
Praca Magisterska

Teoriomnogościowe Podejście Do Typów,

Formalizacja Typów Za Pomoc ↪a Automatów

Oraz Nowe Konstrukcje W Typach

Klara Zielińska

Uniwersytet Wroc lawski, Wydzia l Matematyki i Informatyki

15 września 2014∗

Promotor: prof. Witold Charatonik

∗ Poprawki: 9 lutego 2015

Streszczenie

W pracy prezentujemy podej́scie do typów, w którym identyfikujemy typy nie z termami, jak to si ↪e robi zwykle,

ale ze zbiorami wartości. Pozwala to na pewne ujednoznacznienie typów i odzyskanie pewnej kongruencji mi ↪edzy

typami, a ich semantyk ↪a, która zostaje z lamana w pewnych systemach typów — np. w systemach z typami

rekurencyjnymi. Ponadto pokazujemy, jak użyć pewnego wariantu automatów skończonych jako reprezentacji

typów, co w naturalny sposób pozwala na implementacj ↪e systemów typów w komputerach. W szczególności

używaj ↪ac tej reprezentacji pokazujemy, jak obliczać podtypowanie dla pewnych (możliwe, że nowych) konstrukcji

w typach — to jest teoriomnogościowych sum i typów rekurencyjnych z operatorami µ, ν. Poza tymi konstrukcjami

pokazujemy także inne podstawowe konstrukcje w typach osadzone w naszym podej́sciu.

Poza g lównym tematem pracy opisujemy też sposób na sprawdzanie inkluzji pomi ↪edzy j ↪ezykami akceptowanymi

przez s labe automaty Büchiego na drzewach – który ma szans ↪e być wydajniejszy niż konstrukcje opisywane dla

ogólniejszych automatów – oraz poprawk ↪e pewnej konstrukcji dla automatów opisanej przez Damiana Niwińskiego

w
”
Fixed Point Characterization of Infinite Behavior of Finite-State Systems” w 1997.

Master’s Thesis

Set Approach To Types,

Automata Formalization Of Types

And New Type Constructions

Klara Zielińska

Wroc law University, Department of Mathematics and Computer Science

15th September 2014∗

Supervisor: prof. Witold Charatonik

Correction: 9th February 2015

Abstract

In this paper we present a view on types, where we identify types not with terms, as usual,
but with sets of values. This leads to some disambiguation of types and it regains some
congruence between types and their semantics, that can be seen lost in some type systems;
like in the case of recursive types. Moreover we put some finite automata as a possible
representation of types, what gives a natural way for computational reasoning about type
systems. Particularly using this representation we show how to compute subtyping for
two possibly-new type constructions — set-like unions and µ, ν recursive types. Besides of
this we also put other basic type constructions in the proposed setting for completeness.

Apart from the main course we give some description of a hopefully-efficient way to
calculate inclusion-testing between weak Büchi automata on trees and a correction of
some automata constructions given in “Fixed Point Characterization of Infinite Behavior
of Finite-State Systems” by Damian Niwiński in 1997.

Contents

1 Introduction 6

2 Preliminaries 8

2.1 Accessible pointed graphs 8

2.2 Automata . 9

2.2.1 Non-deterministic automata (minimal, maximal, Büchi, Rabin) . . 10

2.2.2 Cascading automata 12

2.2.3 Alternating automata 12

2.2.4 Remark about automata inclusion 13

3 Types 14

3.1 General terms . 14

3.2 General formalization concepts 15

3.3 Example type constructions 17

3.3.1 How do we give constructions 17

3.3.2 Base types . 19

3.3.3 Pairs . 19

3.3.4 Untagged unions 20

3.3.5 Tagged unions . 21

4

3.3.6 Recursive types 21

3.3.7 Intersection types 25

3.3.8 Inductive and coinductive types 27

3.3.9 Towards functions 32

A Constructing algorithm for weak Büchi non-deterministic automata in-

clusion checking 36

A.1 Intersection . 36

A.2 Complementation . 36

A.3 Alternation removing . 37

A.4 Checking emptiness . 39

A.5 Checking inclusion . 42

B What is wrong with the automata for fixed points in the paper [Niw97] 44

Bibliography 45

Notation

ε – empty sequence

x1 . . . xk – finite sequence; equivalent of {xi}ki=1
x1 . . . xk . . . – infinite sequence; equivalent of {xi}i∈N∖{0}
∣w∣ – length of sequence w; for infinite w it is fixed as ω

w∣k – prefix of k first elements of the sequence w, where w may be finite or infinite —

undefined if w has less then k elements

A∗ – set of finite sequences of A elements

A∗∣ω – set of finite and infinite sequences of A elements; equivalent of A∗ ∪Aω

[n] – the set {0, . . . , n − 1}
Dom (f) – the domain of function f

f ∣A – function f restricted to the domain A

f [x↦ y] – a substitution in function f that results in the function

f ∖ { (x, z) ∈ f } ∪ {(x, y)}
A↪ B – the set of partial functions from A to B

5

Chapter 1

Introduction

Types are sets. This claim seems correct from

semantical point of view. Types generally de-

scribe classes of values with some given properties,

where the universe of these values is mostly a set.

Still we rather identify types with terms, then

with sets, where additional relation (usually de-

noted by ∶) determines the mentioned classes for

each such term. This approach may lead to some

ambiguity, as many term-types can represent a

semantically equivalent entity. For example two

recursive types NatList1 = Nat ∣Nat ∗NatList1 and

NatList2 = Nat ∣Nat ∗ (Nat ∣Nat ∗NatList2) com-

monly describe exactly the same set of values —

which may be seen as a set of values that represent

non-empty sequences of natural numbers. This

ambiguity is generally solved by setting types as

possibly-infinite terms (represented by possibly-

infinite trees, cf. [Pc] Chapter 21) and setting

the prior terms as denotations of these. Still this

solution is partial. Let’s, for example, take a look

at the following. If we depict types as infinite

terms, there is only one type that satisfies the

equality NatList = Nat ∣Nat ∗NatList (cf. fig. 1.1).

But when we interpret the right side as the set

of values that belongs to the class represented by

the term Nat ∣Nat ∗NatList with respect to the

mentioned relation (∶) and a valuation of the vari-

able NatList, then there can be more solutions of

the equation. For example if we have values that

represent finite and infinite sequences of naturals

in our universe (e.g., like in lazy programming

languages), then the set of all finite sequences of

natural numbers is, as well, a solution of this, as

the set of all finite and infinite sequences of natural

numbers. So in other words there is incongruity

between semantical and syntactical interpretations

of recursive types definitions in some universes.

However problems with term-like types do not

concern only recursive types. For example if we

would like to have union types in a type system

that act as set unions, we quickly face the earlier

problem of ambiguity. Specifically, if we make the

type Nat ∣Bool to describe the class of all natural

numbers and boolean values (where booleans are

disjoint with naturals), then it should be semantic-

ally equivalent to Bool ∣Nat. But when types are

interpreted as terms, the types are different. This,

of course, can be dealt by setting types as classes of

equivalence on the terms, still these classes are iso-

morphic to the sets of values represented by these

terms, which we mentioned at the beginning. So

why do not put types just as these sets?

Figure 1.1.: The infinite term-like-type
that solves NatList = Nat ∣Nat ∗NatList

In this paper we propose to define types as sets

of values within some value universe, which is a

set. This solves the issue of ambiguity and it prob-

ably follows intuitions about types. However it also

makes types syntax-independent and so it allows

for freedom in representation. Thus we can rep-

resent types by terms as previously for readability,

but we can also have other representations for other

purposes. Particularly, in the sequel we show how

to put automata as type representations, what al-

lows to compute checking of subtyping for types

that are usually out of range of current type sys-

tems — if the reader is unfamiliar with subtyping,

this can be described in our setting by inclusion

between types and it is a crucial concept for prac-

tical usage of types.

Two new — or at least not common — con-

cepts that become available to computer systems

due to the usage of automata will be introduced

in this paper. These are set-like union types that

we mentioned above, and µ, ν (least, greatest) re-

6

cursive types. The first are called untagged uni-

ons, as opposed to tagged unions that are gen-

erally used nowadays in strongly-typed program-

ming languages. They allow to define values in

much briefer and more natural way that is known

from dynamically-typed programming languages

or just from pure mathematics. But except com-

fort this also allows for attempts to static analysis

of dynamically-typed programs. The second type

concept make it possible to distinguish finite and

infinite values in types. So we can, for example,

guarantee sequences of natural numbers that we

mentioned earlier to be finite or infinite in some

place of a program. This can be useful in exist-

ing lazy languages for better static analysis, but

it also legitimates introducing some infinite values

in strongly-typed eager programming languages,

what would be unsafe without warranties on finite-

ness of values, as we would be able to easily fall in

an infinite computation sequence.

Example 1.1. Here we give two definitions of the

same function in two different type systems. In the

first case we use a type system with tagged unions

for type-checking, which enforces additional oper-

ators for allowing the definition. In the second case

untagged unions are used.

The tagged unions case:

fn n => if n = 0 then left (true)
else if n = 1 then right (left (1))
else right (right (1.5))

The untagged unions case:

fn n => if n = 0 then true

else if n = 1 then 1

else 1.5

Example 1.2. The infinite sequence of 1s may

be defined in an eager programming language by

an expression like let rec x = (1, x) and it can be

typed with νx.Nat ∗ x, that denotes the greatest

type that satisfies the equality x = Nat ∗ x. One

may note that such a construction allows for circu-

lar values known in languages with side effects in

languages without them.

Apart from these two possibly-new in strongly-

typed programming languages type concepts we

also give a brief description of other fundamental

type constructions arranged to the proposed type

approach. Particularly, we show how to put these

constructions in automata setting and check sub-

typing with them.

In the paper we will not be concerned about

checking of membership in types from the prac-

tical point of view. Theoretically this problem is

straightforward — we can just run automata on

tree-like representations of values. Still this, of

course, is useless for computer implementations in

the case where values may be infinite. A work-

around may be here to put additional finite rep-

resentations of values and emulate automata runs

on values or just to check these finite representa-

tions against term representations of types in al-

gorithmic way. This issue, however, is much sim-

pler then checking subtyping and we will leave it

as some conceptual riddle.

7

Chapter 2

Preliminaries

In this chapter we describe basics for later use.

While this can be moderately interesting, we will

try to make it moderately minimalistic without

much description.

2.1 Accessible pointed graphs

Due to some strange impulses for accessible poin-

ted graphs (APGs) — which we explain later —

we will try to set some general terms about them.

An APG is a directed graph with a distinguished

(pointed) node v such that any node in the graph

may be accessed from v by the edges. Intuit-

ively, we can see these graphs as some equivalent of

possibly-infinite trees. For an APG such a tree can

be retrieved by setting a node for each finite path

in it starting from the pointed node — assuming

that the empty path is also valid. Then an edge

from one such node to another is set in the tree if

and only if the path corresponding to the former

is a prefix of the path corresponding to the latter

shorter by 1. The root of the tree is then the node

corresponding to the empty path.

Example 2.1. Figures 2.1 and 2.2 show an APG

and an equivalent tree obtained from it. The poin-

ted node and the root are marked with underlines.

Figure 2.1.: An APG corresponding to the tree in
Fig 2.2

Figure 2.2.: A tree corresponding to the APG
in Fig 2.1

Let’s formalize it a little bit now.

Definition 2.2. Let I be some set of indexes and

N be some underlying set of nodes. We say a pair

⟨N, ↓⟩ is an accessible pointed graph (APG)

environment , if ↓ is a partial function N × I↪ N .

We call then ↓ a child function and write t↓i for

↓ (t, i).

An APG environment describes a directed un-

labeled graph with indexed edges, where N stands

for the nodes and ↓ fixes the edges. More precisely,

if v1↓i = v2, then there is an edge indexed by i from

the node v1 to the node v2 in the graph. We simply

say then that v2 is the i’th child of v1 and v1 is a

parent of v2. If for some v ∈ N and i1 . . . in ∈ I∗ a

node v↓i1↓i2...↓in is defined, we say it is a descend-

ant of v and write v↓i1i2...in instead of v↓i1↓i2...↓in .

Such environment can be seen as a set of APGs,

because if we point a node v from N , it determines

8

an APG — the nodes of the APG are all des-

cendants of v, the edges are determined by ↓ and

the pointed node is the pointed node v.

Definition 2.3. An APG is a pair ⟨env , v⟩, where

env = ⟨N, ↓⟩ is an APG environment and v ∈ N .

We also say that t = ⟨env , v⟩ is an APG in env .

The pointed node v is also called a root then and

it is denoted by root (t). To pop the underlying set

from t or from env we write carr (t) or carr (env)
(carrier), respectively.

APGs with a finite number of nodes are called

finite. APGs for which a root have no parents

and all other nodes have a single parent are called

trees.

Definition 2.4. For an APG t = ⟨⟨N, ↓⟩ , v⟩,
paths (t) is the set of all w ∈ I∗ such that v↓w is

defined. Such a sequence w is then called an (in-

dex) path in t.

If w ∈ paths (t), we write simply t↓w instead of

root (t)↓w. We also set a function △ which applied

to t and w stands for the APG ⟨⟨N, ↓⟩ , v↓w⟩. We

write t△i1...in instead of △ (t, i1 . . . in).

Definition 2.5. For an APG t indexed by I,
PathEnv (t) is the APG environment ⟨paths (t) , ↓⟩
also indexed by I, where the partial function ↓ is

defined as w↓i = wi if and only if w, wi ∈ paths (t).
The APG PathTree (t) is then ⟨PathEnv (t) , ε⟩.

Note that PathTree (t) is, indeed, a tree as each

node in it has exactly one parent if it is not ε, and

it has no parents if it is ε. We may also note that

PathTree (t) stands for the tree corresponding to t

that we mentioned at the beginning of this section.

Recall that in the following definition I∗∣ω stands

for the set of all finite and infinite sequences of ele-

ments form I.

Definition 2.6. A branch in an APG t is a se-

quence $ ∈ I∗∣ω such that $∣n ∈ paths (t) for all

n ≤ ∣$∣ and if ∣$∣ < ω, then $i ∉ paths (t) for any

i ∈ I.

We say a node v ∈ N is on a branch $ in an APG

t if there exists n such that t↓$∣n = v.

Definition 2.7. The height of an APG is the

length of the longest branch in it incremented by

1. If the branch is infinite, then its length is ω.

Now we extend the concept of APGs and their

environments by adding labelings to them.

Definition 2.8. Let I be a set of indexes, N be

some underlying set and Σ be a set of symbols (la-

bels) — we call it an alphabet . Then ⟨N, ↓, ı⟩ is

a Σ-APG environment , if ⟨N, ↓⟩ is an APG en-

vironment and ı is a symbol function of the type

N → Σ. A pair ⟨⟨N, ↓, ı⟩ , v⟩ is then an Σ-APG if

v is a member of N .

All terms defined for APGs may be used with

Σ-APGs by removing ı from the environment and

applying them as before. An exception is △ that

does not remove ı.

⟨⟨N, ↓, ı⟩ , v⟩△w = ⟨⟨N, ↓, ı⟩ , v↓w⟩

For a Σ-APG t = ⟨⟨N, ↓, ı⟩ , v⟩ and a path

w ∈ paths (t) we also give a subscript operation tw
that stands for ı (v↓w). To extend an APG envir-

onment env = ⟨N, ↓⟩ to ⟨N, ↓, ı⟩ we write env + ı.

Definition 2.9. For a Σ-APG t, LabPathEnv (t)
is defined as PathEnv (t) + ı, where ı is set as

ı (w) = tw. The Σ-APG LabPathTree (t) is then

⟨LabPathEnv (t) , ε⟩, as before.

Definition 2.10. Two Σ-APGs t1, t2 are

called isomorphic if LabPathTree (t1) =
LabPathTree (t2), that is if paths (t1) = paths (t2)
and for each path w ∈ paths (t1) we have t1w = t2w .

Definition 2.11. A ranked alphabet F is an

ordered pair of a set Σ — alphabet — and an arity

function ar ∶ Σ→ N.

For conciseness, we write a ∈ F for a ∈ Σ and

we write Σn for { a ∈ Σ ∣ ar (a) = n }. For sim-

plicity we also define a ranked alphabet F by

writing F = {a1/k1, . . . , an/kn}, what means that

F = ⟨{a1, . . . , an} ,{a1 ↦ k1, . . . , an ↦ kn}⟩ .

Definition 2.12. Let F = ⟨Σ, ar⟩ be a ranked al-

phabet. We say a Σ-APG environment ⟨N, ↓, ı⟩
indexed by N is an F-APG environment , if

each node v ∈ N has exactly ar (ı (v)) children

v↓1, . . . , v↓ar(ı(v)). An F-APG is then any Σ-

APG.

2.2 Automata

APG automata are an equivalent of tree automata.

These automata expose a quite big topic, so if the

reader finds the following content is not enough for

him/her, more information can be found in [TATA]

and [Tho90].

To avoid consternation of readers that already

know the topic, we shall probably point out here

that our automata are not exactly the classical

9

ones. That is, the general concept of tree auto-

mata is extended in this paper by adding vari-

ables to them. Such approach was also proposed

by Damian Niwiński in [Niw97]. Intuitively, vari-

ables allow an automaton to parse only a part of

an input tree (APG), associate what is left with

some variables and leave the acceptance of it to a

valuation of these variables.

2.2.1 Non-deterministic automata
(minimal, maximal, Büchi,
Rabin)

Definition 2.13. A non-deterministic

APG automaton (NDA) A is a tuple

⟨F ,Q ,V , q0 ,V0 , δ, α⟩, where

F is a finite ranked alphabet

Q is a finite set of states

V is a finite set of variables

q0 ∈ Q is a start state

V0 ⊆ V is a set of initial variables

δ ⊆ ⋃nQ ×Σn × (Q ∪ V)n is a transition rela-

tion

α ∶ 2Q → {true, false} is an acceptance condi-

tion

By convention we write q
aÐ→ (s1, . . . , sn) for

(q, a, (s1, . . . , sn)) ∈ δ. We also write δa

for { q bÐ→ (s1, . . . , sn) ∈ δ ∣ b = a }, δq,a for

{ p bÐ→ (s1, . . . , sn) ∈ δ ∣ b = a, p = q } and FA, QA,

VA, q0A, V0A, δA, αA for corresponding elements

of an automaton A. For automata with the empty

set V we will say they are closed .

Recall that in the following definition r↓w stands

for the node at path w from the root of r and rw
stands for the symbol assigned to this node. In the

definition there also appear valuations that map

variables to sets of APG nodes, however as the set

of nodes of all APGs is not restricted we need to

allow these valuations to map to sets of any ob-

jects. Those objects that are not nodes of a parsed

APG will be just of no use then.

Definition 2.14. Let A be an NDA, t be an

FA-APG, S be a set, val be a valuation function

such that val ∣VA ∶ VA → 2S and let s ∈ QA ∪ VA.

Then an s-run of A on t with respect to val is

a (QA ∪VA)-APG r indexed by naturals satisfying

the following conditions.

- rε = s
- for each path w in r

⋆ if rw is a state, then the node r↓w has

exactly n (not necessarily distinct)

children r↓w1, . . . , r↓wn and there is a

transition rw
twÐ→ (rw1, . . . , rwn) in δA

⋆ if rw is a variable, then t↓w ∈ val (rw)

Definition 2.15. We say that a q0-run

r of an NDA A is accepting , if for

each infinite branch $ in r the condition

αA ({ q ∣ r$∣n = q for infinitely many n }) is true.

We also say that x0-run of A is accepting if

x0 ∈ V0A .

If for an FA-APG ⟨env , v⟩ there exists an ac-

cepting run of A with respect to some valuation,

then the APG is called accepted by A with re-

spect to this valuation. Alternatively we also say

that the node v is accepted by A in env with re-

spect to this valuation.

When an automaton is closed we can omit the

clause “with respect to”.

Definition 2.16. The semantics of an NDA

A within FA-APG environment env with re-

spect to a valuation val is the set of nodes

Aenv [val] = {v ∈ carr (env) ∣ v is accepted by A
in env with respect to val}.

