Linkage L earning via Probabilistic M odeling
inthe ECGA

GeorgesHarik

[IGAL Technical Report 99010
January 1999

[1linois Genetic Algorithms Laboratory
Department of General Engineering
117 Transportation Building
104 S. Mathews Ave
Urbana, IL 61801
Phone: (217) 333-2346
Fax: (217) 244-5705

L inkage L ear ning via Probabilistic M odeling
inthe ECGA

GeorgesHarik
gharik@eathlink.net

ABSTRACT

The goal of linkage leaning, or building block identification, isthe aedion of a
more dfedive genetic dgorithm (GA). This paper explores the relationship between the
linkage-learning problem and that of learning probabili ty distributions over multi-variate
spaces. Herein, it is argued that these problems are equivalent. Using a simple but effedive
approad to leaning dstributions, and by implication linkage, this paper reveds the
existence of GA-like dgorithms that are potentialy orders of magnitude faster and more
acarate than the smple GA.

|. Introduction

Linkage learning in genetic dgorithms (GAS) is the identificaion of building blocks
to be mnserved under crossover. Theoreticd studies have shown that if an effedive
linkage-learning GA were developed, it would hold significant advantages over the smple
GA (2). Therefore, the task of developing such an algorithm has drawn significant
attention. Past approades to developing such an algorithm have focused on evolving a
problem's chromosomal representation along with its lution (3, 4, 5). This has proven to
be adifficult undertaking. This paper reinterprets and solves the linkage-leaning problem
in the context of probabili stic optimization.

Recantly, a number of algorithms have been developed that replacethe GA's
population and crosover operator with a probabili stic representation and generation
method (6, 8, 9, 11). Studies have shown a dose correspondence between these
algorithms and equivalent smple GAs (4). This paper shows how a variant of these
algorithms, that pays close d@tention to the probabili stic modeling of the population
succesdully tackles the linkage-learning problem.

We will begin by briefly reviewing the workings of the simple GA, as well as those
of the related probabili ty-based algorithms. We will then explore the dose relationship
between these two approadiesto optimizaion. The remainder of this paper isthen
concerned with the ultimate consequences of this relationship. The agument to be
presented will consist of two separate assertions:

* That leaning a'good probability distribution is equivalent to learning linkage.
e That one'good distribution can be found by seaching for ajointly small
representation of two components. 1) the compressed representation of the

population under the given distribution and 2) the distribution’s representation
given the problem encoding.

Ultimately, this argument must stand on the legs of empiricd observations, asin its
esenceit isbut the gplicaion of Occan's Razor. The last part of this paper presents a
probabili stic dgorithm, the extended compad GA (ECGA), designed to lean linkage
through leaning good probabili ty distributions. 1t then demonstrates the alvantage that
this approacd provides over the simple GA, on a theoreticd problem that has traditionally
been used to test other linkage-learning approadhes. Finally, this paper explores the
consequences of the proposed probabili stic dgorithm.

[I. The Simplified Simple GA

A GA (12, 13) isasmulation of the genetic state of a population of individuals ---
their genetic state being their combined chromosomes. It typicdly includes those forces of
genetics deaned most influential in neture, such as natural seledion, mutation, and
crosover (mating). In this paper, we will restrict ourselvesto one face of the GA: itsuse
as aproblem solver, or optimization algorithm. Natural evolution typicdly leals to a set of
individuals that are well suited to their environment. By controlling the computational
nature of such an environment, the GA can be made to evolve diromosomes (structures)
that are well suited to any given task.

An optimizaion isa seach over a set of structures, to find the "best" structure
under some given criteria. This paradigm maps over readily to implementation in a GA.
Ead structure is represented by its blueprint, or chromosome, in the GA's population. The
GA's population isthus the arrent set of structures the dgorithm has found to be most
interesting or useful. At ead point in time, it represents the aurrent 'state’ of the search.
The genetic operators of natural seledion, crosover, and mutation then generate the next
state of the seach from the aurrent one. The GA's godl isto reat afina state
(population) that contains a good solution (structure) to the problem at hand.

In order to smplify this exposition, we will assume that the structures the GA will
optimize over are the set of binary strings of fixed length L. A binary string is smply a
conseautive sequence of charaders eat of whichisaO or a 1. This restriction makes it
easier to visualize and understand the GA and its operators. However, the theory
developed in this paper will remain applicable to the much wider domain of optimizaion
over finite-dimensional spaces. We will for the same reason aso consider only seledo-
recombinative GAs, thus ignoring for the moment the dfeds of mutation.

