses a clique K from the set of cliques added in this stage and
goes to step 2.

The algorithm needs only exponential memory, because each type of clique
has at most exponential size, so, since 2Exptime = AExpspace, the satis�a-
bility problem can be solved in 2Exptime.

The lower bound follows from the 2Exptime-hardness of the satis�ability
problem for logic [GF2 + TG], presented in [9], since we can simply replace tran-
sitive relations by transitive closure of these relations.

Corollary 1. The satis�ability problem for [GF2++] is 2Exptime-complete.
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