Again, when an automaton is closed

we can omit “with respect to” and define

Aenv = {v ∈ carr (env) ∣ v is accepted by A in

env}.

Theorem 2.17. If APGs t1, t2 are isomorphic,

then for each NDA A and valuations val1, val2
that are equal up to APG isomorphism, A accepts

t1with respect to val1 if and only it accepts t2 with

respect to val2.

Proof. It is obvious, as the definition of runs does

not depend on the underlying sets of APGs for

which these runs are set.

Remark 2.18. As for each APG there exists a tree

isomorphic to it, Theorem 2.17 shows that our

APG automata and common tree automata (where

the trees may be infinite) are equivalent.

Definition 2.19. Let A be an NDA and val be a

valuation for it. An APG environment is weakly

closed over A with respect to val , if for each fi-

nite APG accepted by A wrt val there exists an

isomorphic APG in the environment.

For closed automata the clause “with respect to”

may again be omitted.

Definition 2.20. Minimal condition is the

NDA’s α condition that constantly equals false

10

and the maximal condition is α that constantly

equals true. We will denote them later as � and ⊺,

respectively.

Definition 2.21. A Büchi condition is an

NDA’s α condition with a fixed set B of automata

states, such that α (P) = true if and only if P ∩B
is non-empty. If α is Büchi, we denote this set by

Bα. The states in Bα are called then accepting

states.

Definition 2.22. A Rabin condition is

an NDA’s α condition with a fixed set

{(L1, U1) , . . . , (Ln, Un)} of pairs of automata

states, such that for any state set P the condi-

tion α (P) = true if and only if there exists i for

which P ∩Ui is non-empty and P ∩Li is empty.

These pairs of states are also called accepting

pairs.

Automata with an accepting condition from

some of the given classes are named by preceding

their names with the name of this class. So we

say “a Büchi non-deterministic APG automaton”

(Büchi NDA, in short) instead of “an NDA with a

Büchi accepting condition”, and so on.

In this paper we will not be very concerned about

Rabin automata, however we refer to them some-

times, thus we give a definition for them.

One such reference goes here.

Theorem 2.23. If a closed Rabin NDA accepts

any APG, then there exists a finite APG that is

accepted by it.

Proof. It is known that, for any Rabin non-

deterministic automaton on trees — and so also

on APGs — if there exists a tree accepted by it,

then there also exists a so-called regular tree accep-

ted by it (cf. [Tho90]). But for any regular tree we

can easily build a finite APG isomorphic to it, so

our claim is also true. This is because regular trees

are trees that have only finitely many isomorphic

subtrees (in our case a subtree of a tree t is any

possible t△w), thus we can fix the underlying set

for the mentioned isomorphic APG as the set of

equivalence classes on subtrees of a tree and then

fix the APG’s edges and the labeling by inheriting

them from the tree.

Note that Büchi NDAs are also Rabin NDAs, so

the theorem is also valid for the former ones.

Definition 2.24. Let A0,A1, . . . ,An be NDAs

over an alphabet F and x1, . . . , xn are pairwise

different variables of A0. Then the automaton

A0 [x1 ↦ A1, . . . , xn ↦ An] defined below is called

a composition of A0 with A1, . . . ,An.

Let Ai = ⟨Fi,Qi, Vi, q0i, V0i, δi, αi⟩ for i =
0, . . . , n. Then A [x1 ↦ A1, . . . , xn ↦ An] =

⟨F ,Q,V, q0, V0, δ, α⟩

where

Q = ⋃i=0,...,n {i} ×Qi

V = Vi ∖ {x1, . . . , xn} ∪⋃i=1,...,nVi

q0 = (0, q00)

V0 = V00 ∖ {x1, . . . , xn} ∪⋃xi∈{x1,...,xn}∩V00
V0i

δ = ⋃i=0,...,n {(i, q) aÐ→Ð→z ∣ q aÐ→ (s1, ..., sar(a)) ∈ δi
∧Ð→z ∈∏ar(a)

k=1 σi (sk)}∪

⋃xi∈{x1,...,xn}∩V00
{q0

aÐ→Ð→z ∣ q0i
aÐ→(s1, ..., sar(a))∈δi

∧Ð→z ∈∏ar(a)
k=1 σi (sk)}

α (P) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

true, if P = {i} × P ′ and

αi (P ′) is true for some i, P ′

false, otherwise

and for i = 0, . . . , n the mapping σi ∶ Qi ∪ Vi → 2Q∪V

is defined as

σi (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(k, q0k)}∪V0k, if i = 0 ∧ s = xk
for some k ∈{1, ..., n}

{(i, s)} , if s ∈ Qi
{s} , otherwise

Note that the ”otherwise” condition means that

s is any variable for i > 0 and s ∈ V0 ∖ {x1, . . . , xn}
for i = 0.

Lemma 2.25. For any NDAs A0,A1, . . . ,An over

F , an F-APG environment env and a valuation

val , we have that

A0 [x1 ↦ A1, . . . , xn ↦ An]env [val] = Aenv
0 [val ′]

where

val ′ = val [x1 ↦ Aenv
1 [val] , ..., xn ↦ Aenv

n [val]]

Proof. We can decompose any accepting run of

A0 [x1 ↦ A1, . . . , xn ↦ An] to accepting runs of

A0,A1, . . . ,An and vice versa.

11

Remark 2.26. If A0,A1, . . . ,An are Büchi auto-

mata, then their composition is also a Büchi auto-

maton. If A0,A1, . . . ,An are Rabin automata,

then their composition is a Rabin automaton.

2.2.2 Cascading automata

Here we propose a subclass of NDAs. This subclass

is not common, but it will be helpful as it allows

for structural breaking automata to smaller ones

and simplify reasoning.

Definition 2.27. An NDA ⟨F ,Q ,V , q0 ,V0 , δ, α⟩
is a cascading automaton , if there exists a par-

tition {Qi}i∈[n] of Q and a sequence of accepting

conditions {αi}i∈[n] such that

- for each q ∈ Qi, p ∈ Qj if i < j, then there is

no q
aÐ→ (. . . , p, . . .) in δ,

- αi ∶ 2Qi → {true, false} and

- α (P) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

true, if αi (P) = true for some i

false, otherwise

Such an automaton is then denoted by

⟨F ,{Qi}i∈[n] ,V , q0 ,V0 , δ,{αi}i∈[n]⟩

Note that cascading automata with only min-

imal and maximal αi conditions are Büchi. Com-

monly these are called weak Büchi automata

and they are generally easier for computations.

2.2.3 Alternating automata

Alternating automata on APGs are an extension

of NDAs.

Definition 2.28. An alternating APG auto-

maton (AA) is a tuple ⟨F ,Q ,V , q0 ,V0 , δ, α⟩
defined as an NDA except δ, which still

is a transition relation, but of the shape

δ ⊆ ⋃nQ ×Σn × (2Q∪V)n (cf. def. 2.13).

Definition 2.29. Let A be an AA, t be an FA-

APG, S be a set, val be a valuation such that

val ∣VA ∶ VA → 2S and let s ∈ QA ∪ VA. Then an s-

run ofA on t wrt val is a (QA ∪VA)-APG r indexed

by N ×QA satisfying the following conditions.

- rε = s
- for each path w = (k1, q1) . . . (kn, qn) in r

⋆ if n > 0, then rw = qn,
⋆ if rw is a state, then for a = tk1...kn

there is a transition

rw
aÐ→ (P1, . . . , Par(a)) in δA such

that the node r↓w has exactly

∑ar(a)
i=1 ∣Pi∣ (not necessarily distinct)

children r↓w(i,q) for all

i = 1, . . . ,ar (a) and all q ∈ Pi , and
⋆ if rw is a variable, then t↓w ∈ val (rw)

Here we do some work around, as the symbol

function of r just copies the symbol from the last

element of the path leading to a node, and so it is

superfluous. Still we put it there to treat a run as

an APG over the alphabet of states and variables

of an automaton, as it was done for NDAs. This

is handy, because this way we can work with AAs

runs similarly to those of NDAs.

Example. Figure 2.3 shows a part of a run

of some alternating automaton with trans-

itions q0
...Ð→ ({q0, q1} ,{q0}),q0

...Ð→ ({q0} ,{q0, q1}),
q0

...Ð→ ({q0} ,{q0}) and q1
...Ð→ (). (In practice the

second axis in edge labels may be omitted as it is

always a copy of the label of a target node.)

Figure 2.3.

Definition 2.30. Acceptance and semantics for

alternating automata is defined as for NDAs (cf.

def. 2.15, 2.16).

Note that the classes of accepting conditions

defined for non-deterministic automata in Subsec-

tion 2.2.1 are still valid for AAs.

Definition 2.31. Any NDA A can be seen as AA

by exchanging each transition q
aÐ→ (q1, . . . , qar(a))

in it to q
aÐ→ ({q1} , . . . ,{qar(a)}). We will denote

such an alternating automaton by Alt (A).

Definition 2.32. The cascading concept is

defined for AAs by exchanging q
aÐ→ (. . . , p, . . .)

with q
aÐ→ (. . . ,{p, . . .} , . . .) in the first clause of

Definition 2.27.

Definition 2.33. Compositions can be

given for AAs after changing σi in Defin-

ition 2.24 to σ′i ∶ 2Qi∪Vi → 22
Q∪V

such that

σ′i (P) = { f (P) ∣ f ∈∏s∈P σi (s) }, where σi is the

old mapping.

12

Remark 2.34. Lemma 2.25 and Remark 2.26 hold

for AAs.

2.2.4 Remark about automata
inclusion

This section is a conclusion from Appendix A

(mostly Section A.5).

First let’s say what we understand under auto-

mata inclusion. Inclusion of one automaton in

another one is the property saying that each APG

accepted by the former is also accepted by the lat-

ter for any valuation of their variables. In this pa-

per we will need to check the inclusion with respect

to some specific APG environment for testing if a

type is a subtype of another type.

The following theorem is a reformulation of a

generally known fact that testing inclusion between

regular languages of infinite trees is decidable.

Theorem 2.35. Let A1, A2 be closed Rabin NDAs

over a ranked alphabet F and env be an F-APG

environment weakly closed over A1. Then testing

the inclusion Aenv
1 ⊆ Aenv

2 is decidable.

Unfortunately this result is not very practical,

as the cost of the computation is very high in the

case of Rabin automata. That is why we will de-

scribe some more effective solution of this problem

for closed weak Büchi NDAs in Appendix A and

we will show how to restrict our type propositions

that we give in the sequel to be representable by

these.

The decidability of inclusion-checking for Bü-

chi non-deterministic automata on trees, and so

APGs, is a well-known fact. However we give a pro-

cedure for this in Appendix A, as most of already

described ones are given for stronger automata and

so they are more complex — both in idea and com-

putations. Particularly, in our case we can take an

advantage of the fact, that for a weak Büchi NDA

there exists a Büchi NDA that recognises the com-

plement of the former one and this automaton is

a crucial part of evaluating the inclusion-checking.

This is yet not true for stronger automata, as for

them we mostly need Rabin or other equivalent

condition to do the complementation and using it

results in heavy constructions.

As the following remark states, the pessimistic

complexity of the procedure that we propose is

single exponential with a linear exponent (up to

the ar (a) factor, that can be usually bound by a

small constant), what is a good result in compar-

ison to those for stronger automata.

Remark 2.36. The complexity of the solution for

weak Büchi NDAs inclusion-testing given in the ap-

pendix is O (K +L +LM) in time and O (K +L)
in space, where pessimistically

- K ≤ ∣Q1∣3∣Q2∣

- L ≤ ∑a∈F ∣δ1a ∣3∣Q2∣ (ar (a) + 1)∣δ2 a ∣+1

- M ≤ ∣Bα1 ∣2∣Q2∣

and indexes 1, 2 point out from which automaton,

A1 or A2 respectively, the symbols come.

This complexity may be still too high for prac-

tical use even for small automata, which we are

interested in. But the bound do not take into ac-

count the structure of tested automata and in our

case this works enough in our favour to give a credit

to these automata as a computation model in this

paper. Particularly, the complexity significantly

decreases with raise of the level of determinism of

the automaton A2 to finally reach the polynomial

class for fully deterministic automata; and auto-

mata that we are going to propose seem unlikely

to hit a high level of non-determinism.

Remark 2.37. For deterministic A2 the constants

from the previous remark may be decreased to

- K ≤ ∣Q1∣ (∣Q2∣ + 1)
- L ≤ ∑a∈F ar2 (a) ∣δ1a ∣ ∣Q2∣
- M ≤ ∣Bα1 ∣ (∣Q2∣ − ∣Bα2 ∣)

One more thing that we should mention here is

that, the inclusion-checking for alternating auto-

mata is also decidable, and that, there is still a

hope for using weak Büchi AAs for our case.

Proposition 2.38. Theorem 2.35 holds also for

AAs.

Proof. This is straightforward as translations of

AAs to equivalent NDAs are well-known.

Remark 2.39. For closed weak Büchi AAs

the complexity of the procedure for inclusion-

checking given in the appendix is as

in Remark 2.36 with the difference that

L ≤ ∑a∈F ar (a) ∣δ1a ∣3∣Q2∣ (ar (a) ∣Q2∣ + 1)∣δ2 a ∣
.

This seems again too much, but in our case the

factor ∣Q2∣ is bound by the number of occurrences

of some special operation on types, and as this

operation is rather rare in practice the procedure

should have close complexity to the one for NDAs.

The results described in this section are ex-

plained in more detail in Appendix A.

13

Chapter 3

Types

In the introduction we announced, we are going

to propose an alternative view on types. In this

chapter we will give a description of this view. We

also give a few hints about how to represent some

constructions considered at the field of type sys-

tems and about computable ways of implementa-

tion of type-checking with respect to the proposed

approach.

3.1 General terms

In formal systems — e.g., such as programming

languages — we usually work on some objects from

a fixed universe . In programming languages these

objects are commonly called values. Types then

describe some sets of these values. So we have, e.g.,

a type Nat which describes natural numbers, Bool

which describes boolean values, record types which

describe mappings of some finite sets of identifiers

to values, like {a ∶ Nat, b ∶ Bool}, which describes

all mappings associating a natural number to the

identifier a and a boolean value to b, and others.

These types are usually defined as expressions. But

due to the problems appointed in the introduction,

we are going to step aside a little bit from this.

What we propose is to define types as subsets of

the universe.

Definition 3.1. Let U be a set representing a uni-

verse of values. A type in U is then any set T ⊆ U
and a value v is said to be of this type if v ∈ T .

Of course this definition is extremely general and

without restrictions checking membership in some

types is undecidable. E.g., we can fix a set of values

which encode programs that stop as a type. Then

checking if a value belongs to this type is equival-

ent of checking the halting problem what is purely

undecidable. Still such a class of values exists, thus

it can be considered a type. So to deal with this

we will have to put some restrictions on type sets.

For this we use type systems.

Definition 3.2. Let U be a universe. Then a type

system Tsys over U is any subset of the set of

types 2U .

Type systems generally allow to satisfy a de-

sired level of computational complexity of checking

types in a formal statement (like in a computer pro-

gram) and sometimes they establish a correspond-

ence between these statements and some other en-

tities (cf. Curry-Howard isomorphism).

For types given as sets a very natural definition

of subtyping flows.

Definition 3.3. A type T1 is said to be a subtype

of T2 if T1 ⊆ T2.

This concept will be of high importance in the

sequel, as next to testing membership in types it

is a key part of checking types in formal state-

ments. However, while testing the membership

mostly does not expose troubles, testing subtyp-

ing may be unclear and so we generally omit the

first one in favour to the second.

The above definitions give a semantical founda-

tion to types, yet they do not give a formal way

of checking them and representing them in phys-

ical space. Thus we put the following concept to

handle this — we may see it, somehow, as a syntax

of types.

Definition 3.4. A formalization of a type sys-

tem Tsys over U is a set Tform of representations

of types together with relations ∶ and <∶ , where

the former is a subset of U × Tform and the latter is

a subset of Tform × Tform , that is epimorphic with

Tsys and relations ∈, ⊆. A term v ∶ t is read then as

“the value v is of the type t” and a term t1 <∶ t2 as

“the type t1 is a subtype of the type t2”. The epi-

morphism is denoted by [[]] and called semantics.

Note that we do not need to give relations ∶
and <∶ explicitly if we fix a semantic function,

as the epimorphism determines them — that is

v ∶ t ≡ v ∈ [[t]] and t1 <∶ t2 ≡ [[t1]] ⊆ [[t2]].
Formalizations can be interpreted as sets of en-

codings of types — for example for use in com-

puter systems. We set an epimorphism instead of

isomorphism here, as it may be impractical to set

encodings which map one-to-one to type systems.

E.g., if we have a formalization that is a set of

expressions which contain a semantically commut-

14

ative symbol, like ∪ representing a set-union, then

expressions like exp1 ∪ exp2 and exp2 ∪ exp1 should

map to the same type. Then, to establish the iso-

morphism we would need to disallow one of these

expressions in the formalization, what softly-saying

would be at least unhandy in most cases.

Example 3.5. Let the values universe be

U = Q ∪ U × U , where Q is the set of rational

numbers (there is only one such U by the ax-

iom of regularity). So in other words the uni-

verse is a set of nested pairs of rational num-

bers. An example type system can be set

then as ×sys = {N, Q} ∪ { T1 × T2 ∣ T1, T2 ∈ ×sys },

where we assume that N ⊆ Q (again there is only

one such ×sys by the axiom of regularity). By do-

ing so the type system allows to work with pairs

of values in formal statements and to treat nat-

ural numbers in a privileged way. Specifically,

we can have a natural-number-only operations —

e.g. modulus — in a formal system and check-

ing of types should guarantee us that we never

apply these operation to non-natural values. A

formalization for such a system can be fixed as

the set of expressions ×exp ∶∶= Nat ∣ Rat ∣ ×exp ∗×exp

with the natural semantics: [[Nat]] = N, [[Rat]] = Q
and [[t1 ∗ t2]] = [[t1]] × [[t2]]. Such representation of

types can be easily used then to compute member-

ship and subtype checking in our type system by

doing structural inductions on values and expres-

sions.

3.2 General formalization

concepts

When we use types in formal systems, we mostly

use formalizations to operate on them. Formal-

izations give a way to expose formal and decid-

able rules to check type membership and subtyp-

ing, which the set theory’s apparatus, that can be

used for raw type systems, does not provide. Thus

when we design a type system, in many cases we

should be concerned to be able to provide a good

formalization for it. This is, however, not a golden

rule, as some systems may not need to be decid-

able.

Below we propose some general choices for form-

alizations that can be made.

Expressions

A commonly used approach are expressions. They

are intuitive, readable and nicely fit computer im-

plementations, as they are easy to input and out-

put. Moreover, in simple type systems we can eas-

ily check types for such representations using struc-

tural induction. And on top of these all, with ex-

pressions we can formalize any type system that

can ever be written, what makes them probably

the most remarkable formalizations.

Nevertheless, expressions are not perfect. The

induction has some limits and it fails as soon as we

put recursive types in a system. Additionally, if

we put set-like union types next to recursive ones,

it become even more unclear how to check types

with this formalization. This makes a place for

other approaches.

But let’s adhere to expressions right now.

Generally we give an expression formalization by

defining a set of expressions, for example with a

BNF formula, and then we set a semantical func-

tion from them into a type system. However, some-

times it may be more convenient to give a super-

set of expressions formalising a system and to set

semantics as a partial function. Then we can re-

trieve a proper formalization from the set of all

expressions by finding the domain of the semantic

function.

Sometimes it may be hard to give a semantics

of expressions directly into types. A good example

here are expressions containing variables. Particu-

larly, if we have the expression x × y, we can sus-

pect that it does not describe any single type, but

rather a function that for a given valuation of vari-

ables x and y returns a type (in this case, it will

probably be the Cartesian product function). That

is why in some cases we may want to give semantics

of expressions as a function not only from expres-

sions by them own, but also from some contexts

that determinize their meaning.

Putting it more formally the following simple ob-

servation may be used to give expression formaliz-

ations and possibly type systems.