In the wurse of optimizaion, the GA's population repeaedly undergoes
processng by the two genetic operators of crosover and seledion, until it converges.
Convergence here means that only one type of chromosome remains in the population ---
hopefully the best or a good solution. The two operators have orthogonal goals. The
Crosover operator generates new chromosomes by mixing perts from other pairs of
chromosomes. It roughly corresponds to mating and reproduction in reture.

The selection operator weeds out those chromosomes that are unsuited to their
environment --- that is, those that have a poor score under the current optimization.
Again, for the purpose of simplicity, we focus on block selection (14) and uniform
crossover (15) as representatives of possibly more general selection and crossover
operators.

In block selection, alarge fraction of the weakest chromosomes in the population
are thrown out, and the stronger chromosomes are given their place. Strength here is
measured according to the chosen optimization problem. Operationaly, the optimization
problem is represented by a fitness function that maps structures over to real numbers.
The strongest structures are then those with the highest fitness score. Block selection is
controlled by one parameter, S, which specifies that only the best fraction 1/S of the
population is to be retained after the action of selection. Figure 1 shows the effects of
selection with S=2 on a population of size 8.

fithesses fitnesses
0111111 |6 — > 0111111 | 6
1110101 | 5 ———> 0111111 | 6
0110001 | 3 1110101 | 5
1000111 | 4 —— 1110101 | 5
1110111 |6 —> 1000111 | 4
0000010 | 1 1000111 | 4
1100001 | 3 1110111 | 6
0001101 | 3 1110111 | 6
Population before selection Population after selection

Figure 1. With S=2, each chromosome in the top half of the population
gets 2 copies in the next generation.

Under uniform crossover, the population is paired up, and each pair of
chromosomes generates two children, which replace their parents in the population. A
child is created from the two parents by randomly inheriting the value of each position
(dimension) from one of itstwo parents, while its sibling gets the value at that position
from the other parent. In the parlance of GAs, each (position, value) combination is
referred to as agene. Figure 2 shows the possible effects of uniform crossover on two
very dissimilar chromosomes.

11111111 10011000
00000000 01100111

Parents before crossover Children after crossover

Figure 2: Note how all the genes are conserved in a crossover. Each
parental gene ends up in one of the two children.

Optimization by selecto-recombinative GAs thus consists of arandom
initialization of the population, followed by repeated applications of crossover and
selection. This optimization is typically stopped when the population has converged,
although a number of other stopping criteria are also possible. Figure 3 shows one
particular population that has converged to the value 01110111. In a number of problems,
GA s have been shown to consistently outperform standard optimization techniques. The
reason why the GA does well is widely agreed to be a consequence of its effective
propagation of sub-structuresthat are correlated with high fitnesses.

01110111
01110111
01110111
01110111
01110111
01110111
01110111
01110111

Figure 3: A converged population only has one type of chromosome
init, and can therefore not search for more structures.

As an example, let us consider simple optimization problem of maximizing 1s (one-
max), where the fithess of each string is the number of 1sit contains. Figure 4 showsthe
possible evolution of a population under one generation of selection and crossover. Note
how the ratio of 1sin the new population is higher than in the old, and
that the 1s are well distributed. Thisis because selection increases the number of 1s, and
crossover mixes them together in an attempt to combine al the 1sinto asingle
chromosome. In this case, each 1 geneis correlated with a high fitness, and the GA has
successfully exploited this information.

fitness fitness fitness

011111 | 6 > 011111 | 6 111111 | 7
111001 | 5 —> 011111 | 6 011011 | 4
o110m1 | 3 111001 | 5 111011 | 6
100011 | 4 111001 | 5 011111 | 5
Before selection After selection After crossover

Figure 4: Seledion followed by crossover leals to a new chromosome
(thefirst) that is more fit (7) than any previous one.

Although the reason for the GA's successis widely agreed upon, the nature of the
structures it exchanges, and whose arrelation with fitnessit maintains, is under vigorous
debate. The aux of the problem is the cmmplexity of these structures. Two mutually
exclusive possbilities vie for the explanation of the GA's success 1) that single genes are
the only structures that the GA can effedively ded with; and 2) that the GA can process
more complex structures, consisting of severa genes, which are referred to as building
blocks.