Observation 3.6. Let U be a value universe, Exp

be a set of expressions, C be a set of contexts, C0 ∈ C
be some initial context and [[]] ∶ Exp × C ↪ 2U .

Then Texp = { e ∣ (e,C0) ∈ Dom ([[]]) } is an

expression formalization of the type system

{ [[e]]C0
∣ e ∈ Texp }, where the semantic function is

given as [[e]] = [[e]]C0
and [[e]]C stands for [[]] (e,C).

In practice the only issue that requires contexts

15

is probably introducing variables to expressions, so

without losing much sight we may see C as a set of

valuations of variables to types with C0 being the

empty valuation.

APGs

Some generalisation of expressions are accessible

pointed graphs. These graphs may be seen as ex-

pressions that allow cycles in their structure and

reusing parts of a type definition in many places.

They seem proper for modeling recursive types —

like lists, trees, etc. — as recursion corresponds

to cycles. This, however, works fine only until

more then one recursion kinds are introduced. So

if we have, for example, inductive and coinduct-

ive recursions in one type system, it may be not

straight any more how to describe types with this

approach. Additionally, a disadvantage of these

formalizations in comparison to expressions is that

we cannot perform structural induction on graphs

(due to cycles).

Nevertheless, we put this concept here, despite

of questionable attractiveness, as graphs may be a

nice graphical representation of some types.

Example 3.7. The following figures present some

types formalized by APGs. Intuitively × represents

a Cartesian product, ∣ a union, Nat the set of natur-

als and pointed nodes are marked with underlines.

(Note that the nested Cartesian product in Fig 3.2

may be seen as a set of triples of a natural and two

child trees.)

Figure 3.1.: Type
for non-empty lists
of natural numbers

Figure 3.2.: Type
for non-empty bin-
ary trees where each
node is labeled with
a natural number

Automata

Typically values that occure in formal systems

can be expressed as trees, or more accurately, as

APGs. In such case types correspond to sets of

trees/APGs and so they can be represented as

automata on trees/APGs. This concept seems

promising as much work has been already done in

terms of computation of problems and operations

on automata. Moreover, it can be further general-

ized to other objects then trees and APGs by the

proposition given by Damian Niwiński in [Niw97]

of automata working on algebras. Still automata

are not too readable and printable, so when using

them we probably should also provide some other

formalization, like expressions, for proper present-

ation of types.

To use this approach first we need to set an

F-APG environment for some ranked alphabet F
where the universe of values is the underlying set.

Children of a value in the environment can be seen

then as subvalues from which the parent value is

composed and the symbol with which this value is

labeled says, how to compose these children to ob-

tain the parent. In such a setting a closed F-APG

automaton obviously describes a type. It is the

type of all values that are accepted by the auto-

maton in the environment. In other words if we

name our universe environment envU and the auto-

maton A, the type is AenvU .

Example 3.8. Let’s take U = Q ∪ U × U as in Ex-

ample 3.5. An APG representation of it can be set

then as the F-APG environment envU = ⟨U , ↓, ı⟩
such that

- F = {nat/0, rat−/0,pair/2},

- for i ∈ {1,2} we have that v↓i = v′ if and only

if there exist u1, u2 ∈ U such that v = (u1, u2)
and v′ = ui, and

- ı (n) = nat , ı (x) = rat−, ı ((u, u′)) = pair ,

for any n ∈ N, x ∈ Q ∖N, u,u′ ∈ U
Note we need some disambiguation here, as if we

try to put a symbol rat that represents all ration-

als instead of rat−, then ı (1) should be both nat

and rat , what cannot be. To illustrate how the en-

vironment represent values we can take the value

(1, (2, 2.5)). The APG representation of it is then

There are two things worthy to note here. One

is that, there can be more then one value with the

same symbol and with the same children assigned

16

to it in an APG environment. Thus the meth-

ods of constructing a value from its subvalues ap-

pointed by symbols within an environment can be

non-deterministic. The most common example for

this are constant symbols, like nat that is assigned

to all leaf (0-chidren) nodes representing natural

numbers, what says that from the empty set of

subvalues we can construct the value 0, the value

1, the value 2 and so on. The other thing is that,

there can be only one symbol assigned to a value in

an APG environment, so each value may have only

one way of construction. This causes that, if the

universe countenances for constructing a value in

many ways, some disambiguation is needed before

using automata as a formalism (cf. ex. 3.8).

Now, when we have such an automata setting,

the relation ∶ is just testing acceptance of values by

automata representing types in environment envU
and the relation <∶ is testing inclusion between

these automata with respect to envU . We may

remark here that for testing the second we usu-

ally will want the environment to be weakly closed

over automata from a formalization, to make use

of Theorem 2.35.

Example 3.9. Taking envU from Example 3.8

the type N ×Q may be given as the automaton

A = ⟨F , {q0, q1, q2} ,∅, q0,∅, δ,�⟩ where

δ ={q0
pairÐÐ→ (q1, q2) , q1

natÐÐ→ () ,

q2
natÐÐ→ () , q2

rat−ÐÐ→ ()}

To show some example of subtyping it is enough

now to add a transition to A. Like this:

A′ = ⟨F , {q0, q1, q2} ,∅, q0,∅, δ ∪ {q1
rat−ÐÐ→ ()} ,�⟩.

Then A <∶ A′, as any accepting run of the first

automaton on an APG is also an accepting run of

the second one on this APG.

Example 3.10. An automata formalization

×aut of the system ×sys may be the set

of all automata ⟨F , Q,∅, q0,∅, δ,�⟩ such that

Q ⊆ States for some fixed infinite set States

and q
rat−ÐÐ→ () ∈ δ Ô⇒ q

natÐÐ→ () ∈ δ where v ∶ A is

defined, as mentioned, by v ∈ AenvU and A <∶ A′
by AenvU ⊆ A′envU .

Now it is probably a good moment to recall that

we announced, we would explain our impulses for

APGs. These impulses come from the observa-

tion that values in formal systems often can be de-

scribed as APGs. Of course, we can also use trees

for this, however the correspondence of trees to val-

ues is not so straight as in the case of APGs. The

reason for this is that, one value may be used many

times in construction of another value. When we

would like to use trees, this leads to the situation

where in a tree representing some value multiple

subtrees representing a single subvalue may occur.

This way we lose a structure of values if we want to

represent them as trees. But, what is worse, this

also makes the size of representations may blow

and this blow can be very significant. Particu-

larly, in the world of coinductive values (that we

explain later), there are values that can be repres-

ented as finite APGs, but if we represent them as

trees, these trees needs to be infinite (cf. ex. 3.26).

3.3 Example type constructions

We close the chapter with a description, how to

put some basic constructions used in common type

systems into our setting.

3.3.1 How do we give constructions

We will use Observation 3.6 here. Saying more pre-

cisely, we define a type system over a value universe

U by giving a set of expressions, a set of contexts

and a semantic function. The expression set Exp

is defined with a single ABNF-style rule that we

extend for each new construction we add to the

system. The context set C is fixed as the set of all

valuations val ∶ Var ↪ 2U where Var is some infin-

ite countable set of variables. The initial context

C0 is set as the empty valuation. Finally, the se-

mantics [[]] ∶ Exp × C ↪ 2U is given by a set of re-

cursive equalities, which we extend in parallel with

Exp.

Of course to extend a type system with some

new construction we need also to guarantee some

corresponding values to be in U . E.g., if we intro-

duce pair types to the system, there should be pair

values in the universe that are described by these

types. These prerequisites will be formed as con-

ditions on U that must be satisfied before adding

a construction.

Next to the expression formalization we also give

an automata formalism. For this we assume that

we have an F-APG environment envU over the set

of values U , where F corresponds to our type con-

structions. This correspondence is described per

each construction by a condition on F . The auto-

mata in the formalization are then given with a

partial algebra, such that for each construction we

17

add one or more operations to the algebra, in a way

similar to extending the ABNF rule for expressions.

The automata formalization is then fixed as the set

of all closed automata generated by the empty set

through the algebra.

As for each new expression construction we will

have a corresponding operation on automata, it

is going to be straightforward that the automata

formalise the same system as the expressions.

Still the big picture lack its key item — the un-

derlying set for our algebra — and this exposes

some problems. First of all, we need to decide

what kind of automata is going to be represented

by the set and this choice is not obvious, as some of

the type constructions suit more to one kind then

to another. The second problem is that, even if

we choose the class of automata, we still cannot

take the set of all automata in it and put it as the

underlying set, as sets of states and variables are

unlimited in automata and ZFC theory does not

allow for sets of all sets.

In the first case we decide to use non-

deterministic automata (NDAs). This is because,

all our constructions except intersection types —

which are not very common — can be easily given

within this class. Intersection types are going

to be presented with some variant of alternating

automata (AAs). This will expose a minor prob-

lem, that we describe in the corresponding section.

However, as the basic concept stays valid, we put

the construction here. Besides intersection types

we put one more construction, namely function

types, in terms of AAs, as making it with NDAs

causes very serious blow of automata size. Still, the

previous statement is not a lie and doing it with

NDAs is striaightforward.

To deal with the second problem we simply

restrict sets of states and variables that auto-

mata can range through. So we put the set

Var that we settled before for expressions as

the universe of automata variables and the set

States = (N ∪ Var) ×N∗ as the universe of auto-

mata states. Then we fix the underlying set

A of our algebra as the set of all NDAs

⟨F ,Q ,V , q0 ,V0 , δ, α⟩ such that Q ⊆ States and

V ⊆ Var . Our A is now, indeed, a set as F is fixed

by the APG environment envU and q0, V0, δ, α are

limited by F , States, Var . In fact, the state uni-

verse may be chosen here as any infinite set, how-

ever we decide for this to be easily able to compose

automata according our definition and sometimes

to switch variables into states.

The partial algebra on A is now defined as ⟨A,Φ⟩
where Φ stands for a set of operations that will be

exposed by following type constructions.

Let’s put it all together. We start giving our

constructions with the following initial setting.

U is any value universe

envU is any F-APG environment (where F
is a ranked alphabet)

Exp =
(in other words, the initial set of expressions

is empty)

[[]] = ∅
Φ = ∅

Then by putting a similar frame per each con-

struction we extend our type system as follows. In

first two paragraphs we give some restrictions on U
and envU (that includes restrictions on F). Then

we assume that there is an ABNF rule Exp = φ, an

automata algebra ⟨A,Φ⟩ and a set of equalities Ψ

on Exp that fixes the semantic function [[]] given for

the type system that we are about to extend. So in

the three paragraphs we extend this items by put-

ting Exp = . . . / some clause, an equalities Eq on [[]]
and Φ = ⋅ ⋅ ⋅ ∪ some operations, respectively, what

means that we define the extended system where

the new set of expressions is Exp = φ / some clause,

the new expression semantics [[]] is given by the

equalities Ψ ∪Eq and the new automata algebra is

⟨A,Φ ∪ some operations⟩.
In parallel with introducing type constructions,

we also perform a “step-by-step” proof of equival-

ence between expression and automata formaliza-

tion. Saying more precisely, we give the following

theorem and per each type construction we per-

form a step of two inductions that prove it.

Theorem 3.11. Let U , envU , Exp, [[]], Φ be given

with type constructions in the following sections.

Then for each T ∈ 2U and val ∈ C, an expression e

such that [[e]]val = T exists if and only if there ex-

ists an automaton A generated by ∅ in ⟨A,Φ⟩ such

that AenvU [val] = T .

A “blueprint” of the proof may be described like

this.

18

We do one induction on the expression e,

to show the left-to-right implication and we

do second induction on the algebraic expres-

sion describing the automaton A, to show

the opposite implication. Then per each type

construction we give a lemma that proves the

corresponding cases of the inductions assum-

ing the theorem is true for smaller expres-

sions.

Corollary 3.12. If U , envU , Exp, [[]], Φ are given

with our type constructions, then the type system

{ T ∣ ∃e [[e]]∅ = T }

is equal to the system

{AenvU ∣ A is generated by ∅ in ⟨A,Φ⟩ }

3.3.2 Base types

Base types are the concept to give a predefined

fixed sets of values as types in a type system. Pre-

valent ones of these are e.g. the sets of natural,

integer and rational numbers, or subsets of them1,

the set of boolean values, some sets of characters

or sets of strings of characters.

In the expression formalization these types are

commonly represented as constant symbols — like

Nat, Int, Bool, etc. — with the natural semantics

that maps them to corresponding predefined sets.

In case of automata things may be more tricky,

as sometimes we can end up in an urge of infinite

alphabets. For example, if we have a type for all

natural numbers, doing things straightforward may

come with setting all of them as symbols in the al-

phabet. Still it is not a big threat, as commonly all

base types are disjoint and in such case we can deal

with that easily. Precisely, we can set the symbol

function ı for all entities of a base type to the same

0-ary symbol and thus narrow the number of sym-

bols to the number of base types in a system. In

the case where base types are not disjoint, it is also

possible to deal with the problem, similarly as we

did in Ex 3.8, but we will leave it as an exercise for

readers.

Definition 3.13. We extend a type system with

a new base type B as follows.

B ⊆ U

Some 0-ary symbol b ∈ F , and ı (v) = b in

envU if and only if v ∈ B

Exp = . . . / b

where b is a constant symbol

[[b]]val = B

Φ = ⋅ ⋅ ⋅ ∪ {Baut}
where Baut = ⟨F ,{0} ,∅,0,∅,{0

bÐ→ ()} ,�⟩

Note that in this case Baut is a constant in the

automata algebra.

Lemma 3.14. The cases of Theorem 3.11 for e = b

and A = Baut .

Proof. This flows trivially from [[b]]val =
BenvU

aut [val].

3.3.3 Pairs

Pairs are the most basic composed values. We can

see them as ordered pairs of values in the set theor-

etical meaning. Still it is not always proper, while

in some systems, we can have values which are in-

finitely nested pairs, e.g. (1, (1, (1, . . .))) and this

is not allowed by the ZFC theory — precisely by

the axiom of regularity. However, such a point of

view seems proper as an intuition.

For the purpose of this paper, we give a work-

around of the problem of infinitely deep pairs by

introducing an injection ⟨ , ⟩ ∶ S × S → S, for some

set S that includes U , which mimic the set the-

ory (,). The set S is unveiled here to remark

that we can construct pair-like objects not only

from values in U . In this case the set of all pair

values in U is described as { ⟨x, y⟩ ∣ x, y ∈ U }.

As we can expect, types for pair values cor-

respond intuitively to Cartesian products. Still,

as the values may not be set-like pairs, we need

to give a workaround also here to avoid a colli-

sion with the regularity axiom. We are doing it

by introducing another injection ×̄ ∶ 2S × 2S → 2S

1The subsets are caused by implementational reasons in computer systems. In computers each base type has often some
fixed finite bound on space, which can be used to represent a value of this type, and so only finitely many of values can
be arranged per type.

19

that, of course, mimic the set theory × and so

A×̄B = { ⟨x, y⟩ ∣ x ∈ A, y ∈ B }. The pair type of

types T1, T2 is then just T1×̄T2. In type expres-

sions the symbol ×̄ is usually denoted by ∗.

Definition 3.15. We extend a type system with

pair types as follows.

U ×̄U ⊆ U

The 2-ary symbol ⟨ , ⟩ ∈ F , and

ı (v) = ⟨ , ⟩ and v↓1 = u1, v↓2 = u2 in envU if

and only if v = ⟨u1, u2⟩ ∈ U ×̄U

Exp = . . . / Exp ∗ Exp

[[e1 ∗ e2]]val = [[e1]]val ×̄ [[e2]]val
Φ = ⋅ ⋅ ⋅ ∪ {×aut}
where ×aut is the 2-ary operation

×aut (A1,A2) = A× [x↦ A1, y ↦ A2] and

A× = ⟨F ,{0} ,{x, y} ,0,∅,{0
⟨ , ⟩ÐÐ→(x, y)} ,�⟩

for some distinct variables x, y

Lemma 3.16. The cases of Theorem 3.11 for

e = e1 ∗ e2 and A = ×aut (φ1, φ2), where φ1, φ2 are

algebraic expressions describing some automata

A1,A2.

Proof. By the hypothesis we have that for e1, e2
there exist A1,A2 such that [[e1]]val = A

envU
1 [val]

and [[e2]]val = A
envU
2 [val], and inversely for

A1,A2 there exist such e1, e2. Then if we

note that for any val ′ = {x↦ T1, y ↦ T2, . . .}
we have AenvU

× [val ′] = T1×̄T2, the equal-

ity [[e1 ∗ e2]]val = ×aut (A1,A2)envU [val] flows

straightly from the lemma about the automata

composition semantics 2.25.

3.3.4 Untagged unions

Here we propose some non-standard concept. An

untagged union is a type standing for a set union of

two (or more) types. Such unions, in opposition to

tagged ones, cause subtyping computations to be

not obvious, what may be the cause of resignation

from them in general usage. However, the proposed

automaton formalization can beat this problem.

The common symbols for unions in type expres-

sions are ∣ and +. We will use the first one here and

the second for tagged unions to distinguish them.

Definition 3.17. We extend a type system with

untagged unions as follows.

There are no additional requirements on U
and envU .

Exp = . . . / Exp ∣ Exp

[[e1∣e2]]val = [[e1]]val ∪ [[e2]]val
Φ = ⋅ ⋅ ⋅ ∪ {∣aut}
where ∣aut is the 2-ary operation

∣aut (A1,A2) = A∣ [x↦ A1, y ↦ A2] and

A∣ = ⟨F ,{0} ,{x, y} ,0,{x, y} ,∅,�⟩ for some

distinct variables x, y

Lemma 3.18. The cases of Theorem 3.11 for

e = e1∣e2 and A = ∣aut (φ1, φ2) where φ1, φ2 are

algebraic expressions describing some automata

A1,A2.

Proof. Again by the hypothesis we have

that for e1, e2 there exist A1,A2 such that

[[e1]]val = A
envU
1 [val] and [[e2]]val = A

envU
2 [val],

and inversely for A1,A2 there exist such

e1, e2. Then if we note that for

any val ′ = {x↦ T1, y ↦ T2, . . .} we have

AenvU
∣ [val ′] = T1 ∪ T2, we again get the straight

equality [[e1∣e2]]val = ∣aut (A1,A2)envU [val] by the

composition semantics lemma 2.25.

The computation problem of type-checking ex-

pressions with untagged unions comes from the fact

that we cannot perform a structural induction on

type expressions to test <∶ . Why? Let’s take a look

at the following example. Suppose that we want to

check e1 ∗ (e2 ∣e3) <∶ (e1 ∗ e2) ∣ (e1 ∗ e3) for some

expressions e1, e2, e3. This is surely true as the

both sides of <∶ stand for the same type. But now,

if we would like to use the mentioned induction,

then, briefly saying, we cannot perform it on the

left expression, as the right one is not a product,

and if we do it on the right one, we have to com-

pare e1 ∗ (e2 ∣e3) with e1 ∗ e2 and e1 ∗ e3 in the res-

ult, where both expressions e1 ∗ e2 and e1 ∗ e3 rep-

resent strictly smaller types then the former one.

Hence the induction would fail. Fortunately, we

can cope with this problem easily by the automata

formalization, as untagged unions map straightly

to non-determinism of automata and checking in-

clusion between non-deterministic automata is de-

cidable (cf. sec. 2.2.4).

Remark 3.19. If we resign from this kind of unions,

then automata representing types become determ-

20

inistic.

It is worth to note that untagged unions may

be supportive in static type-checking of so-called

dynamically typed programming languages, as we

mentioned in the introduction. For example,

the python expression sqrt (x) if x >= 0 else None ,

which stands for None if x is negative and for

the square root of x otherwise, is not typable in

most common type systems, but it can have a type

float ∣ NoneType when we use untagged unions. An-

other advantage of these unions is that they can

significantly shrink expressions describing values in

formal statements (e.g., programs) in comparison

to their tagged version — we will put an example

of this in the next section.