The study of linkage leaning is the study of how to make the GA process
structures more complex than single genes, in the asence of information about which
genes are related. In this context, related roughly means that the genes would have to exist
in tandem to provide afitnessboost, but eat gene done would not provide adetedable
fitness sgnal. As of yet, the most advanced of such methods have only been marginally
succesdul in justifying the computational effort necessary to undertake them (4). The
remainder of this paper addresss this isaue by developing a cmmputationally justifiable
algorithm that leans linkage. First, however, we take anecessary detour to explore aset
of probabili stic dgorithmsthat are dosely related to the GA.

[11. Order-1 Probabilistic Optimization Algorithms

The population of the GA represents information about the parts of the search
gpacethat the GA has e before. The aossover and seledion operators tell the GA how
to exploit thisinformation to generate new, and potentially good, solutions. Along the
course of time, reseachers noticed that crosover tended to decorrelate the individual
dimensions (or genes) in the solution structures, while seledion tended to change the
makeup of the population by rewarding the more succesgul genes. Thus were born a
number of algorithms that replaced the population, crossover, and seledion with a number
of adions on marginal probabili ty distributions on ead of the representation’s genes.

The ideabehind these dgorithms rested on representing the aurrent state of the
seach as the fradion of ead dimension (or gene) in the population that had a value of 1.
Using only this information, a new population could be generated that mimicked the dfed
of many conseautive aossovers. By atering these probabili ties acrding to how well

certain genes did against the competition, these algorithms could also mimic the effect of
selection. The compact GA (cGA) (9) and PBIL (8) are two examples of these simplistic
(but effective) algorithms. We will restrict ourselves here to looking at the cGA asit is
dightly smpler than PBIL.

The cGA begins by initializing an L-dimensional probability vector P[] (one for
each gene position) to 0.5. This phase corresponds to the random initialization phase of
the simple GA. Ssolutions are then generated by polling this vector, i.e., selecting the Kth
dimension (or gene) to be 1 if aunit uniform random variable was less than the Kth
dimention of the probability vector, P[K]. The gene positions of the fittest of these S
solutions are rewarded in pairwise competitions with each of the less fit solutions. P[K] is
increased if the fittest has a1 in the Kth position, and the less fit solution does not. P[K] is
likewise decreased if the fittest has a 0 in the Kth gene, and the less fit solution does not.
The amount of increase or decrease in parametrized by avalue E.

For instance, take the maximizing 1s problem, and assume L=4, S=2 and E = 0.25.
Figure 5 shows one evaluation taking place under this algorithm. Of the two generated
chromosomes 0111 (with a fitness of 3) isfitter than 1010 (with afitness of 2). The
original probability vector israndom, P[] =[0.50.50.50.5]. Inthefirst gene, theOis
part of afitter chromosome than the 1. Therefore P[0] is decreased by 0.25. Note that the
index of the first gene in the vector istaken to be 0, not 1 due to a programming
convention. In the second gene, the opposite istrue, therefore P[1] isincreased by 0.25.
The third gene is the same in both chromosomes, so P[2] is unchanged. P[3] isagain
increased by 0.25. This leaves us with the new probability vector P[] =[0.250.75 0.5
0.75]. This process continues until the P[] vector implies a single solution, that is al its
values are zeroes or ones. At this point, the cGA has converged.

P generates two chromosomes

fitness
P 0111 3

05050505 — 5 1010 2

MO) TN
Next P
0.250.750.50.75

Figure 5: The cGA evaluation step consits of generation, followed
by an examination that changes the probability distribution.

One might see a tose mrrelation between this agorithm and the smple GA, but
still find it difficult to guessat the extent of this relationship. It has been shown that the
simple GA using a population size N and a seledion rate of S under tournament seledion
(whichiisa dose musin to block seledion), and uniform crosover, can be mimicked very
closely by the cGA generating S solutions and using E = 1/N. These dgorithms are
referred to as order-1 probabili stic dgorithms as they maintain the population's
distribution as a product of the marginal distributions of ead of the separate genes; genes
being considered order-1 or trivial building blocks.

V. Probabilistic Optimization and Linkage L earning

The arrespondence between the operation of cGA and the smple GA hints at a degoer
conredion. This connedion isthat the GA's population can be interpreted as representing
a probabili ty distribution over the set of future solutions to be explored. The GA's
population consists of chromosomes that have been favored by evolution and are thusin
some sense good. The distribution that this population represents tells the dgorithm where
to find other good solutions.

In that sense, the role of crossover isto generate new chromosomes that are very
much like the ones found in the aurrent population. This role can also be played by a more
dired representation of the distribution itself. Thisis predasely what the cGA and PBIL do.
Similarly, changes in the makeup of the population due to seledion can be refleded in
alterations of the probabili ty distribution itself.

The probability distribution chosen to model the population can be qucia to the
algorithm's success In fad, the choice of a good distribution is equivalent to linkage
learning. We take amoment now to explore this datement in the context of a problem
that is difficult for the simple GA to solve without proper linkage leaning.

V.1 Linkage L earning and Deceptive Problems

We begin by defining a"deceptive" version of the aunting ones problem. Here the
fitnessof a string is the number of 1sit contains, unlessit isall 0s, in which case its fithess
isL+1 (L recdl isthe problem length). The reason thisis cdled a deceptive problem is that
the GA gets rewarded incrementally for ead 1 it adds to the problem, but the best
solution consists of all Os.

Theinitial conception of this problem is a nealle in a haystad, which no
optimization algorithm can be reasonably expeded to solve. To transform it into one that
requires linkage leaning, we combine multiple cpies of deceptive subproblemsinto one
larger problem. For example, a40 dmensional problem can be formed by grouping
together ead 4 dmensions into a deceptive subproblem. This problem will thus utilize 10
of the deceptive subproblems defined above. The fitnessof a string will be the sum of the
subproblem fitnesses, where eat subproblem is defined over a seperate group of 4
dimensions. Figure 6 shows how a sample 40 bit string is evaluated in this problem. This

problem is an order-4 deceptive problem, and is typicd of the kinds of problems used to
test linkage learning agorithms.

11110100 1110 101 0110 0101 1011 1110000 O@O

fitness=4 + 1 +3 +3 + 2+ 2+ 3+ 4+ 5+ 5 =32

Figure 6: A large partially deceotive problem can be formed by
concaenating a number of smaller fully deceptive subproblems.

A GA that leanslinkage will operate by recombining ead of the optimal solutions
to the 4 bit subproblemsinto one optimal 40 bit string consisting of al 0s (Q mMGA paper,
LLGA). A GA not leaning linkage will tend to gravitate towards a suboptimal solution
consisting of some 000Gs, and some 1111s. Thisiswhat the simple GA will do [2]. In
swapping genes between parents, it will often regk up good combinations, such as 000Q
by crossng them over with dightly worse cmbinations, such as 1111 The difficulty in
leaning linkage in this stuation isthat the four genes defining eat subproblem dont have
to be ajacent. To lean linkage, a GA must corredly pick out eat set of four related
genes. Even in this small problem, the number of such combinations is astronomicd.

Figure 7 shows a posshle size 8 population representing a set of solutionsto this
partialy deceptive problem. Thisill ustration depicts only one subproblem (four genes) of
eat chromosome. In figure 7 the GA has found several good solutions with marginal
fitnesscontributions of 4 and 5 over these four genes. The uniform crossover shown
destroys the correlations among the genes that lead to a high fithess and the average
fitnessin the population deaeases after crosover! Similarly, the order-1 probabili ty
representing this populationis P[] =[0.50.5 0.5 0.5]. Yet, generating new solutions
using this distribution leals to poor solutions.

margina fitness

+4 1111........ | ——— | 0011....... +2
+5 0000....... | —> | 1100........ +2
+4 1111........ 1111........ +4
+4 1111........ 1111........ +4
+5 1111........ 0001........ +1
+5 0000........ 1110........ +3
+4 1111........ 1101........ +3
+5 0000........ 0010........ +1

Figure 7: Thefirst four genes of a population before and after
a qosover that does not reaognize building block boundaries.

The crrespondencethat holds between the cGA and the simple GA reas an ugly
sdeto its head here. Both are unable to ded with this partially deceptive problem, in
which linkage leaning is crucial. That is, both uniform crossover, and order-1 probabili stic
generation, fail to produce new chromosomes that are & good as the ones alrealy in the
population! Similarly, the solution to this problem holds dually in the redm of GAs and
probabili stic dgorithms.