3.3.5 Tagged unions

Tagged unions are generally used alternative for

the untagged ones. They are much easier to type-

check, but require adding extra constructions to a

system. More precisely, we have to mark each value

of such a type. Assuming that we have only bin-

ary unions and the marks are set as Left and Right ,

and they are included in the set S given for the pair

operator ⟨ , ⟩, then the union type of types T1, T2 is

the set of pair values {Left} ×̄T1 ∪ {Right} ×̄T2 —

again, we cannot use simple set-theory pairs here,

due to the same reason as in Section 3.3.3.

Definition 3.20. We extend a type system with

tagged unions as follows.

{Left} ×̄U ∪ {Right} ×̄U ⊆ U and

Left ,Right ∉ U

The unary symbols InL, InR ∈ F ,

ı (v) = InL and v↓1 = u in envU if and only if

v = ⟨Left , u⟩ ∈ {Left} ×̄U ,

ı (v) = InR and v↓1 = u in envU if and only if

v = ⟨Right , u⟩ ∈ {Right} ×̄U

Exp = . . . / Exp + Exp

[[e1 + e2]]val = {Left} ×̄ [[e1]]val ∪
{Right} ×̄ [[e2]]val

Φ = ⋅ ⋅ ⋅ ∪ {+aut}
where +aut is the 2-ary operation

+aut (A1,A2) = A+ [x↦ A1, y ↦ A2] and

A+= ⟨F,{0},{x, y},0,∅,{0
InLÐÐ→x, 0

InRÐÐ→y},�⟩
for some distinct variables x, y

Note that the definition does not collide with

the definition of pair types as Left ,Right ∉ U and

so ı (⟨Left , u⟩) , ı (⟨Right , u⟩) do not need to be ⟨ , ⟩.

Lemma 3.21. The cases of Theorem 3.11 for

e = e1 + e2 and A = +aut (φ1, φ2) where φ1, φ2 are

algebraic expressions describing automata A1,A2.

Proof. This is analogous to the previous proofs.

Tagged unions are good for algorithmic reasons,

as we can do a structural induction on expres-

sions to check subtyping. In this approach a type

e1 + e2 can be a subtype only of another type of

the form e3 + e4, so we can perform an induc-

tion and compare e1 with e3 and e2 with e4 to

check <∶ . The example from the previous section

is not a threat any more, as exp1 ∗ (exp2 + exp3)
and (exp1 ∗ exp2) + (exp1 ∗ exp3) represent now

two completely distinct types, where the first

describes the set [[exp1]] ×̄({Left} ×̄ [[exp2]]∪
{Right} ×̄ [[exp3]]) and the second {Left} ×̄
([[exp1]] ×̄ [[exp2]]) ∪ {Right} ×̄ ([[exp1]] ×̄ [[exp3]]).
Note also that such a construction is deterministic

in terms of automata, what seriously improves syb-

typing computations in the case of this formalism

when compared to the untagged unions.

These things surely stand in favour for tagged

unions. But on the other hand, these unions are

not good for practical reasons, as they blow length

of expressions that describe values of union types.

For example, an expression in a formal statement

that stands for a value of the type Bool ∣ Nat ∣ Int

in the untagged approach can be just the boolean

true, while when using the tagged one, it must be

something like left (left (true)). This issue should

be especially taken in mind when we are going to

give a type system for a programming language,

where longer code is generally less maintainable

and makes a higher chance of mistakes.

3.3.6 Recursive types

Here we go with a heavier construction. Intuitively

saying, recursive types are limits of iterations of

some functions F ∶ 2U → 2U on some initial types

that satisfy the equation X = F (X). These limits

can be depicted in our case as

⋃
i
F i (T0) ≡ ⋃

i

i
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
F ○ ⋅ ⋅ ⋅ ○ F (T0) (3.1)

21

and

⋂
i
F i (T ′0) ≡ ⋂

i

i
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
F ○ ⋅ ⋅ ⋅ ○ F (T ′0) (3.2)

where T0, T ′0 stand for initial types. This is, how-

ever, not very precise, as the domain of i is not spe-

cified. Naturally, we would like to say that i ranges

through natural numbers. Still for some functions

this is not enough and to obtain their fixed points,

we need to perform a transfinite iteration, where

i ranges through ordinal numbers — we will ex-

plain this in more detail in a moment. Moreover,

even equipped with transfinite iterations we cannot

give recursive types for all F s, as for some of them

there may be no fixed points in the mentioned limit

form, or there may be no fixed point at all. So to

guarantee existence of these types we will restrict

ourselves here only to F s that are monotone wrt

to ⊆. We will see why it is going to work in the

following subsection.

Transfinite iterations

For the purpose of this paper we present here two

kinds of transfinite iterations — that is, increasing

and decreasing ones. For both we need a mono-

tonic function F on a complete lattice A. Now if

we denote the least upper bound of X ⊆ A by ⋁X,

the greatest lower bound by ⋀X, and the least and

the greatest elements in A by, respectively, � and

⊺, the iterations can be given as follows.

Definition 3.22. The increasing (respect-

ively, decreasing) transfinite iteration of

an monotonic function F ∶ A→ A is the

sequence of elements aα = Fα (�) (resp.,

aα = Fα (⊺)) indexed by ordinal numbers α, where

F 0 (x) = x, Fα+1 (x) = F (Fα (x)) for x = �,⊺ and

F η (�) = ⋁β<η F β (�), F η (⊺) = ⋀β<η F β (⊺) when

η is a limit ordinal.

We may note here that the sequences are not

sets, but in our case it does not matter — we may

just think about them as classes.

In this place we should probably mention that

the above definition is not the only proper one.

Actually, even though the described iterations are,

in fact, often called increasing and decreasing ones,

they are rather a normalized form of these. In gen-

eral we can put any a such that a ≤ F (a) in the

place of � and any a such that F (a) ≤ a in the

place of ⊺, and the defined classes of transfinite it-

erations stay the same up to the first elements of

sequences in them. We state this more precisely in

the following observation.

Observation 3.23. Let’s assume that we use the

definition of transfinite iterations with arbitrary

initial elements as stated above and let {aα}α be

any increasing (resp., decreasing) iteration of a

function F . Then the increasing (resp., decreas-

ing) iteration {bα}α of the function G defined

as G (x) = F (x ∨ a0) (resp., G (x) = F (x ∧ a0))

where the initial element b0 is set to � (resp., ⊺) is

equal to {aα}α for all α > 0.

Now, an important for us fact about increasing

and decreasing iterations is that they always sta-

bilize after some ordinal number of steps and so

they appoint fixed points of the iterated functions.

We put it precisely in the following piece of general

knowledge.

Theorem 3.24. For each increasing and decreas-

ing transfinite iteration of a function F there ex-

ists an ordinal β such that the element aβ is a fixed

point of F . Moreover, in the case of an increasing

iteration we have that aβ is the least fixed point of

F and in the case of a decreasing one we have that

aβ is the greatest fixed point of F .

Later we will refer to the least β satisfying the

theorem as, respectively, “the increasing fixing

number of F” and “the decreasing fixing number

of F”.

Recursive types definition

Let’s go back to the previous unfinished definition

of recursive types. To ensure existence of types

that satisfies it, we restrict F to monotonic func-

tions, as mentioned, and then treat F i (T0) as ele-

ments of the increasing transfinite iteration of F ;

and similarly F i (T ′0) as elements of the decreasing

iteration. Of course, in this case these sequences

follow rather the more general definition, where T0
and T ′0 correspond to the arbitrary initial element

a. So to proceed with our definition we put another

restriction and we fix T0 and T ′0 to be, respectively,

∅ and U — later we will show that if a type sys-

tem posses some type constructions (untagged uni-

ons and intersections) we do not lose anything by

doing so.

Now, if we set the range of i to {0, . . . , β1} in

Equation 3.1 and to {0, . . . , β2} in Equation 3.2,

where β1, β2 are, respectively, the least and the

greatest fixing number of F , the previous incom-

plete definition of recursive types becomes valid.

This means that our recursive types are nothing

22

more then just the least and the greatest fixed

points of monotonic functions F ∶ 2U → 2U (in in-

clusion order). To put it simple in symbols we will

use µF to denote the least fixed point of F and νF

to denote the greatest one.

But let’s going back on Earth, as we still have

a very primary issue to take care about. That is,

we need to somehow represent functions F in our

formalizations. This is fortunately not very hard,

as in the case of expressions we can use the com-

mon approach of defining a function by writing an

expression with variables that describes it; and in

the case of automata we can use the concept of

variables that we introduced to them to achieve

the same effect.

This is enough for a general definition, but, un-

fortunately, our automata formalization still makes

an urge to clarify one thing. As we have men-

tioned in preliminaries, when we want to compute

inclusion-checking between automata, the environ-

ment envU must be weakly closed over those in

our formalization. Until we have automata that

generate greatest fixed points this may be easily

shown by induction on depth of automata’s runs.

However, with the introduction of greatest recurs-

ive types we lose this possibility, as depth of runs

may become infinite. To fix it we must guarantee

some additional values to be in U . As a direct re-

striction on U may be quite technical, we will do

this by the brutal request on envU to include all fi-

nite F-APGs up to APG isomorphism. A practical

consequence of this is that, some values with infin-

ite tree representations — like the one depicted in

Example 3.26 — will appear in U . For the purpose

of this paper we will call such values coninductive

(which is more or less proper, but it somehow re-

flects the idea of using an entity to define the same

entity, what can be seen a foundation of these val-

ues).

In the below construction we write

{⟨L1, U1⟩ , ..., ⟨Ln, Un⟩}α for a Rabin accepting

condition fixed by the listed state pairs. Note

that a Rabin condition {⟨L1, U1⟩ , ..., ⟨Ln, Un⟩}α
is equivalent to {⟨L1, U1⟩ , ..., ⟨Ln, Un⟩ , ⟨∅,∅⟩ }α,

so in the case of νxaut operations, if Ln ≠ ∅, we

may always add the empty accepting pair to the

accepting condition of A. Note also that the fixed

points µF, νF in the following definition always

exist as the semantics of expressions for each type

construction that we give in this paper is mono-

tonic wrt valuations of variables.

Definition 3.25. We extend a type system with

the least and greatest recursive types as follows.

There is no requirement on U .

For any finite F-APG there is an isomorphic

F-APG in envU .2

Exp = . . . /Var / µVar .Exp / νVar .Exp

[[x]]val =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

val (x) , if x ∈ Dom (val)
undefined, otherwise

[[µx.e]]val = µF
[[νx.e]]val = νF
where F ∶ 2U → 2U and F (X) = [[e]]val[x↦X]

Φ = ... ∪⋃x∈Var {xaut , µxaut , νxaut}
where xaut = ⟨F ,{0} ,{x} ,0,{x} ,∅,�⟩ and

µxaut , νxaut are unary operations as follows.

For any automaton A and variable x let

δ′A,x = {q aÐ→ (p1, ..., par(a)) ∣ q aÐ→Ð→s ∈ δA ∧
∀ar(a)
i=1 (si ≠ x⇒ pi = si)∧

(si = x⇒ pi ∈ {x} ∪ V0A)} .

Let {⟨L1, U1⟩ , ..., ⟨Ln, Un⟩}α be the Rabin

acc. condition of A. Then

µxaut (A) =

⟨F ,QA ∪ {x} , VA ∖ {x} , q0A , V0A ∖ {x} ,
δ′A,x ∪ {x aÐ→Ð→q ∣ q0A

aÐ→Ð→q ∈ δ′A,x} ,
{⟨L1 ∪ {x} , U1⟩ , ..., ⟨Ln ∪ {x} , Un⟩}α⟩ .

If x ∈ V0A , then

νxaut (A) =

⟨F ,{0} ,∅,0,∅, {0
aÐ→

ar(a)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(0, ...,0) ∣ a ∈ F} ,⊺⟩ .

If x ∉ V0A , then let {⟨L1, U1⟩ , ..., ⟨∅, Un⟩}α
be the Rabin acc. condition of A and

νxaut (A) =

⟨F ,QA ∪ {x} , VA ∖ {x} , q0A , V0A ,
δ′A,x ∪ {x aÐ→Ð→q ∣ q0A

aÐ→Ð→q ∈ δ′A,x} ,
{⟨L1, U1⟩ , ..., ⟨∅, Un ∪ {x}⟩}α⟩ .

2This retrogradely enforces coinductive values to be in U .

23

Example 3.26. Two figures illustrating a coin-

ductive value, which in this case is the circular list

of 1s.

Figure 3.3.: A tree
representation of a
circular list of 1s

Figure 3.4.: An
APG representation
of a circular list of
1s

Saying it in a more natural way — the case of

νxaut (A) when x ∈ V0A is trivial. The greatest

set x is simply the set of all values in the uni-

verse. In the case of µxaut (A) and νxaut (A)
with x ∉ V0A we make x a state of the automaton

and intuitively add ε-transitions from x to the ini-

tial state and initial variables of A, and then we

properly put x into the acceptance condition. If

we depict the acc. condition of an automaton A
as a formula over operators ∧, ∨, ¬ and literals

“q ∈ P”, where q are states of A and P is the ar-

gument of αA, then this “proper putting” literally

means setting αµxaut(A) (P) = αA (P) ∧ ¬x ∈ P and

ανxaut(A) (P) = αA (P) ∨ x ∈ P .

Lemma 3.27. The cases of Theorem 3.11 for e = x
and A = xaut .

Proof. Trivial.

Lemma 3.28. The cases of Theorem 3.11 for

e = µx.e′ and A = µxaut (φ), and respectively for

e = νx.e′ and A = νxaut (φ), where φ is algebraic

expressions describing some automaton A′.

Proof. In the paper [Niw97] (Lemma 3.4, 3.5) it

was shown that for any NDA A and variable x we

have automata Aµx, Aνx (respectively, A′, A′′ in

[Niw97]) that evaluate the least and the greatest

fixed points of the function described by A wrt

a valuation of the variable x. Precisely saying,

the paper states that for any F-APG environment

env with an underlying set N and any valuation

of variables VA ∖ {x} into 2N , we have the equal-

ities Aenv
µx [val] = µF and Aenv

νx [val] = νF , where

F ∶ 2N → 2N is the monotonic function defined as

F (X) = Aenv [val [x↦X]]. Still, it appears that

there is a missed case in the construction of Aµx,

Aνx — what we put more precisely in Appendix

B — and to fix it we need to inject our δ′A,x into

these automata. So in the result we obtain the

above claim for µxaut (A) in the place of Aµx and

νxaut (A) in the place of Aνx.

Now the lemma may be shown in a similar man-

ner as the previous ones. That is, by the hypo-

thesis we have that for e′ there exists A′ such

that [[e′]]val[x↦T] = A′envU [val [x↦ T]] for any

type T , and inversely for A′ there exist such e′.

But then both e′ and A′ describe the same func-

tion F (X) = [[e′]]val[x↦X] = A′envU [val [x↦X]].
So by the Niwiński’s lemmas we have

that [[µx.e′]]val = µxaut (A)envU [val] and

[[νx.e′]]val = νxaut (A)envU [val].

Of course we can resign from the µ or ν oper-

ation in the above construction, when we do not

need one. By doing so we will obtain type systems

with recursive types corresponding to those usually

used today (June 2014) in programming languages.

Precisely, systems with only µ will correspond to

those of eager languages and systems with only ν

to those of lazy ones.

Unfortunately the proposed construction is very

heavy for type-checking computations, as we

mostly require automata with Rabin condition

here. That is, it was shown in [Niw97] (Theorem

3.4) that in our case for any Rabin NDA over the

alphabet {⟨ , ⟩ /2}, there exists an equivalent type

expressions build out of pair, untagged union and

recursive operators. Thus, if only we have pairs,

untagged unions and recursive types in a system,

then the accepting condition for automata in our

formalization cannot be weakened. Moreover, such

recursive types are hard in understanding their se-

mantics, what is actually a serious issue in practical

usage of types. That is why in Section 3.3.8 we will

propose a weaker version of recursive types that are

easier in both, understanding and computations.

Example 3.29. Why do recursive types are hard

to understand? Let’s take a look at the types

µx.νy. (Unit∣x) ∗ y and νy.µx. (Unit∣x) ∗ y, where

Unit stands for the singleton of a value unit, the

precedence of µ, ν is like this of quantifiers and we

have coinductive values in the universe. Despite

the little difference in terms the semantics of both

are not the same. Still it may be not obvious, how

these types do differ. To figure it out we will take

a look on the automata representations of these

24

type, below.

(Recall that states of automata in our automata

universe A are sequences — what is caused by the

usage of automata substitutions. So 00 stands for

the 2-element sequence of 0 and 0, 100 stands for

the 3-element sequence of 1, 0 and 0, and so on.

Thus, if a state comes from a result of an auto-

mata composition, then its first digit is the num-

ber of the origin automaton and the rest of the

sequence is just a state in this automaton.)

The automata for the types µx.νy. (Unit∣x) ∗ y,

νy.µx. (Unit∣x) ∗ y are build according to the auto-

mata algebra in a similar way. First we set

F = {unit/0, ⟨ , ⟩ /2}

Unitaut = ⟨F ,{0} ,∅,0,∅,{0
unitÐÐ→ ()} ,�⟩

xaut = ⟨F ,{0} ,{x} ,0,{x} ,∅,�⟩
yaut = ⟨F ,{0} ,{y} ,0,{y} ,∅,�⟩

Then from the first two automata we produce by

the operation ∣aut

AUnit∣x = ⟨F ,{00,10,20} ,{x} ,00,{x} ,

{00
unitÐÐ→ () ,10

unitÐÐ→ ()} ,�⟩

Then from AUnit∣x and yaut by the operation ∗aut
we produce

A(Unit∣x)∗y = ⟨F ,{00,100,110,120,20},{x, y},0,∅,

{100
unitÐÐ→ () ,110

unitÐÐ→ () ,

00
⟨ , ⟩ÐÐ→ (100,20) ,00

⟨ , ⟩ÐÐ→ (100, y) ,
00

⟨ , ⟩ÐÐ→ (x,20) ,00
⟨ , ⟩ÐÐ→ (x, y)} ,�⟩

Finally after applying µxaut and νxaut in the

proper order to A(Unit∣x)∗y , removing superfluous

states and some human-friendly states renaming

we receive two automata of the form

⟨F ,{q0, q1, x, y} ,∅, q0,∅,

{q0
⟨ , ⟩ÐÐ→ (q1, y) , q0

⟨ , ⟩ÐÐ→ (x, y) , q1
unitÐÐ→ () ,

y
⟨ , ⟩ÐÐ→ (q1, y) , y

⟨ , ⟩ÐÐ→ (x, y) ,

x
⟨ , ⟩ÐÐ→ (q1, y) , x

⟨ , ⟩ÐÐ→ (x, y)} , α⟩

where α for the first one is the Rabin condition

{⟨{x} ,{y}⟩}α and {⟨∅,{y}⟩}α for the second one.

Now, when we study these automata we can

settle the difference in types. (Recall that we index

children in our APGs from 1, thus in the following

1 denotes a left-most child.) So, the both types

stands for sets of values represented with APGs

such that each node is labeled with unit or ⟨ , ⟩,
each right child of a node is labeled with ⟨ , ⟩ and

there are no branches ended with infinitely many

1s (that is there are no branches where from some

point we always turn left). The difference between

them is that in the first case the APGs addition-

ally cannot have branches with infinitely many 1s

on them at all.

As we can see by this example understanding

general recursive types may be not very obvious

and the analysis it requires is probably not what

we expect to do when we use a type system.

3.3.7 Intersection types

Intersections are mostly a secondary concept in

types. Shortly saying, we may define them just

as set intersections of two (or more) types. Adding

such types to a system generally does not bring new

expressive power, but rather it allows to shrink ex-

pressions for recursive types. However, it appears

that it is not a golden rule and there may be excep-

tions. Specifically, if we incorporate intersection

types in a type system containing function types

proposed in Section 3.3.9 the expressive power of

the system grows — we remark this in more detail

in Section 3.3.9.

In the following definition of intersection types

we set A to be a universe of some variant of altern-

ating automata. Apparently we cannot use here

ordinary AAs as the starting condition of them ap-

pears to be too weak for this case. So we strengthen

the definition as follows.

Enhancement of alternating automata

Let alternating automata be defined as before,

but let q0, V0 in automata tuples be replaced

with a collection of initial sets of states and vari-

ables. Precisely, let an AA be now a tuple

⟨F ,Q,V, I, δ, α⟩, where F ,Q,V, δ, α are defined as

before and I ⊆ 2Q∪V is an initial condition. An

APG is said to be accepted by such an automaton

wrt some valuation if there exists an initial set S ∈ I
such that for each s ∈ S there exists an accepting

s-run of the automaton on the APG wrt the valu-

ation, where runs and acceptance are again defined

as before.

Beyond the above changes other terms related

to AAs, like compositions or alternation removing

(that we describe in the appendix), together with

most of our automata operations stay valid after

25

some minor fixes. The only operations that do not

apply straightly to such AAs are these that cannot

be given in terms of automata composition. That

is, recursive operations. To cope with this problem

we present the following procedure that constructs

equivalents of µxaut (A) and νxaut (A) for an en-

hanced alternating automaton A .

Observation 3.30. Let IA = {{si,j}j∈[mi]}i∈[n].
Then for any valuation val of A’s variables

AenvU [val] = ⋃i∈[n]⋂j∈[mi]A
′
i,j [val]

where A′i,j = ⟨F ,Q,V,{{si,j}}, δ, α⟩.

The above observation allows to express

the functions described by A wrt its vari-

ables as combinations of functions described

by automata with a single initial state or

a variable. Precisely, it shows that the

function F (X) = AenvU [val , x↦X] is equal to

the function G (X) = ⋃i∈[n]⋂j∈[mi]F
′
i,j (X) where

F ′
i,j (X) = A′i,j [val , x↦X]. Now by iterating the

following lemma we can reduce A to an automaton

A′ where for all S ∈ IA′ we have x ∉ S or S = {x}
and it describes a function that has the same least

or greatest fixed point as F , depending on a vari-

ant of the lemma that we use. (In the following,

recall that functions described by our automata are

monotonic.)

Lemma 3.31. Let F ∶ 2U → 2U be a function such

that F (X) =X ∩ F1 (X) ∪ F2 (X) for some mono-

tonic F1, F2. Then each element Fα (∅) of the

increasing iteration of F is equal to the element

Fα2 (∅) of the increasing iteration of F2; and each

element Fα (U) of the decreasing iteration of F is

equal to the element Hα (U) of the decreasing iter-

ation of H given as H (X) = F1 (X) ∪ F2 (X).

Proof. The first equality may be shown by a simple

transfinite induction and the second by a transfin-

ite induction strengthened by the two theses

F1 (Hα (U)) ⊆Hα (U) ,
F2 (Hα (U)) ⊆Hα (U)

After such reduction of A we may attempt to use

the following enhanced versions of µxaut , νxaut to

obtain automata evaluating desired fixed points.

Let P = QA′ ∩⋃IA be all states of A′ that ap-

pear in some initial set and p1, . . . , pn be all ele-

ments of P . Then the enhanced operation µxaut is

defined as

µxaut (A′) =

⟨F , QA′ ∪ {ix}ni=1 , VA′∖{x} , IA′∖{{x}} ,
δ′A′,x ∪⋃ni=1 {ix aÐ→Ð→q ∣ pi

aÐ→Ð→q ∈ δ′A′,x} ,
{⟨L1 ∪ {ix}ni=1, U1⟩ , ..., ⟨Ln ∪ {ix}ni=1, Un⟩}α⟩

where {⟨L1, U1⟩ , ..., ⟨Ln, Un⟩}α is the Rabin acc.

condition of A′.
If {x} ∈ IA′ then the enhanced operation νxaut

is defined as

νxaut (A) =

⟨F ,{0} ,∅,{{0}} , {0
aÐ→

ar(a)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
({0} , ...,{0}) ∣ a ∈ F} ,⊺⟩

otherwise

νxaut (A′) =

⟨F , QA′ ∪ {ix}ni=1 , VA′∖{x} , IA′ ,

δ′A′,x ∪⋃ni=1 {ix aÐ→Ð→q ∣ pi
aÐ→Ð→q ∈ δ′A′,x} ,

{⟨L1, U1⟩ , ..., ⟨∅, Un ∪ {ix}ni=1⟩}α⟩

where {⟨L1, U1⟩ , ..., ⟨∅, Un⟩}α is the Rabin acc.

condition of A′.
Finally

δ′A′,x = {q aÐ→ (P1, ..., Par(a)) ∣ q aÐ→Ð→S ∈ δA′ ∧
∀ar(a)
i=1 (x ∉ Si ⇒ Pi = Si)∧

(x∈Si⇒∃I∈IA′ Pi=Si∖{x}∪ I∩Var ∪{ix ∣ pi ∈I})}

Intuitions about these versions of the operations

are similar to those given previously for them, but

now we have multiple initial states. So we intro-

duce new states ix — in place of single x — that

simulate each of the initial states. Alternatively we

may describe this as putting an ε-transition from x

to each initial set S in IA′ and perform a bottom-

up ε-elimination. Such transition means that to

accept an APG from x we need to accept it from

all elements of S.

In this paper we are not going to give a proof of

correctness of these new µxaut , νxaut operations,

thus we mark them as an attempt. Still it seems

that the Niwiński’s proofs for their NDA versions

can be extended to cover them.

Intersection types definition

Definition 3.32. We extend a type system with

intersections as follows.

26

There are no additional requirements on U
and envU .

Exp = . . . / Exp & Exp

[[e1&e2]]val = [[e1]]val ∩ [[e2]]val
Φ = ⋅ ⋅ ⋅ ∪ {&aut}
where &aut is a 2-ary operation

&aut (A1,A2) = A& [x↦ A1, y ↦ A2] and

A& = ⟨F ,∅,{x, y} ,{{x, y}} ,∅,�⟩ for some

distinct variables x, y.

Lemma 3.33. The cases of Theorem 3.11 for

e = e1&e2 and A = &aut (φ1, φ2) where φ1, φ2 are

algebraic expressions describing automata A1,A2.

Proof. This is analogous to the previous proofs.

Example 3.34. Below we show how intersections

may shrink type expressions. Both below expres-

sions represent the same type of finite natural num-

ber sequences of length divisible by 20.

µL.Unit ∣ Nat ×Nat ×Nat ×Nat ×Nat×
Nat ×Nat ×Nat ×Nat ×Nat ×Nat ×Nat×
Nat ×Nat ×Nat ×Nat ×Nat ×Nat ×Nat×

Nat ×L

(µL.Unit ∣ Nat ×Nat ×Nat ×Nat ×L) &

(µL.Unit ∣ Nat ×Nat ×Nat ×Nat ×Nat ×L)

3.3.8 Inductive and coinductive types

Inductive and coinductive types are recursive types

that do not need a transfinite iteration. In other

words they are those recursive types that can be ex-

pressed as ⋃
i∈N

F i (∅) and ⋂
i∈N

F i (2U). To determine

which recursive types are these special ones, we can

use the Kleene fixed-point theorem, which states

that, if A is a complete partial order and F ∶ A→ A

is a Scott-continuous function, then ⋁i∈N F i (�) is

the least fixed point of F . By this claim we ob-

tain that, if our F is Scott-continuous according

to ⊆, then the type µF is exactly ⋃
i∈N

F i (∅), and

if F is Scott-continuous according to ⊇, then the

type of νF is ⋂
i∈N

F i (2U). Thus if we want to build

a type system with only inductive and coinduct-

ive recursive types it is sufficient to restrict F s to

Scott-continuous functions wrt to ⊆ and ⊇.

In the case of our construction of recursive types

such condition may be easily enforced by request-

ing operators µ and ν not to alternate. However

we need few new terms for saying formally what it

does mean. Let’s go through them.

We assume below that Exp stands for the one

given in Definition 3.25.

Definition 3.35. If e0, . . . , en ∈ Exp and

x1, . . . , xn ∈ Var , then the substitution

e0 [x1 ↦ e1, . . . , xn ↦ en] of e1, ..., en for x1, ..., xn
in e0 is defined recursively as follows.

Let χ be any of µ, ν, then

- xi [x1 ↦ e1, . . . , xn ↦ en] = ei,
- (χxi.e) [x1 ↦ e1, ..., xn ↦ en] =

χxi.e [x1 ↦ e1, ..., xi−1 ↦ ei−1,

xi+1 ↦ ei+1, ..., xn ↦ en] ,
- (χy.e) [x1 ↦ e1, ..., xn ↦ en] =

χy.e [x1 ↦ e1, ..., xn ↦ en]
if y ≠ xi for all i, and

- (H (e′1, ..., e′m)) [x1 ↦ e1, ..., xn ↦ en] =
H (e′1 [x1 ↦ e1, ..., xn ↦ en] , . . . ,

e′m [x1 ↦ e1, ..., xn ↦ en])
for any other m-ary expression symbol H

Definition 3.36. For e ∈ Exp the set of free vari-

ables in it, denoted by FV (e), is defined recurs-

ively as follows.

- FV (x) = {x} for any variable x,

- FV (χx.e′) = FV (e′) ∖ {x} for χ ∈ {µ, ν},

- FV (H (e′1, ..., e′m)) = ⋃mi=1FV (e′i) for any

other m-ary expression symbol H

An expression e is called closed if FV (e) = ∅
and it is called open otherwise.

Lemma 3.37. For any e0, . . . , en ∈ Exp,

x1, . . . , xn ∈ Var and val ∈ C, such that e1, . . . , en
are closed, we have

[[e0 [x1 ↦ e1, . . . , xn ↦ en]]]val =
[[e0]]val[x1↦[[e1]],...,xn↦[[en]]]

or both sides of the equation are undefined.

Proof. This may be simply proved by considering

inductively the substitution definition and equa-

tions on [[]] that we give for each construction.

Definition 3.38. Let’s say that e ∈ Exp can be

split to a head h and a tail e1, . . . , en if e = h ∈ Var

and n = 0 or h ∉ Var and e = h [x1 ↦ e1, ..., xn ↦ en]
for some x1, . . . , xn ∈ FV (h).

27

For conciseness we will say that a tail is closed

if all expressions in it are closed.

Example 3.39. The type expression

µx.Unit∣ (νy.Nat ∗ y) ∗ x — that describes a type

for finite sequences of infinite sequences of naturals

— can be split to a head µx.Unit∣z ∗ x and a tail

νy.Nat ∗ y.

Note that if we split an expression, then all ex-

pressions in the tail are smaller in a well-founded

sense (as they contain less symbols), so we can use

them to perform induction.

Now if we are able to split a recursive type ex-

pression to a head that contain only one kind of

recursive operators and a closed tail, then the type

described by it is inductive or coinductive.

Theorem 3.40. For any expression µx.e ∈ Exp

such that it can be split to an open head

h not-containing ν operators and a closed

tail, and for any valuation val ∈ C of variables

FV (µx.e), we have that the function F ∶ 2U → 2U ,

F (X) = [[e]]val[x↦X] is continuous wrt ⊆.

Proof. First we decompose µx.e by the definition

to h = µx.e0 and a closed tail e1, . . . , en such that

µx.e = (µx.e0) [x1 ↦ e1, ..., xn ↦ en]. Without los-

ing generality we may assume that x ≠ xi
for all i. Note that in such case by

the definition of substitutions and Lemma

3.37 we have that F (X) = [[e0]]val ′[x↦X] where

val ′ = val [x1 ↦ [[e1]] , . . . , xn ↦ [[en]]]. Now to

show F is continuous wrt ⊆ we perform an induc-

tion on e0 as follows.

- If e0 is a variable, F must be an identity or

a constant function and it is trivially con-

tinuous.

- If e0 =H (e′1, . . . , e′m), where H is a sym-

bol given in another type construction,

we may wrap each of e′1, . . . , e
′
m with µx

and obtain the inductive hypothesis for

them. Then if we take a look at se-

mantics of our type construction, we see that

[[H (e′1, . . . , e′m)]]val ′[x↦X] is given with ×̄, ∪,

∩, some fixed types and [[e′1]]val ′[x↦X], . . . ,

[[e′n]]val ′[x↦X]. So if we treat the last as func-

tions on X, we get that F is a composition of

continuous functions and so it is continuous.

- If e0 = µx.e′0, then it is trivial as F is con-

stant.

- If e0 = µy.e′0 where y ≠ x, then by

the induction hypothesis we have that

F (X) = ⋃i∈NGiX (∅) for the continuous

functions GX (Y) = [[e′0]]val ′[x↦X,y↦Y]. But

as we can wrap e′0 also with µx and use the

induction hypothesis on it, we have that the

functions G′
Y (X) = [[e′0]]val ′[y↦Y,x↦X] are

also continuous for any type Y . (Simply

saying we have here the 2-ary func-

tion G (X,Y) = [[e′0]]val ′[y↦Y,x↦X] that is

continuous on both arguments.) What

we have to do now is showing that

⋃i∈NGi⋃j∈JXj
(∅) = ⋃j∈J⋃i∈NGiXj

(∅) for

any directed set of types {Xj}j∈J . This

can be easily done by rewriting the left side,

first by the continuousity of G′
Y s, to

⋃i∈N
i

³¹¹·¹¹¹µ
⋃j∈JGXj

(... (⋃j∈JGXj
(⋃j∈JGXj(∅))))

and then by the continuity of GXs to what

we want. ◻

Analogously we have the following.

Theorem 3.41. For any expression νx.e ∈ Exp

such that it can be split to an open head

not-containing µ operators and a closed tail,

and for any valuation val ∈ C of variables

FV (νx.e), we have that the function F ∶ 2U → 2U ,

F (X) = [[e]]val[x↦X] is continuous wrt ⊇.

The above theorems allow us to simplify reason-

ing for particular recursion occurrences in a type

expression. If all these occurrences in an expres-

sion satisfy one of the theorems, we say that the

whole expression is alternation free.

Definition 3.42. An expression e ∈ Exp is µ,ν-

alternation free if it can be split to a head that

contains at most one of the operators µ, ν and a

closed tail such that all expressions in it are µ, ν-

alternation free.

Example 3.43. The type expressions from Ex-

ample 3.29 are not alternation free. Consider the

first one, µx.νy. (Unit∣x) ∗ y. If the expression was

alternation-free, then the head would be of the

form µx.e0, where e0 cannot posses ν. So e0 would

need to be a variable. But then the tail would

be νy. (Unit∣x) ∗ y and it would not be closed. So

there is no proper partition of µx.νy. (Unit∣x) ∗ y
to make it be µ, ν-alternation free.

By Theorems 3.40, 3.41 we can see that types

given by µ, ν-alternation free expressions are easier

to reason about, as in their case we do not need

transfinite iterations. But what is also important,

we can significantly simplify automata represent-

28

ations for such types. Saying it more precisely,

we can show that types given by µ, ν-alternation

free expressions can be represented by weak Bü-

chi automata, instead of Rabin automata that are

required in the general case. We give it in more

detail below.

First let’s put some helper terms.

Definition 3.44. An automaton (both NDA and

AA) is head-only open if it is a cascading auto-

maton ⟨F ,{Qi}i∈[n] ,V , ..., δ,{αi}i∈[n]⟩, V ≠ ∅ and

for each transition q
...Ð→ (..., x, ...) ∈ δ where x ∈ V –

that is a transition containing a variable – we have

that q ∈ Q0.

Definition 3.45. Let A = ⟨F ,{Qi}i∈[n] , V, q0, V0,
δ,{αi}i∈[n]⟩ and 0 ≤ k ≤ l < n, αk, αk+1 . . . , αl = ⊺.

Collapsion of maximal cascades Qk, ...,Ql
in A is defined as collapse⊺ (A, ⋃li=kQi) =

⟨F ,{Pi}i∈[n−l+k+1] , V, q0, V0, δ,{βi}i∈[n−l+k+1]⟩
where Pi = Qi, βi = αi for i < k

Pk = ⋃li=kQi, βk ∶ ⋃li=kQi → {true}

Pi = Ql+i−k, βi = αl+i−k for i > k

Observation 3.46. If collapse⊺ (A, P) is defined,

then AenvU [val] = collapse⊺ (A, P)envU [val] for

all valuations val of VA.

In other words, adjacent maximal cascades in

an automaton can be merged. The same applies

to adjacent minimal cascades, but in their case we

do not need a special operation for this, as auto-

mata with merged and split minimal cascades are

literally equal.

Observation 3.47. Any cascading automaton

⟨F , (Q0, ...,Qk, ...Qn) , V, q0, V0, δ, (�, ...,�, αk+1, ...,
αn)⟩ is equal to ⟨F , (Q0 ∪ ... ∪Qk, ...Qn) , V, q0, V0,
δ, (�, αk+1, ..., αn)⟩.

Now to show that we can build the automata as

stated, we add new automata operations. These

operations will not allow to define new types, but

they will give a way to build weak Büchi automata

for some already existing ones.

Recall that operations ×aut , ∣aut ,+aut are given

by automata compositions of A×,A∣,A+ with ar-

gument automata and the only state of the former

is 0. Then, as A⊺×,A⊺∣ ,A
⊺
+ will be copies of their

⊺-less versions up to α in the following definition,

the state 00 will be a copy of their only state in

the results of operations ×⊺aut , ∣⊺aut ,+⊺aut . Moreover,

note that each such result will be able to be ar-

ranged as a cascading automaton such that HD

will be a sum of 1, 2 or 3 succeeding top cascades

of it with maximal accepting conditions.

Definition 3.48. In pair, untagged union, tagged

union and recursive type constructions — Defini-

tions 3.15, 3.17, 3.20 and 3.25 — we add, respect-

ively, ×⊺aut , ∣⊺aut ,+⊺aut and µxwaut , νx
w
aut operations to

Φ that are given as follows. (We put w for ”weak”.)

For o = ×, ∣, + the operation o⊺aut is binary

o⊺aut (A1,A2) =
collapse⊺ (A⊺o [x↦ A1, y ↦ A2] ,HD)

where A⊺o = ⟨F ,QAo , VAo , q0Ao , V0Ao , δAo ,⊺⟩
and HD is given as follows.

- If A1, A2 are cascading with

α0A1 = ⊺, α0A2 = ⊺, then HD =
{00} ∪ {1} ×Q0A1 ∪ {2} ×Q0A2 .

- If only A1 is cascading with α0A1 = ⊺,

then HD = {00} ∪ {1} ×Q0A1 .

- If only A2 is cascading with α0A2 = ⊺,

then HD = {00} ∪ {2} ×Q0A2 .

- Otherwise HD = {00}.

The state substitution δ′A,x is defined as pre-

viously, but with the singleton {x} replaced

by {q0} (Def. 3.49).

For a head-only open automaton A with the

first accepting condition α0 = � and q0A be-

ing in the first cascade

µxwaut (A) =
⟨F ,QA, VA ∖ {x} , q0A , V0A ∖ {x} , δ′A,x, αA⟩

For a head-only open automaton A with its

α0 = ⊺, q0A being in the first cascade and

x ∈ V0A
νxwaut (A) =

⟨F ,{0} ,∅,0,∅, {0
aÐ→

ar(a)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(0, ...,0) ∣ a ∈ F} ,⊺⟩

For a head-only open automaton A with its

α0 = ⊺, q0A being in the first cascade and

x ∉ V0A
νxwaut (A) =
⟨F ,QA, VA ∖ {x} , q0A , V0A ∖ {x} , δ′A,x, αA⟩

The operations are undefined for other argu-

ments.

29

Definition 3.49. New state substitution:

δ′A,x = {q aÐ→ (p1, ..., par(a)) ∣ q aÐ→Ð→s ∈ δA ∧
∀ar(a)
i=1 (si ≠ x⇒ pi = si)∧

(si = x⇒ pi ∈ {q0} ∪ V0A)}

In the given construction we collapse top cas-

cades in the ⊺-ed operations to make variables from

first cascades of argument automata be available

for µxwaut , νx
w
aut operations. Note that we do not

need to do it in the case of ⊺-less operations by

Observation 3.47.