Inthe GA, the aossover operator neals to understand that these four genes are
related, and not break up the combinations they represent. A building block crossover can
be developed for this purpose that only swaps whole solutions to subproblems, instead of
single genes. In order to do this, however, the dgorithm nmust guesscorredly at which
genes are related --- it must lean linkage.

In probabili stic dgorithms, the probabili ty distribution needs to recognize that
these four genes are related, and represent the joint probabili ty of these four genes having
the 16 posshle configurations they can hold; as opposed to the marginal distributions over
ead of the four genes independently. Such an algorithm would model the original
population in figure 7 using P[000J = 0.5 and P[1111]] = 0.5, and ead set of four genes
would maintain their correlation from one generation to the next.

What we have just seen isthat linkage leaning isa skill that is easlly transferrable
into the domain of probabili stic dgorithms. The remainder of this paper shows that the
reverseis also true: that an operational and computationally feasible search for good
distributions can fulfill the traditional task of linkage learning.

V.2 What Makesa Good Probability Model?

The cGA and PBIL define what it means to generate new solutions that are like
the aurrent one. It isto poll the marginal distributions of ead dimension or gene position,
considering ead of the gene positions to be independent. More complex algorithms have
been developed that match some of the order-2 behavior of the population (11). These
algorithms ad by investigating pairwise inter-gene correlations and generating a
distribution that is very close to polling from the population. The dosenessmeasure most
easlly used is an information-theoretic measure of probabili ty distribution distances (1).
Modeling more complex, and more predse, higher-order behavior has been suggested, but
the validity of doing so has been questioned (6).

Pursuing this last train of thought to its ultimate conclusion revedsthe flaw inits
prescription. We can diredly model the order-L behavior of polling the population, by
only generating new members through random seledion of chromosomes that exist in the
population already. This behavior will rapidly lead to the dgorithm's convergence, while
exploring no new structures. Thus, more acarate modeling of the population's
distribution is not always a desirable course of adion.

Probabili stic dgorithms that use order-2 correlations have sometimes been found
to be vastly superior to those using order-1 probabili ties. Y et the agument above
indicaes that this trend cannot continue indefinitely up to order-L modeling of the
population. At some point, this progresson must stop. This puzzing combination seans
to imply that more complicated models of the population are useful, but only up to a point.

These ruminations hint at aresolution to the problem of picking an appropriate
distribution to model the population. The solution comes from redizing that the
probabili ty distribution to be used will represent a model of what makes the aurrent
population good; and that the population is smply a finite sample from this distribution.
Fundamentally, the task of identifying a probability model to be used is then the induction
of models that are likely to have generated the observed population.

It iswell known that unbiased search for such modelsiis futile. Thus we have no
choice but to seled abiasin this sach space The one we dhooseisthat given all other
thingsare equal, smpler distributions are better than complex ones. Smplicity here
can be defined in terms of the representational complexity of the distribution, given the
original problem encoding. All things are, however, rarely equal, and there remains a
tradeoff between simplicity and acairacy. Our aim will therefore be to find a simple model
that nonethelessis good at explaining the aurrent population.

V.3 Minimum Description Length M odels

Motivated by the adove requirement, we venture forth a hypothesis on the nature
of good dstributions:

By reliance on Occam's Razor, good distributions are those under which the
representation of the distribution using the aurrent encoding, along with the
representation of the population compressed under that distribution, is minimal.

This definition is a minimum description length bias on the model search for
distributions (10). It diredly penalizes complex models by minimizing over model size In
addition to doing so, it penalizes inacarate models, because information theory tells us
that these ae unlikely to be of much use in the cmpresson of the population (1).

IV.4 MDL Restrictionson Marginal Product M odels

We take amoment now to explore this hypothesis. The basis for compresson is
the availabili ty of a probability distribution over the spaceof structuresto be compressd.
Given any particular distribution, we can cdculate how many bits it takes to represent a
given message. In our case, the message is the population, and the distribution is the one
to be evaluated. This hypothesis reformulates the problem of finding a good distribution
as a new optimization problem --- that of finding the distribution model that minimizes the
combined model and population representation.

For the remainder of this paper we focus on a smple dassof probability models:
those formed as the product of marginal distributions on a partition of the genes ---
marginal product models (MPMs). These models are similar to those of the cGA and
PBIL, excepting for the fad that they can represent probabili ty distributions over more
than one gene & atime. We dhoose these models for two reasons:. 1) they make the
exposition smpler; and 2) the structure of such amodel can diredly be trandated into a
linkage map, with the partition used defining predsely which genes ould be tightly
linked.