Take in mind that when we allow for intersec-

tions in a type system, and so A becomes a universe

of alternating automata given in Section 3.3.7, then

the issue with recursive automata operations that

we mentioned also apply to µxwaut , νx
w
aut .

Observation 3.50. Automata gener-

ated by ∅ through any our algebra

⟨A,Φ ∖ {µxaut , νxaut}x∈Var ⟩, where Φ is enhanced

by Definition 3.48, are weak Büchi.

Proof. This flows from that all our automata oper-

ations except the recursive ones preserve cascades

of their arguments eventually reorganising the top

ones; and µxwaut , νx
w
aut may be applied only to

automata such that the application will not break

the weak Büchi condition (the only place where

µxwaut , νx
w
aut may break the condition is switching

q
...Ð→ (..., x, ...) to q

...Ð→ (..., q0A , ...), but q, q0A must

be members of the first cascade of A).

The following lemma says that if weak recurs-

ive operations are applicable, then they result in

semantically equivalent automata as they stronger

versions.

Lemma 3.51. If A ∈ Dom (µxwaut), then

µxwaut (A)envU [val] = µxaut (A)envU [val]

and if A ∈ Dom (νxwaut), then

νxwaut (A)envU [val] = νxaut (A)envU [val]

for all valuations val of variables VA ∖ {x}.

Proof. Let’s show that µxwaut (A) is equivalent to

µxaut (A) wrt val . First we take any accepting run

r of the first. If A does not contain x, there is noth-

ing to do, as r is also an accepting run of the latter

automaton. Then we assume that A is a head-only

open automaton with the first states cascade Q0

and the first accepting condition α0 = �. In this

case, we exchange appropriate labels q0A to x in r

to obtain a valid run r′ of the automaton µxaut (A)
(we can do it, as for each transition in the first

automaton we have exactly the same transition in

the second with the difference that some occur-

rences of q0A are replaced by x). Now by the fact

that µxwaut does not change the acceptance con-

dition of its argument, we have that the the con-

ditions of the automata A and µxwaut (A) are the

same and by the mentioned constrain α0 = � they

can be written as a Rabin condition of the form

{⟨Q0 ∪L1, U1⟩ , . . . , ⟨Q0 ∪Ln, Un⟩}α. Then by the

definition the condition of µxaut (A) is the Rabin

{⟨Q0 ∪L1 ∪ {x} , U1⟩ , . . . , ⟨Q0 ∪Ln ∪ {x} , Un⟩}α.

The acceptance condition of µxwaut (A) says now

that each branch in r cannot have infinitely many

q0A on it and so the corresponding branch in r′

cannot have infinitely many x on it. Then each

branch in r′ is accepted by the accepting pair cor-

responding to the one that accepted it in r.

To show that µxwaut (A) accepts if µxaut (A) ac-

cepts we do almost the same, but in the first step

we exchange all xs in an accepting run of µxaut (A)
to q0A .

The case for νxwaut (A) and νxaut (A) is sim-

ilar, with the difference we have a Rabin con-

dition of the form {⟨L1, U1⟩ , . . . , ⟨∅, Un ∪Q0⟩}α
for the automata A, νxwaut (A) and

{⟨L1, U1⟩ , . . . , ⟨∅, Un ∪Q0 ∪ {x}⟩} for νxaut (A).

Now we show that the new automata operations

are, indeed, semantically redundant, so we do not

extended our type systems by adding them.

Proposition 3.52. For any automaton A gen-

erated by ∅ through any our algebra ⟨A,Φ⟩
enhanced by Definition 3.48, there exists

an automaton A′ generated by ∅ through

⟨A,Φ ∖ {×⊺aut , ∣⊺aut ,+⊺aut} ∖ {µxwaut , νxwaut}x∈Var ⟩,
such that VA = VA′ and AenvU [val] = A′envU [val]
for any valuation val of VA.

Proof. We do an induction on an expression φ

that gives the automaton A. If the top oper-

ation in φ is not among those given in Defin-

ition 3.48, things are trivial. If the top oper-

ation is one of ×⊺aut , ∣⊺aut ,+⊺aut , things are easy,

as oaut (A1,A2)envU [val] = o⊺aut (A1,A2)envU [val]
for all A1,A2 and o = ×, ∣, + — this is because

the only thing changed by adding ⊺ to the auto-

mata operations is switching the cascade {00} in

oaut (A1,A2) from minimal to maximal, where the

state 00 can appear only once in any run of this

30

automaton. Finally, in the cases for φ = µxwaut (ψ)
and φ = νxwaut (ψ), by Lemma 3.51 we have that

that A is semantically equal to the automaton

given by µxaut (ψ) or respectively by νxaut (ψ).
Then by the induction hypothesis we have a

proper automaton A′′ for the expression ψ. So

A′′ and ψ defines the same function wrt to x,

or in other words, we have a function F such that

F (X) = ψenvU [val [x↦X]] = A′′envU [val [x↦X]].
Then it is obvious that µxaut (ψ), µxaut (A′′) and

νxaut (ψ), νxaut (A′′) describes the same type, as

they compute the same fixed points of the same

functions (wrt val).

Finally we show that for any µ, ν-alternation free

type expression we have an automaton that repres-

ents the same type, and that can be build with our

automata operations extended by Definition 3.48,

but without µxaut , νxaut ; and vice versa, for each

such an automaton we have such a µ, ν-alternation

free type expression.

Theorem 3.53. For any type T given with our

type constructions extended by Definition 3.48 and

for any valuation val ∈ C,

- there exists an open µ, ν-alternation free ex-

pression e ∈ Exp such that [[e]]val = T and e

can be split to a head without µ and a closed

tail if and only if there exists a head-only

open automaton A with α0 = ⊺ generated by

∅ in the algebra ⟨A,Φ ∖ {µxaut , νxaut}x∈Var ⟩
such that AenvU [val] = T ,

- there exists an open µ, ν-alternation free ex-

pression e ∈ Exp such that [[e]]val = T and e

can be split to a head without ν and a closed

tail if and only if there exists a head-only

open automaton A with α0 = � generated by

∅ in the algebra ⟨A,Φ ∖ {µxaut , νxaut}x∈Var ⟩
such that AenvU [val] = T , and

- there exists a closed µ, ν-alternation free

expression e ∈ Exp such that [[e]]val = T if

and only if there exists a closed auto-

maton A generated by ∅ in the al-

gebra ⟨A,Φ ∖ {µxaut , νxaut}x∈Var ⟩ such that

AenvU [val] = T

Below we assume that we work with NDAs, but

the reasoning goes the same for AA, with cosmetic

changes.

Proof. For all three equivalences the left-to-right

implications may be done with simple inductive

constructions performed on e. In the first case we

do it by building A with the operations ×⊺aut , ∣⊺aut ,

+⊺aut , (&aut ,) xaut , νx
w
aut , in the second case with

×aut , ∣aut , +aut , (&aut ,) xaut , µx
w
aut and in the last

one we may use any operations except xaut . The

correctness of such construction can be justified as

follows.

First we consider the case of e = e1 ∗ e2 that sat-

isfies one of the lemma hypotheses. By the induc-

tion hypothesis we have proper automata A1, A2

for expressions e1, e2. Then we show that if e

satisfies the first lemma case, then ×⊺aut (A1,A2)
is the desired A, if e satisfies the second, then

×aut (A1,A2) is a proper A, and if e satisfies the

third, A can by any of these automata.

The semantical equality is obvious, as

[[e1]]val = A
envU
1 [val], [[e2]]val = A

envU
2 [val] by the

hypothesis and we have already stated that in

such case [[e1 ∗ e2]]val = ×aut (A1,A2)envU [val]
= ×⊺aut (A1,A2)envU [val]. So the only thing to

prove is that ×aut (A1,A2), ×⊺aut (A1,A2) are of

the desired – respectively, head-only open or closed

– form. This is straightforward. In the case when e

is open and it does not contain µ, automata A1,A2

must be closed or head-only open with the top cas-

cades being maximal. So ×⊺aut (A1,A2) makes the

whole part of the result automaton with accessible

variables collapse into one top maximal cascade.

The case when e is open and it does not contain ν

is symmetric (recall that the top minimal cascades

of ×aut (A1,A2) collapses implicitly). Finally, the

case for closed e is trivial.

The cases for e = e1∣e2 and e = e1 + e2 looks the

same. The case for e = x is simpler, and the case

for e = b is obvious. So what is left are e = µx.e′
and e = νx.e′. These are analogous, so we will take

a look only at e = νx.e′.
In this case by the induction hypothesis we

have an equivalent automaton A′ for e′ and so

νxwaut (A′) is semantically equivalent to e. So what

is left to show that νxwaut (A′) is our desired A is

again the form of the automaton. In the case when

e is closed, this is straightforward as νxwaut (A′)
must only be closed. In the other case e′ matches

the first point of the theorem, so we have that A′
is a head-only open with a maximal top accept-

ing condition. Then as νxwaut preserves cascades of

its argument (what we have already pointed out)

νxwaut (A′) ia a proper A.

The right-to-left implications of the theorem can

be proven by an inductive construction of e based

on algebraic expression describing A— this is sym-

metric to what we have done above.

By the above claims we get an important co-

31

rollary that for types given with µ, ν-alternation

free expressions we can perform subtype checking

much more effectively then for general recursive

types — by what we mentioned in Section 2.2.4.

A conclusion from this and the problems with un-

derstanding semantics of general recursive types

may be that, it seems reasonable to exclude types

given with expressions where µ, ν operators altern-

ate (and remove µxaut , νxaut operations from the

automata algebra) from practically applicable type

systems.

3.3.9 Towards functions

Function types commonly describe sets of repres-

entations of computable partial functions (still this

is not a golden rule and both computability and

partialness may be dropped in some cases). In this

paper the functions representations will be set-like

functions — sets of pairs of arguments and values

— or some equivalent if we do not believe in not-

well-founded sets.

Setting function values as mathematical func-

tions may seem inconvenient here, as from the

point of view of computer systems — which are

the main background of this work — in most cases

such values would intuitively need infinite space to

be written. However this is not true. In computers

we may still represent functions in the ordinary

way, that is as lambda terms or programs, because

a value and its representation do not have to be the

same thing. This is similar to writing f ∶ N→ N,

f(n) = n + 1 to define a function. In such case, the

writing corresponds to a lambda term or a pro-

gram, but it is clearly not the function by its own.

Now let’s go to the statement about seeing func-

tions in set-like style or some equivalent. The

“equivalent” is caused by the same problem that

we faced in the Section 3.3.3. That is, treating

functions straightly as sets of pairs leads to break-

ing the regularity axiom if we allow for coinductive

function values in our universe. E.g., using the ML

syntax we can define a function that takes a nat-

ural number and then return itself

let rec f (x ∶ Nat) = f

Such a function may be represented in computers,

but it straightly breaks the axiom when we try to

put it in the set-like style — as it would need to

satisfy the equality f = {(0, f) , (1, f) , . . .}. More

or less fortunately functions of this kind require al-

ternation of recursive types with function types to

have a type in a type system and in a minute we

will show that it may be not a good idea to allow

for such types, so in this paper we will proceed with

function values identified with sets of pairs.

Why do function types not match recursive

types?

First let’s take a look at the case when function

types represent sets of total functions from some

given domain to some given codomain. In such

case the semantics of the type expression x→ x

wrt to any valuation {x↦ T, . . .} is the set of all

total functions from T to T . So what will happen

if we wrap the expression with the recursive oper-

ator µx? Of course, we will request for the least

fixed point of the function F (X) =X →X (where

X →X is the set of all total functions from X to

X) wrt ⊆. But F is not monotonic, so generally,

we do not even know if the fixed point exists. Thus

such interpretation of function types is rather not

good in our case.

In another case, we may treat function types

as sets of partial functions from given domain to

given codomain. Doing so regain monotonicity of

functions that are under fixed-point operators (like

the previous F). But still these functions are not

continuous and recursions over them may expose

problems in understanding. Particularly, if we have

the expression x↪ x that is interpreted as before

with the change the functions may now be partial,

then it may be hard to settle the difference between

µx.x↪ x and νx.x↪ x. Moreover, another prob-

lem that concerns this interpretation of function

types — as well as the previous one — is that,

in this case the subtyping fixed by ⊆ relation does

not cover the generally used subtyping of functions

that says a type T1 → T2 is a subtype of T3 → T4
if T3 is a subtype of T1 and T2 is a subtype of T4
— below we will call this subtyping “nice”. This

is not good, as it forces us to redefine functions

in formal statements (programs) that do not need

to be redefined. Thus choosing this interpretation

seems also non-satisfying.

The nice subtyping may be regained by the third

interpretation of function types. In this case, func-

tion types are seen as sets of all (partial or total)

functions in some universe such that for all ar-

guments from a given domain they return val-

ues from a given codomain and they may return

anything for arguments out of the domain. To

set a focus let’s assume that we go with par-

tial functions. So formally saying for two types

32

T1, T2 the function type T1↪̇T2 stands now for

{ f ∶ U ∩ (U ↪ U) ∣ f (T1) ⊆ T2 }. This seems intu-

itive as if we have a function of such a type, then

we expect to apply it only to values of the type T1
and so the fact that it can be applied to something

else does not concern us. Then with such func-

tion types our nice function subtyping is straight-

forward, as if T3 ⊆ T1 and T2 ⊆ T4, then obviously

T1↪̇T2 ⊆ T3↪̇T4. Moreover, the inverse implica-

tion is also true except some edge cases (T1 = ∅,

T4 = U), so, in fact, we established an equivalent of

the nice subtyping. Unfortunately, our old friend

F (X) =X↪̇X becomes again non-monotonic in

this case and thus we again get the problem with

recursive types.

Thus, by the above considerations the conclusion

comes that it may be reasonable to resign from al-

ternating recursive types and function types. As

such mixes are not very common anyway and they

do not seem very useful, this seems rather justified.

Definition of function types

Assuming that we use the symbol → to represent

function types and we have Exp = . . . / Exp → Exp,

the not-mixing of recursive and function types is

given as follows.

Definition 3.54. An expression e ∈ Exp is

recursion-function not-mixing if for each

x, e0, e1, e2 such that e = e0 [x↦ (e1 → e2)] we have

that e1, e2 are closed.

Particularly, the type expression µx.x→ x —

which can be used to describe the function that

was given above — is not not-mixing, as it can be

split to e0 = νx.f , e1 = x, e2 = x where x is obvi-

ously not closed.

Now, the thing that we still need to do before

giving our frame with the definition of function

types is an extension of ranked labeled APGs and

automata, as many of our function values will not

be able to be expressed as finitely ranked APGs

(cf. ex. 3.55). So to fix it we extend the definition

of ranked alphabets by switching the type of ar

function to Σ→ N ∪ {∗} and we extend the defini-

tion of F-APGs such that if a node is labeled with

a symbol of the arity ∗ then it has any number of

children indexed by some set S.

Example 3.55. The figure shows an APG repres-

entation of the function f ∶ N→ N, f(n) = n + 1.

Note, this is probably not what we want to read

with automata, as in their case we would rather

want to map all 0,1, . . . to nat first to make the

alphabet finite and so the graph would collapse to

finitely many nodes. However, the idea shown here

may be applied to build other functions where we

cannot do such a trick. E.g., by replacing the nat-

ural numbers in the picture with graphs represent-

ing growing sequences of 0s.

To read ranked APGs with ∗ by automata, we

extend now the definition of NDAs, by introducing

two new kinds of transitions

q
aÐ→ ∀q′ q

aÐ→ ∃q′

where a is a symbol in F of the arity ∗ and q, q′

are states. Informally, the first kind of the trans-

itions means that if an automaton is in the state q

and it reads a node v with the label a, then it

may move to all children of this node with the

state q′; the second kind means that the automaton

in such situation may choose non-deterministically

one child of v and move to it with q′. So in other

words, a“for all” transition says that an automaton

accepts a node labeled with a from a state q if it

accepts all children of the node from a state q′; and

an “exists” transition says that an automaton ac-

cepts such a node from q if there exists a child of

this node that the automaton accepts from q′.

Analogically to the transitions for NDAs we also

introduce “for all” and “exists” transitions for AAs.

The difference in these is only that single quanti-

fied states (∀q′,∃q′) on the right sides are replaced

with sets of quantified states ({∀q′1,∃q′2, . . .}). If

the reader is familiar with expressing transition

relations of AAs as logical formulas, our trans-

itions though ∗-ary symbols a may be depicted

as q
aÐ→ φ, where φ are DNF formulas ⋁ni=1⋀mj=1 li,j

33

such that each li,j = ∀k (k, q′) or li,j = ∃k (k, q′) for

some state q′. In such case, the range of k is spe-

cified in the moment when a transition is about to

be applied on a node v and it becomes the set of

all indexes of v’s children. The semantics of such

transitions is then natural.

Unfortunately, the algorithm for checking inclu-

sion between automata cannot be generalised eas-

ily to such an extension and further work is needed

here. Saying it more precisely, we probably can

do complementation of automata by a similar con-

struction as the one given in Section A.2, but it ap-

pears that we cannot dealternate the result. Still

the automata formalization for function types that

we are going to propose here allows only to gen-

erate a subset of automata with quantified trans-

itions that is significantly simpler then the gen-

eral case. Thus it seems that an effective inclusion

checking is not without chances. Particularly, if

we disallow connecting function types by untagged

unions it seems simple.

Remark 3.56. A dualisation of the new kind of

transitions in the construction for automata com-

plementation may be seen as switching formu-

las ⋁ni=1⋀mj=1 li,j in transitions to ⋀ni=1⋁mj=1 li,j ,
where ∀k (k, q′) = ∃k (k, q′), ∃k (k, q′) = ∀k (k, q′),
and then translating them back to DNF. The proof

of correctness from the paper [MuSch95, appendix

C] presents a chance to be still valid after such ex-

tension.

Now we can propose a definition for function

types. For this we assume that A is the AA uni-

verse. This is not necessary, but making it NDA

will cause some parts of automata to be comple-

mented and dealternated once during construction

of automata and second time during subtype test-

ing, what is obviously very expensive. In the defin-

ition we use → to represent semantical ↪̇ (for sim-

plicity).

Definition 3.57. We extend a type system with

function types as follows.

There is no requirement on U .

∗-ary symbol →∈ F , and

ı (v) =→ and v′ is a child of v in envU if and

only if v ∈ U ↪ U , v′ = ⟨v1, v2⟩ for some v1, v2
and v (v1) = v2, and

for any finite F-APG there is an isomorphic

F-APG in envU .3

Exp = . . . / Exp → Exp

[[e1 → e2]]val = {f ∶ U ∩ (U ↪ U) ∣
f ([[e1]]val) ⊆ [[e2]]val}

if e1, e2 are closed, and it is undefined other-

wise.

Φ = ⋅ ⋅ ⋅ ∪ {→ aut}
where →aut is a 2-ary operation

→aut (A1,A2) = Alt (A→)
[x↦A1, x↦A1, y ↦A2, z ↦ A⊺]

and

A→=⟨F ,{0,1},{x,x, y, z},0,∅,

{0
→Ð→ ∀1,1

⟨ , ⟩ÐÐ→ (x, y) ,1 ⟨ , ⟩ÐÐ→ (x, z)} ,�⟩

for some distinct variables x,x, y, z, where

A1 means complementation of automaton

A1 and A⊺ a total automaton that accepts

every APG.

Note that because of our restriction on not

mixing function types with recursive types,

all automata in the formalization are cascad-

ing ⟨F ,{Q0,Q1} ,∅, q0,∅, δ,{α0, α1}⟩ where trans-

itions through → symbol belong only to the

first cascade (that is, if q
→Ð→ ⋅ ⋅ ⋅ ∈ δ, then q ∈ Q0)

and there are no loops in this cascade (that is,

there is no transition sequences q1
a1Ð→ l2, q2

a2Ð→ l3,

. . . , qn
anÐ→ l1 such that q1, ..., qn ∈ Q0 and each

li = (...,{qi, ...} , ...), {∀qi, ...} or {∃qi, ...}). In

such case we can split any of these automata to

A = ⟨F ,Q0,Q1, q0,∅, δ∣Q0 , α0⟩ (Q1becomes a set of

variables) and Aq = ⟨F ,Q1,∅, q,∅, δ∣Q1 , α1⟩ for all

q ∈ Q1, where δ∣P = { q aÐ→ ⋅ ⋅ ⋅ ∈ δ ∣ q ∈ P }. Then,

we can attempt to check subtyping by inductive

3Intuitively, this retrogradely enforces that for any finite sets A, B of finite APGs in envU and any function f ∶ A→ B
there exists a function in U that realizes f .