[0,3] [1] [2]

00 05 0 05 0 06
01 0 1 05 1 04
10 0

11 05

Table 1: A marginal probability model over four genes.

To make MPMs more concrete, figure 9 shows one possble model over afour
dimensional problem. The partition chosen is[0,3][1][2], which means the distribution
represents genes 1 and 2 independently, but genes 0 and 3 jointly. Thus the probabili ty
distribution over [0,3] has a positive distribution for only the values00 and 11 This means
that at no time can the population generated by this distribution contain a 1 in the first
position and a 0 in the fourth position. So, chromosomes of 1001and 0100are legal, but
000l1land 1010are not! Thisform of restriction is not possble if the probabili ties of genes
0 and 3 are represented independently. Obvioudly, this form of distribution is more
powerful than that allowed by the cGA (or PBIL).

Let us now try to represent a population of N chromosomes, half of which are
000Q and half of which are 1111 If the populations represented as is (Smple bit listing),
this population will require 4N bits of storage. On the other hand, an MPM of genes
[0,1,2,3] could first represent the probability of a structure being any of the 16 possble
binary structures over those four positions. This probabili ty distribution would indicae
that only 1111and 0000have apositive probabili ty of being represented. Subsequently,
the representation of ead structure can be O for 0000and 1for 1111 This encoding uses
only one bit per structure, and thus only N bits for the whole population.

By recognizing that these four bits are correlated, and representing their
distribution in an MPM, we have ait down to afourth the anount of spacethat storing
the population requires! Even when the probabili ties are not so abrupt, and every string
has a positive probabili ty of being represented, the entropy of a distribution E(P) gives us
the average number of bits it takes to represent structures randomly pulled from this
distribution. By cdibrating an MPM's probabili ties to match those of the population, this
number can be used to estimate that distribution's compresson of the population.

Furthermore, the cdibrated MPM can easlly be seen to be the one that compresses
the population the most --- that is, incorredly modeling the population cannot possbly
help. In fad, sincethe order of chromosomes is deamed unimportant in the representation,
arandomizaion of the ordering, followed by sampling a diromosome then projeding onto
any gene subset from the MPM will be identicd to polling the MPM at that subset. Thus,
no distribution over that MPM subset can do better than that incorporating the
population's frequency counts (1).

The use of an MPM to represent the population consists of two parts: 1) choosing
the partition structure of the MPM; and 2) cdibrating the MPM by pulli ng the frequency
counts of ead of the subsets of the MPM diredly from the population. The dficagy of a
particular distribution is defined as the sum representation size of the model itself and the
population compressed under the model. At this point, thereislittle recourse but to
explore the acual equations defining this criterion.

V.5 The Combined Complexity Criterion

Let the Ith partition subset of an MPM be of size JI], wherethe sum of the S is
L. Each subset of size Srequires 21! frequency counts to define its marginal distribution -
one for eat posshle mnfiguration over those genes. Ead of the frequency countsis of
sizelog N, where N is the population size Therefore the total model representation size,
or complexity is:

Model Complexity =log N Z, 23"

Now, the Ith subset represents J1] genes. Let M, be the marginal distribution over
this sibset. The entropy of this distribution is then E(M,). This number isthe average
number of bitsit takesto represent these §1] genes in the population. This number will
never be greaer than J1]. Thisis how the population is compressed, by representing the
Ith subset's genes only after the Ith margina distribution has been represented! Therefore,
the total compressed population complexity is.

Compressed Population Complexity = N 2 E(M))

Armed with these two definitions, we can evaluate the dficagy of any given MPM
structure. By MPM structure, we mean the MPM partitioning, without the a¢ual
probabilities for eat of the marginal distributions. These probabili ties are determined by
the population, and the required condition that the compresson ke optimal. First, we
cdibrate the MPM structure using the population’s frequency counts to form a full MPM
model. Seoond, we ald the model complexity and compressed population complexity to
get a ombined complexity number.

CC(MPM) = Model Complexity + Compressed Population Complexity

The next section describes a smple algorithm for searching for partitions of the
gene space for agood MPM distribution over the population, given this operational
criterion of finding a distribution such that its compressed complexity is suitably small.