34

analyse of A automata, finding constraints on Aq
automata and check the constraints without in-

volving As. Still we leave this idea to further work.

Remark about function and intersection types

An interesting thing about intersection types is us-

ing them together with function types. This allows

to define types for so called ad hoc polymorphic

functions, that are generally used in popular pro-

gramming languages.

Intuitively, the ad hoc polymorphism allows a

function to have many function types at once.

Then when we apply such a function to some ar-

gument, we need to find one of these types such

that the argument matches its domain, and if we

have one the type of returned value is the codo-

main. An example may be here the single argu-

ment minus function, that returns the negation of

its argument. If we have a type for integer and a

type for rational numbers in a system, this function

should intuitively be able to work with arguments

of both kinds, and return integers for the first and

rationals for the second. But without intersec-

tions we can set a type for this function only as

Int ∣ Rat → Int ∣ Rat, what do not allow to preserve

the constraint. The intersection types can solve

this problem as the type (Int→ Int)& (Rat→ Rat)
describes exactly what we want. Such behaviour

in type-checking is generally out of the scope of

today strongly typed programming languages (like

ML family).

35

Appendix A

Constructing algorithm for weak Büchi
non-deterministic automata inclusion

checking

A.1 Intersection

Here we give a construction of an intersection auto-

maton that accepts an APG exactly when it is ac-

cepted by two other automata given as paramet-

ers. We restrict ourselves to do it only for a Bü-

chi and a weak Büchi NDA. As one of these auto-

mata is weak, we can give a slightly better solution

here, then the general one. (However using the

standard construction for an intersection of Büchi

NDAs combined with non-reachable states remov-

ing should give the same result. But still we give

it for completeness.)

Theorem A.1. For a closed weak Büchi NDA A1

and a closed Büchi NDA A2 over the same alphabet

F , there exists a closed Büchi NDA A1 ∩A2 over

F that accepts an APG if and only if this APG is

accepted by both A1 and A2.

Proof. Let A1 = ⟨F ,Q1,∅, q01 ,∅, δ1, α1⟩, A2 =
⟨F ,Q2,∅, q02 ,∅, δ2, α2⟩ and let Q1, Q2 be disjoint

(we can always rename states to satisfy this). We

set A1 ∩A2 as

⟨F ,Q1 ×Q2,∅, (q01 , q02) ,∅, δ, α⟩

where δ is given as

(q, p) aÐ→ ((q1, p1) , . . . , (qar(a), par(a))) ∈ δ
if and only if

q
aÐ→ (q1, . . . , qar(a)) ∈ δ1 ∧ p

aÐ→ (p1, . . . , par(a)) ∈ δ2

and α is the Büchi condition with Bα = Bα1 ×Bα2 .

Let’s show that if node v is accepted by A1

and A2 in some environment env , then v is also

accepted by A1 ∩A2 in env . For this we take

a run r1 of A1 and r2 of A2 that are accepting

for v in env , and we set a run that is a wit-

ness of v being accepted by A1 ∩A2 in env as

r = ⟨PathEnv (⟨env , v⟩) + ı, ε⟩ where ı is defined as

ı (w) = (r1w , r2w). The symbol function is cor-

rectly defined as A1, A2 do not have variables and

so paths (⟨env , v⟩) = paths (r1) = paths (r2). To

show r is accepting, let’s note that A1 accepts a

branch in a run only if from some point nodes on

the branch are labeled only with accepting states.

Hence, for each branch $ in r there is a point

from which nodes on it are labeled with pairs of

accepting states of A1 and states coming from the

branch $ in r2. As there must be infinitely many

nodes labeled with accepting states on $ in r2,

we have also infinitely many nodes labeled by ac-

cepting states of A1 ∩A2 on $ in r and so $ is

accepted.

Proving the oppose implication is even simpler

and we omit it.

Remark A.2. The size of A1 ∩A2:

- states — ∣Q1∣ ∣Q2∣
- transitions through a ∈ F — ∣δa∣ = ∣δ1a ∣ ∣δ2a ∣
- accepting states — ∣Bα∣ = ∣Bα1 ∣ ∣Bα2 ∣

A.2 Complementation

Complementation is an operation that for a given

automaton produces another automaton accepting

exactly these APGs that are not accepted by the

former automaton. While there are no practical

advantages, known to the author, that would flow

from restricting ourselves here, we will give a very

general concept of this construction for alternating

automata.

Theorem A.3. For a closed alternating auto-

maton A, there exists a closed alternating auto-

maton A that accepts exactly these APGs that are

not accepted by A.

Proof. Let A = ⟨F ,Q,∅, q0,∅, δ, α⟩. Then we set A

36

as

⟨F ,Q,∅, q0,∅, δ′,¬α⟩

where ¬α is negated function α and

q
aÐ→ (P1, . . . , Par(a)) ∈ δ′ if and only if

- there exists a choice function

σ ∶ { q aÐ→ (P ′
1, . . . , P

′
ar(a)) ∈ δ }→

{1, . . . ,ar (a)} ×Q

such that if σ (q aÐ→ (P ′
1, . . . , P

′
ar(a))) = (i, p),

then p ∈ P ′
i , and

- Pi = { q ∣ ∃ρ∈δ σ (ρ) = (i, q) } for all

i = 1, . . . ,ar (a)

Intuitively, the choice function σ says for each

transition q
aÐ→ (P ′

1, . . . , P
′
ar(a)) which branch of an

APG is not accepted (the one with the number i)

is not accepted and which member of P ′
i fails to

accept.

The proof of correctness can be found in

the work of Muller and Schupp [MuSch95, ap-

pendix C]. It is done for automata on n-fully-

branched trees with equivalence classes of (∨, ∧)-
formulas over (k, q) literals on right sides of

transitions, where k ∈ [n] and q is a state.

However, the proof does not depend on the

full-branching and our transitions can be eas-

ily translated to the formulas. Precisely, for

our automaton ⟨⟨Σ,ar⟩ ,Q,∅, q0,∅, δ, α⟩ a cor-

responding Muller-Schupp’s automaton would be

⟨Q,Σ, δ′, q0,{P ∣ α (P) = true}⟩ where

δ′ (a, q) =
⎡⎢⎢⎢⎢⎢⎣

⋁
q

aÐ→(P1,...,Par(a))∈δ

⋀
i∈{1,...,ar(a)}

⋀
p∈Pi

(i, p)
⎤⎥⎥⎥⎥⎥⎦≡

Lemma A.4. For a weak Büchi AA A the com-

plementation is also a weak Büchi AA with the set

of accepting states B¬α = Q ∖Bα.

Proof. The lemma follows from the observa-

tion, that the construction of A keeps lay-

ers of A if it is weak. That is, for

each transition q
aÐ→ (P1, . . . , Par(a)) in A and

a state p ∈ P1 ∪ ⋅ ⋅ ⋅ ∪ Par(a) we have also a

transition q
aÐ→ (P ′

1, . . . , P
′
ar(a)) in A, such that

p ∈ P ′
1 ∪ ⋅ ⋅ ⋅ ∪ P ′

ar(a), and so the layers of states of

A are also layers of A . In such case each branch

in a run of A is labeled from some point only with

states from one layer of A. But this says, that such

a branch has finitely many labels form Bα if and

only if there is infinitely many labels from Q ∖Bα
on it. As the left side of this equivalence is exactly

what ¬α says and the right side is exactly what

Büchi condition with the set of accepting states

Q ∖Bα says, we get the lemma.

Remark A.5. The size of A:

- states — ∣Q∣
- transitions from q ∈ Q through a ∈ F —

∣δ′q,a∣=∏q
aÐ→(P1,...,Par(a))∈δ

∣P1∣ + ... + ∣Par(a)∣
- in the case A is weak Büchi: accepting states

— ∣B¬α∣ = 2∣Q∣

A.3 Alternation removing

One more thing that we need about alternat-

ing automata is a translation of them to non-

deterministic automata. We give one construction

for such translation here. The idea for it is gen-

erally widely spread, however it is mostly given

for automata on infinite words and the author is

not aware of a paper, where it would be given

for infinite trees (equivalently APGs). While con-

structions for automata on words are known to be

non-applicable to automata on trees, we describe

this construction once more to show that this one

does not follow this pattern and it can be used for

trees/APGs. We give it also for completeness of

the inclusion checking procedure for what this ap-

pendix stands.

Remark A.6. This is generally hard. For the

Rabin acceptance condition, which would fit our

needs the best, the size of resulting automata

from such translation reaches O (2n logn) or more

[MuSch95, Lö11], where n corresponds to the size

of a translated automaton. Moreover, the result

is another automaton with the Rabin condition,

which may lead us to testing emptiness for quite

big Rabin NDAs, that is known to be NP-complete

[Tho90, Lö11]. That is why we limit ourselves to

Büchi and weak Büchi automata in this paper.

Definition A.7. We say a run r of some AA is

normalized if for each w1 = (k1, q1) . . . (kn, qn),
w2 = (k1, p1) . . . (kn, pn) in paths (r) such that

qn = pn sub-APGs r△w1 , r△w2 are equal.

Lemma A.8. For each accepting run of an AA on

an APG there exists a normalized accepting run of

this AA on this APG.

Proof. Let’s take any accepting run r of some

37

AA on some APG. First we retrieve its path

tree, so let r′ = LabPathT ree (r). This is su-

perfluous, but it may simplify the presenta-

tion of the construction. Now we join nodes

of r′ into equivalence classes be the relation:

(k1, q1) . . . (kn, qn) ∼ (l1, p1) . . . (lm, pm) if and only

if n =m, k1 = l1, . . . , kn = ln and qn = pn (recall that

nodes of r′ are paths of r and each node w of

r′ describes the path from the root of r′ to this

node, that is w = r′↓w). So equivalence classes upon

∼ join all nodes of r′ that should be equal in a

normalized run. Now split nodes of r′ into lay-

ers L0, L1, . . . such that (k1, q1) . . . (kn, qn) is in

Li if and only if the number of positions j such

that qj ∈ Bα is equal to i (or in other words, the

node has exactly i ancestors labeled with accept-

ing states in r′). Of course each node belongs to

exactly one layer. Then we fix any choice func-

tion σ ∶ carr (r′) / ∼→ carr (r′) such that σ ([w]∼)
is a member of [w]∼ that belongs of the layer

with the least index — precisely, σ ([w]∼) ∈ [w]∼,

σ ([w]∼) ∈ Li and for each w′ ∈ [w]∼ if w′ ∈ Lj ,
then i ≤ j. The normalized run can be fixed as

r′′ = ⟨⟨carr (r′) / ∼, ↓, ı⟩ , ε⟩ such that ı ([w]∼) = r′w
and [w]∼ has an (i, p)’th child [w′]∼ if and only if

σ ([w]∼) has an (i, p)’th child in [w′]∼.

The APG r′′ is surely a run for A, as for each

node in r′′ its children are copied from the corres-

ponding node from r′. To show r′′ is accepting note

that each layer is finite — if not, there would be

an non-accepting branch in r′. So for any branch

(k1, q1) (k2, q2) . . . in r′′ there is only finitely many

positions n such that σ (r′′↓(k1,q1)...(kn,qn)) belongs

to one layer. This makes there must be infin-

itely many n’s such that σ (r′′↓(k1,q1)...(kn,qn)) ∈ Li,
σ (r′′↓(k1,q1)...(kn+1,qn+1)) ∈ Lj and i < j. But

(σ (r′′↓(k1,q1)...(kn,qn))) (kn+1, qn+1) ∼
σ (r′′↓(k1,q1)...(kn+1,qn+1))

so the path (σ (r′′↓(k1,q1)...(kn,qn))) (kn+1, qn+1) has

at least j positions with states from Bα and

σ (r′′↓(k1,q1)...(kn,qn)) has only i such positions.

Then qn+1 must be accepting and as there is in-

finitely many such n’s, the whole branch is accep-

ted.

Definition A.9. For a closed Büchi alternating

automaton A = ⟨F ,Q,∅, q0,∅, δ, α⟩ we define a Bü-

chi non-deterministic automaton ND (A) as

ND (A) = ⟨F ,Q↪ {○, ●} ,∅,{q0 ↦ y} ,∅, δ′, α′⟩

where ↪ means a set of partial functions

(cf. Notation) and the symbols are given as

y =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

●, if q0 ∈ Bα
○, otherwise

Bα′ = Q↪ {●}

f
aÐ→ (f1, . . . , far(a)) ∈ δ′ if and only if

a) there exists a choice that for each

q ∈ Dom (f) assigns one transition

q
aÐ→ (Pq,1, . . . , Pq,ar(a)) from δ,

b) Dom (fi) = ⋃q∈Dom(f) Pq,i for all i = 1, . . . ,

ar (a), and

c) for i = 1, . . . ,ar (a) the values of fi are set as

follows

- if f ∉ Bα′ , then

fi (q) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

○, if q ∉ Bα∧
∃p f (p) = ○ ∧ q ∈Pp,i

●, otherwise

- if f ∈ Bα′ , then

fi (q) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

●, if q ∈ Bα
○, otherwise

Note that values of f1, . . . , far(a) are fully de-

termined by f , a and the first conditions. In other

words we have the following observation.

Observation A.10. For each state f of ND (A),

symbol a ∈ F and choice Dom (f)→ δq,a there ex-

ists exactly one transition f
aÐ→ (f1, . . . , far(a)) ∈ δ′

that satisfies the conditions b), c) for this choice.

One may also note that for every a ∈ F we have

∅ aÐ→ (∅, . . . , ∅) in δ′ and ∅ ∈ Bα′ . So the empty

super-state in ND (A) accepts everything, same as

the empty set standing on the right side of a trans-

ition in A.

Theorem A.11. A closed alternating Büchi auto-

maton A accepts an APG if and only if ND (A)
accepts this APG.

Proof. First we should note, the given automaton

does not simulate each run of the original. So for

showing the implication if A accepts, then ND (A)
accepts we consider only normalized runs. That is,

we take an APG t accepted by A with a witness

normalized run r and we settle an accepting run r′

of ND (A) on t.

To give some intuition, let’s start from fixing a

2Q-APG d that can be seen as a foundation of r′.

38

This is superfluous, but we give it to clarify the

construction of r′. The letter d comes from “do-

main”, as this APG establishes the domains of

states in r′. We define d as ⟨PathsEnv (t) + ı, ε⟩
where

ı (k1 . . . kn) ={r(k1,q1)...(kn,qn) ∣
(k1, q1) . . . (kn, qn) ∈ paths (r)}

By Observation A.10 we may note that there

exists r′ such that Dom (r′w) = dw for each

w ∈ paths (t). But let’s show it more precisely to

guarantee its acceptance.

Let ρw be a transition from A used in r at node

r↓w for any w = (k1, q1) . . . (kn, qn) ∈ paths(r). Pre-

cisely, ρw = q aÐ→ (P1, . . . , Par(a)) such that q = rw,

a = tk1...kn , and the node r↓w has a child r↓w(i,p)
if and only if i ∈ {1, . . . ,ar (a)} and p ∈ Pi.
Then note that for each k1 . . . kn ∈ paths (d) and

q ∈ dk1...kn we have exactly one transition in

δ, let’s name it ρk1...kn,q, such that there ex-

ists w = (k1, q1) . . . (kn, qn) ∈ paths (r), rw = q and

ρk1...,kn,q = ρw — the existence can be shown with

a simple induction on n and the uniqueness is guar-

anteed by r being normalized.

Now we set r′ as ⟨PathsEnv (t) + ı′, ε⟩ where ı′

is given recurrently as follows. Note that for each

defined below ı′ (w) we have Dom (ı′ (w)) = dw.

- ı′ (ε) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{q0 ↦ ●} , if q0 ∈ Bα
{q0 ↦ ○} , otherwise

- let ı′ (w) twÐ→ (f1, . . . , far(tw)) be the only

transition in δ′ for the state ı′ (w) of

ND (A), the symbol tw and the choice

{ p↦ ρw,p ∣ p ∈ Dom (ı′ (w)) }, then

ı′ (wi) = fi for i = 1, . . . ,ar (tw)

Assuming we believe that r′ is a proper run of

ND (A), let’s show r′ is accepting. We will reason

by reductio ad absurdum. First take in mind that

for each path k1 . . . kn ∈ paths (r′) and q ∈ r′k1...kn
there is a path w = (k1, q1) . . . (kn, qn) ∈ paths (r)
such that rw = q. Now let’s consider r′ is non-

accepting and so there exists a non-accepting infin-

ite branch $ = k1k2 . . . in it. Let’s collect all states

q from r′k1...ki such that (r′k1...ki) (q) = ○ in Ui for

each i ∈ N. Note that there must be such n that all

Ui are not empty for i ≥ n, as otherwise we would

have infinitely many accepting states of ND (A) on

the branch. But for each i ≥ n and p ∈ Ui+1 there is

a transition ρk1...ki,q = q
aÐ→ (Pq,1, . . . , Pq,ar(a)) ∈ δ

such that p ∈ Pq,ki+1 and q ∈ Ui. So for each p ∈ Ui+1

there is a node in r↓(k1,q1)...(ki+1,qi+1) labeled with

p for which r↓(k1,q1)...(ki,qn) is labeled with q ∈ Ui.
Hence, we can surely choose a branch r which from

the position n is labeled with states form ⋃i∈NUi.
As states in all Ui are not accepting for A, the

branch is non-accepting in r. E
The inverse is luckily easer. We take an ac-

cepting run r of ND (A) for an APG t. Then

for each path w ∈ paths (t) and state q ∈ Dom (rw)
there is the transition q

twÐ→ (Pw,q1 , . . . , Pw,q
ar(a)) in

δ chosen in the definition of δ′. So we can build

a valid run r′ of A on t as ⟨⟨(N ×Q)∗ , ↓, ı⟩ , ε⟩,
where w↓(i,p) = w′ if and only if w′ = w (i, p) and

p ∈ Pw,qi for q = r′w, and ı is defined in the only

possible way (that is, ı (ε) = q0, ı (w (i, q)) = q).
The acceptance of r′ can be argued as follows.

For each infinite branch (k1, q1) (k2, q2) . . . from

r′ there are infinitely many n that the state

rk1...kn ∈ Bα′ . This means that between each

two such n1 and n2, there must be some m

that r′(k1,q1)...(ki,qm) ∈ Bα, as in the other case for

i = n1 + 1, . . . , nn we would have rk1...ki (qi) = ○ and

rk1...kn2
∉ Bα′ . Thus we have infinitely many ac-

cepting states on (k1, q1) (k2, q2)

Remark A.12. The size of ND (A):
- states — 3∣Q∣

- transitions trough a ∈ F — ∣δ′a∣ =∏q∈Q 2 ∣δq,a∣+1

- accepting states — ∣Bα′ ∣ = 2∣Q∣

A.4 Checking emptiness

The emptiness property says if an automaton

does not accept any APG. The complexity of test-

ing this property depends on the class of considered

automata and generally may by high — e.g., it is

NP-complete for Rabin APG automata [EmJu88].

That is why we again limit ourselves and give a

claim only for Büchi NDAs.

Theorem A.13. For a closed Büchi NDA A, there

exists an algorithm checking if there exists any

APG that is accepted by A.

This theorem is a generally known fact, never-

theless we give the algorithm here. The reason for

this is, that we want to check emptiness for ex-

ponentially blown automata in this paper and so

we quite do care about minimizing number of op-

erations the algorithm performs. But this is not

a matter of concern in descriptions of solutions of

this problem known to the author. That is why we

decide to give another description here, that evades

39

unneeded iterations on elements of a checked auto-

maton — as the number of these elements may be

exponential in size of some input data, it seems

significant.

Definition. Let A be a closed NDA and q ∈ QA.

Then a q-run finite prefix is any QA-APG r in-

dexed with naturals that satisfies the conditions

- the height of r is finite,

- rε = q, and

- for each w ∈ dom (r)
⋆ no r△wi is defined, or
⋆ there is rw

aÐ→ (q1, . . . , qar(a)) in δA for

which rw1 = q1, . . . , rw ar(a) = qar(a) and

rwi is undefined for i ≠ 1, . . . ,ar (a)
The set of nodes v of r which do not have children,

but for which there is no transition ır (v)
aÐ→ () in

δ, where ır is the symbol function of r, is called

the cut of r. The states of ır (cut) are called cut

states of r. Finally, if the root of r is in the cut,

we say the prefix is trivial .

Definition A.14. Let A be a closed Büchi auto-

maton, Rc ∶ 2QA → 2QA be the function where

Rc (P) is the set of all states q for which there ex-

ists a q-run finite prefix r with ır (cut) ⊆ P . Then

{Gi}i∈N is the sequence such that G0 = BαA and

Gi+1 = Rc (Gi) ∩BαA .

Observation A.15. Note that the sequence

{Gi}i∈N is decreasing, so there must exist the smal-

lest index n such that Gn = Gn+1.

Lemma A.16. A Büchi NDA A is not empty if

and only if q0A ∈ Rc (Gn), for n from Observation

A.15.

Proof. For the right-to-left implication things are

simple. For each q ∈ Gn a q-run f. prefix with all

its cut states in Gn, thus also in BαA , is guaran-

teed. So we can create an accepting q-run of A for

each of these states by composing the guaranteed

prefixes. Now, if we take a q0A-run f. prefix which

is a witness of q0A ∈ Rc (Gn) and compose it with

the constructed runs, we acquire an accepting q0A-

run. An APG for which the run is accepting can

be then retrieved from the run itself.

For showing the inverse, we take some accept-

ing run r for A, then we fix the set Accept of all

states from BαA which occur in r infinitely often

and we decompose r to prefixes by “cutting” it at

states of Accept . So for each q ∈ Accept ∪ {q0A} we

have at least one q-run f. prefix with all its cut

states in Accept . Then by an induction on i we

can show Accept ⊆ Gi — it is straightforward as

the prefixes from decomposition of r are witnesses

of states from Accept being in succeeding Rc (Gi)
and thus in Gi+1. That makes the right side of the

lemma satisfied.

We are now ready to give the algorithm for

checking emptiness. This may be little unintuit-

ive at at the first glance, but during the proof of

its correctness we give some invariants that, hope-

fully, will help in understanding how it works.

Definition A.17. For a closed Büchi NDA

A = ⟨F ,Q,∅, q0,∅, δ, α⟩ the algorithm is given as

follows.

Preprocessing.

1. with each state q associate a set producersq

of { p aÐ→ (q1, . . . , qar(a)) ∈ δ ∣ ∃i qi = q } and

a counter availableq set to 0

2. with each transition ρ = p aÐ→ (q1, . . . , qar(a))
associate a counter availableρ set to

0 and a counter deadProductsρ set to

∣{q1, . . . , qar(a)}∣

3. initialize a queue Ĝ0 and put all states from

Bα into it

Sub-algorithm “Next Layer” that for a given Gi
finds Rc (Gi) and Gi+1.

Input: Ĝi

1. rename Ĝi to cameAlive

2. set new Ĝi+1 as an empty queue

3. for each q such that there exists a trans-

ition q
aÐ→ () ∈ δ, set availableq to i + 1 and

enqueue q into cameAlive

4. repeat until cameAlive is empty:

a) dequeue q from cameAlive and for each

ρ = p aÐ→ (q1, . . . , qar(a)) in producersq :

i. if availableρ ≠ i:

A. remove ρ from producersq

ii. else:

A. decrement deadProductsρ

B. if deadProductsρ became 0

in the last step, set both

availableρ, availablep to i + 1 and

deadProductsρ to ∣{q1, . . . , qar(a)}∣
C. if availablep changed in the last

step, enqueue p into cameAlive

and if p is also in Bα, enqueue it

into Ĝi+1

40

Main algorithm testing emptiness.

1. do the preprocessing

2. run Next Layer algorithm on succeeding Ĝi
staring from Ĝ0 until the number of ele-

ments of Ĝi does not decrease

3. if Ĝn is the last processed Ĝi, then return A
is not empty if availableq0 = n + 1, otherwise

return it is empty

Lemma A.18. Any state occurs in Ĝi at most

once.

Proof. The preprocessing guarantees it for i = 0.

Later, during a run of Next Layer, when a state is

put into Ĝi+1 its available counter is set to i + 1 and

during this run cannot be changed to anything else.

Thus the condition in 4(a)ii.C cannot be passed

second time.

Lemma A.19. Between runs of Next Layer

Gi = { q ∣ q is in Ĝi } and Rc (Gi) = { q ∣ availableq
= i + 1 }.

Proof. For showing { q ∣ q is in Ĝi } ⊆ Gi and

{ q ∣ availableq = i + 1 } ⊆ Rc (Gi) let’s note the fol-

lowing invariants — assuming that we enumerate

runs of Next Layer from 0.

1. at the beginning of an i’th run of Next Layer

all counters availableq and availableρ are less

then or equal to i

2. when running Next Layer i’th time a state

can be put into cameAlive at most once

3. at the beginning of an i’th run

of Next Layer, for each transition

ρ = p aÐ→ (q1, . . . , qar(a)) if availableρ = i,
then deadProductsρ = ∣{q1, . . . , qar(a)}∣

4. when running Next Layer i’th time if q is in

cameAlive, then there exists a q-run f. pre-

fix (possibly trivial) with all its cut states

included in { q ∣ q is in Ĝi }

All invariants can be shown by an induction on

number of runs of Next Layer. The first two are

independent from others. The third can be shown

using the two previous ones and the last using the

two in the middle. Now with the fourth invariant

it is obvious that the desired inclusions hold, as we

can do a simple induction on number of runs of

Next Layer with the claim that states on left sides

of the inclusions except these of Ĝ0 must be put

into cameAlive — the induction is needed to settle

that the cut states of prefixes from the invariant 4

are in Gi.

To show the inverse inclusions we prove by an in-

duction on number of runs of Next Layer that after

i’th run the inclusions { q ∣ q is in Ĝi+1 } ⊇ Gi+1,

{ q ∣ availableq = i + 1 } ⊇ Rc (Gi) and the follow-

ing invariant holds.

5. for each transition ρ = p aÐ→ (q1, . . . , qar(a))
where ar (a) > 0 if all qj ∈ Rc (Gi), then

availableρ = i at the beginning of the i’th run

of Next Layer and through the whole run ρ

is in producersqj for all qj

For the iteration 0 the invariant is trivial. For an

iteration i > 1 if we take a mentioned transition

ρ = p aÐ→ (q1, . . . , qar(a)) with all qj ∈ Rc (Gi), then

all qj ∈ Rc (Gi−1) by the monotonicity of the se-

quence {Rc (Gi)}. So from the induction assump-

tion flows that availableρ = i − 1 at the beginning

of the run i − 1, the transition ρ is in producersqj
for all qj through the run and availableqj = i at

the end of the run — the last one is from the

second inclusion for the run i − 1. As we also know

that the counters availableqj < i at the beginning

of the run i − 1, all qj must pass through the step

4(a)ii.C during this run and so they must be put

into cameAlive. Thus after dequeuing all of them

availableρ is set to i and the transition is never

considered any more during this run, as no qj can

be put again into cameAlive. This makes the in-

variant hold at the beginning of the run i. The

only thing to do now about the invariant is show-

ing that ρ cannot be removed from any producersqj
during this run, which is straightforward, as until

availableρ = i it cannot be removed and after set-

ting it to i + 1 the transition is not considered again

during the run.

Now we need only to show the goal inclusions.

This may be done by an induction on height of

non-trivial run f. prefixes with cut states included

in Gi. Precisely we show that if we have such a

prefix r, then availablerε is set to i + 1 during the

i’th run. Such induction is enough to prove the

goal inclusions as

- for each state q from Rc (Gi) a prefix like

this with rε = q is guaranteed and once

availableq is set to i + 1 it cannot be undone

during the run,

- for each state q from Ĝi+1 the state is also

in Rc (Gi), so by the above availableq is set

to i + 1 and while availableq ≤ i at the begin-

ning of the run the step 4(a)ii.C must even-

41

tually be positively passed.

So let’s consider cases. If the height is 1, then

availablerε is set to i + 1 by the step 3 of Next

Layer, as r cannot be trivial and so there must

exist some transition rε
aÐ→ () ∈ δ. In the case

of the height being greater then 1 we are go-

ing to show that for each state rj the counter

availablerj = i at the beginning of the run and

rj is put into cameAlive during it. With these

claims setting availablerε = i + 1 is straightforward

— some transition ρ = rε
aÐ→ (r1, . . . , rar(a)) must

be in all producersrj through the run and at the

beginning of the run the counter deadProductsρ
is fixed as the number of rj states (cf. inv. 5,

3), so dequeuing all rj must cause a positive pass

through the step 4(a)ii.B. Now let’s take care about

the availablerj = i. For i = 0 it is trivial. For

i > 0 note that all rj ∈ Rc (Gi−1). So by the in-

duction on number of runs of Next Layer we have

{ q ∣ availablerj = i } ⊇ Rc (Gi−1) at the end of the

run i − 1 and then availablerj = i also at the be-

ginning of the i’th iteration. Thus the last thing

to do is to show the rj states are enqueued into

cameAlive. For each j such that r has an j’th child

we consider two cases: r△j being trivial or not. If

r△j is not trivial, then surely it is lower then r.

So by the induction hypothesis we know that the

availablerj is set to i + 1 during the run and as

availablerj = i at the beginning of the run the step

4(a)ii.C must be positively passed during it. Thus

the state is put into cameAlive. In the case r△j is

trivial, we have to note that { q ∣ q is in Ĝi } ⊇ Gi
at the beginning of the current run. For i > 0 this

flows from the assumption of the induction on num-

ber of runs and for i = 0 from looking at the pre-

processing. Then, as the state rj must be in Gi, it

becomes a member of cameAlive at the step 1 of

Next Layer.

Theorem A.20. An NDA A is non-empty if and

only if the algorithm claims it is non-empty.

Proof. For testing emptiness the main algorithm

builds succeedingGi and Rc (Gi), whereGi is men-

tioned in the previous lemma. So, as {Gi} is de-

creasing wrt to inclusion and there are no duplic-

ates in Ĝi the condition in step 2 stops the iter-

ation when two successively constructed Gi and

Gi+1 become equal. This makes the queue Ĝn,

indeed, stand for the Gn from Lemma A.16 and

checking availableq0 = n + 1 is equivalent to check-

ing q0 ∈ Rc (Gn) by Lemma A.19.

Remark A.21. The time complexity of the al-

gorithm we gave is O (∣Q∣ + size (δ) + size (δ) ∣Bα∣),
where size (δ) = ∑

q
aÐ→(...)∈δ

ar (a) + 1. The

∣Q∣ + size (δ) component comes from the prepro-

cessing. Then the main algorithm can perform

maximally ∣Bα∣ + 1 runs of Next Layer and each

such a run can be completed in O (size (δ)) plus

the cost of dequeuing states from cameAlive that

become members of it in step 1 of Next Layer.

But in each i’th run of Next Layer, for i > 0 these

members come from processing some transition in

δ, so their number is bound by size (δ), and for

i = 0 it is bound by the number of states in the

automaton. Thus summarizing we get what we

want.

The space complexity is O (∣Q∣ + size (δ)). This

is trivial.

A.5 Checking inclusion

Recalling — inclusion checking stands for the prob-

lem of testing if each APG accepted by one auto-

maton is also accepted by another. In this paper we

are interested in checking such inclusion for closed

weak Büchi NDAs. The procedure for this is given

in the following observation.

Observation A.22. Let A1, A2 be closed weak

Büchi NDAs over F alphabet. Then A1 is included

in A2 if and only if A1 ∩ND (Alt (A2)) is empty.

The thesis is straightforward, as by the previ-

ous theorems ND (Alt (A2)) accepts exactly these

APGs that are not accepted by A2. The ND con-

struction applies to Alt (A2) as by Remark A.4 the

automaton Alt (A2) is Büchi.

As we fixed a proper setting for building

A1 ∩ND (Alt (A2)) and testing its emptiness, we

then have a decidable procedure for testing the in-

clusion. We estimate the cost of this procedure

below.

Remark A.23. The time complexity of inclusion

testing is O (K +L +LM) and the space complex-

ity is O (K +L), where K, L, M correspond to the

size of A1 ∩ND (Alt (A2)) as follows.

- K = ∣Q1∣3∣Q2∣ is the number of states

- L =∑a∈F (ar(a)+1) ∣δ1a ∣∏q∈Q2
(2ar(a)∣δ2 q,a ∣+1)

stands for size of the transition relation stated

in the complexity remark A.21 for testing

emptiness

- M = ∣Bα1 ∣2∣Q2∣ is the number of accepting states

where indexes 1, 2 says from which automaton,A1

42

or A2, respectively, a symbol comes.

Note that L can be little bit more figuratively

bound, as

∏
q∈Q2

(2ar (a)∣δ2 q,a ∣ + 1) ≤ 3∣Q2∣ (ar (a) + 1)∣δ2 a ∣

Thus the procedure is straightly single exponential,

what is a good result in context of automata on in-

finite trees/APGs. Still processing such big auto-

mata even for small A1 and A2 may be out of cap-

abilities of current personal computers (June 2014)

which we consider our targets. Then for what sake

have we done all this work? The answer is —

because this estimation does not take in account

that during construction of A1 ∩ND (Alt (A2)) we

can omit non-reachable states, what may result

in tremendous decrease of the size of the auto-

maton. E.g. for deterministic A2 after removing

non-reachable states this size is not even exponen-

tial. More precisely, it may be estimated as

- K = ∣Q1∣ ∣Q2∣
- L = ∑a∈F (ar (a) + 1) ∣δ1a ∣ar (a) ∣Q2∣
- M = ∣Bα1 ∣ (∣Q2∣ − ∣Bα2 ∣)

The reason for this is that the complement of

a deterministic automaton is, in fact, a non-

deterministic automaton and all super-states in the

construction of the complement that simulate more

then one state of the original automaton are non-

reachable.

This, somehow, follows intuitions flowing from

studying the equation for L, as the exponent

∣δ2 q,a
∣ describes the level of non-determinism of

A2. Hence, despite the tight bound for the com-

plexity depends on the structure of A2, we can

say with good portion of probability that the com-

plexity of the given procedure (with non-reachable

states omitted) decreases significantly with rise of

determinism of A2. Summarizing, for many auto-

mata we can effectively compute inclusion check-

ing.

One thing that we still need to do is strength-

ening the above theorem a little bit to meet our

theorem from the main part of the paper. This

goes as follows.

Theorem A.24. Let A1, A2 be closed weak Bü-

chi NDAs over alphabet F and env be an F-APG

environment closed over A1. Then the inclusion

Aenv
1 ⊆ Aenv

2 holds if and only if A1 is included in

A2.

Proof. One implication is obvious and the second

is obvious by Theorem 2.17.

Finally, the last thing we are left with is remark-

ing that the above procedure works also for weak

Büchi alternating automata, what is obvious as we

need only to remove Alt in Theorem A.22, and say-

ing that K, M parameters look the same as in the

NDAs’ case and L is upper bounded by

∑
a∈F

(ar (a) + 1) ∣δ1a ∣ ∏
q∈Q2

(2 (ar (a) ∣Q2∣)∣δ2 q,a ∣ + 1)

where we may again bound the factor

∏
q∈Q2

(2 (ar (a) ∣Q2∣)∣δ2 q,a ∣ + 1)

with

3∣Q2∣ (ar (a) ∣Q2∣ + 1)∣δ2 a ∣

43

Appendix B

What is wrong with the automata for
fixed points in the paper [Niw97]

It seems there is a missed case in the construc-

tion of equivalent automata for expressions that

starts from the least and the greatest fixed-point

operators in [Niw97] — specifically, in proofs of

lemmas 3.4 and 3.5. In that paper automata

A′ and A′′, which correspond respectively to our

µxaut (A), νxaut (A), use simple δA in the place of

our δ′A,x (cf. def. 3.25), what appears to be not

sufficient.

A counterexample may be here the auto-

maton A′ for A = ⟨{a/1, b/0} ,{q0} ,{x, y} , q0,{y} ,
{q0

aÐ→ (x)} ,�⟩. The least fixed point of the func-

tion described by this automaton is µx.y ∪ a (x),
where the variables range through sets of values in

some arbitrary algebra of the signature {a/1, b/0}.

So if we set the valuation of the variable y to {b},

then a (b) should be in the fixed point for any in-

terpretation of the symbols a and b. Now by the

definition

A′ = ⟨F ,QA ∪ {x} , VA ∖ {x} , x, V0A ∖ {x} ,
δA ∪ {x aÐ→Ð→q ∣ q0A

aÐ→Ð→q ∈ δA} ,
{⟨L1 ∪ {x} , U1⟩ , ..., ⟨Ln ∪ {x} , Un⟩}α⟩

where {⟨L1, U1⟩ , ..., ⟨Ln, Un⟩}α is the Ra-

bin condition of A. In our case this

means that A′ = ⟨ {a/1, b/0} ,{q0, x} ,{y} , x,{y} ,
{q0

aÐ→ (x) , x aÐ→ (x)} ,�⟩. But this automaton

clearly do not accept a (b) wrt the valuation

y ↦ {b} and any interpretation of a, b, as it accepts

only y. E
The issue may be easily identified if we take a

closer look at the proof of the lemma 3.4. Pre-

cisely, in the third case of Ad (ii) we cannot do the

requested substitution when the accepting run of

A′ on r ↑1 (w) is lazy. This is where δ′A,x comes

in handy, as it covers exactly this case of the proof

and the rest seems to be valid.

The problem in the case of A′′ is analogous, how-

ever the proof of the lemma 3.5, which is respons-

ible for it, is put in terms of a reference to another

proof, so we do not go through it.

44

Bibliography

[TATA] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, M.

Tommasi. Tree Automata Techniques and Applications. Draft.

[EmJu88] E. Allen Emerson, Charanjit S. Jutla. The Complexity of Tree Automata and Logics of Pro-

grams. In Proceedings of the 29th Annual Symposium on Foundations of Computer Science

(FOCS’88), pages 328-337. IEEE Comp. Soc. Press, 1988.

[Lö11] Christof Löding. 2011. Automata on Infinite Trees. Draft.

[MuSch95] D. E. Muller, P. E Schupp. 1995. Simulating alternating tree automata by nondeterministic

automata: New results and new proofs of the theorems of Rabin, McNaughton and Safra.

Theoretical Computer Science, vol.141, pages 69 - 107.

[Niw97] Damian Niwiński. 1997. Fixed Point Characterization of Infinite Behavior of Finite-State

Systems. Theor. Comput. Sci. 189(1-2): 1-69.

[Pc] Benjamin C. Pierce. Types and programming languages. MIT Press 2002, ISBN 978-0-262-

16209-8.

[Tho90] Wolfgang Thomas. 1990. Automata on infinite objects in Handbook of Theoretical Computer

Science, Volume B: Formal Models and Semantics. Elsevier and MIT.

45

	Introduction
	Preliminaries
	Accessible pointed graphs
	Automata
	Non-deterministic automata (minimal, maximal, Büchi, Rabin)
	Cascading automata
	Alternating automata
	Remark about automata inclusion

	Types
	General terms
	General formalization concepts
	Example type constructions
	How do we give constructions
	Base types
	Pairs
	Untagged unions
	Tagged unions
	Recursive types
	Intersection types
	Inductive and coinductive types
	Towards functions

	Constructing algorithm for weak Büchi non-deterministic automata inclusion checking
	Intersection
	Complementation
	Alternation removing
	Checking emptiness
	Checking inclusion

	What is wrong with the automata for fixed points in the paper niw
	Bibliography