V. The ECGA

In this section, we combine the above heuristic with a greedy search algorithm to
invent an efficient probabilistic optimization algorithm. The proposed agorithm is very
smple:

Generate arandom population of size N.

Undergo tournament selection at arate S

Model the population using a greedy MPM search.
If the model has converged, stop.

Generate a new population using the given model.
Returnto step 2.

ouprwdE

This algorithm may also be stopped at any time, using the best found solution so
far asitsresult. Most of the agorithm is self-explanatory, but we focus on two of its
features. First, the agorithm requires both a population, and selection. Because we are
remodeling the population at each generation, the structure of the models may not be
stable. Therefore, selection cannot be replaced by a smple update as in the cGA. For the
same reason, a concrete population is required also. Only the crossover step is replaced by
probabilistic polling in this algorithm. Second, we have yet to describe the greedy MPM
search.

The greedy MPM search begins each generation by postulating that all of the genes
are independent --- that is, that the MPM [0][2]...[L-2][L-1] is best. What it will then do is
perform a stegpest ascent search, where at each step, the algorithm attempts to merge all
pairs of subsetsinto larger subsets. It judges such mergers again on the basis of their
combined complexity. If the best such combination leads to a decrease in combined
complexity, then that merger is carried out. This process continues until no further pairs of
subsets can be merged. The resulting MPM is then the one that is used for that generation.
A new MPM search is thus carried out each generation. Significant optimizations can and
have been taken in the implementation here, such as caching delta values for al pair
combinations at each step.

This combined greedy search algorithm along with the minimum description length
search criteria, applied to the task of optimization, will henceforth be referred to asthe
extended compact GA (ECGA).

V.1 Experimental Results

Most of this paper has concerned itself with the theoretical justification of the
ECGA. This section shows how the ECGA can significantly speed the solution of

problems that are partialy deceptive. In the aedion of partialy deceptive functions, we
will rely on the composition of small deceptive problems, like the 4-bit problem defined
above. The subproblemswe will use ae trap functions, whose fitnessrelies lely on the
number of 1s present in a diromosome. These functions have been used extensively in the
testing of linkage learning algorithms, and solving them has proven to be quite dalenging
in the asence of prior linkage information.

We will begin by exploring the relationship between the population size used and
the proportion of subproblems lved correaly by both the ECGA and the smple GA
using uniform crosover. By adding in information about the dgorithms running time, we
can show comparisons of the number of function evaluations both algorithms neeal to
achieve a omparable level of optimizaion. Without further ado then, we proceel to the
experimental results.

V.2 Deceptive Trap Functions

Inthis sedion, ten copies of the four-bit trap subproblem, are mwncaenated to
form a difficult 40-bit problem, asin figure. Thisis the problem used to compare the
ECGA with the simple GA. Each set of four neighboring genes [0-3][4-7] thus formed
one subfunction to be optimized. But neither the simple GA nor the ECGA were told
which genes were related, or that the related groups were @ntiguous, or for that matter
the size of the subproblems.

Both the ECGA and the smple GA with uniform crossover were run on this
problem 10 times, with a seledion rate of 16 (which is higher than the ECGA needls, but
which the simple GA requires), gathering the average number of subfunctions lved per
population size. Thisis measure is espedally significant, as the performance of GAs and
other optimization algorithmsis typicdly judged by the number of objedive function
evaluations they undertake - and this number is the population size times the number of
generations.

Table 2 shows the population size versus the average number of subfunctions
solved for the smple GA, and the average number of function evaluations taken to do so.
Table 3 does the same for the ECGA.

Population size Subfunctions Solved Objedive Evaluations

100 3.9 740

500 5.2 5100
1000 6.1 15600
5000 6.8 100000
10000 7.3 248000
20000 8.0 614000
50000 7.9 1560000
100000 8.8 3790000

Table 2: Smple GA complexity on deceptive subproblems.

Population size Subfunctions Solved Objective Evaluations

100 4.0 750

200 5.2 1460
300 7.1 2610
500 9.3 4000
600 9.9 5040
1000 10.0 7300

Table 3: ECGA complexity on deceptive subproblems.

The differences between the smple GA and the ECGA are large, and in the favor
of the ECGA. To consistently solve 9 building blocks, the smple GA needs a population
size of 100 thousand and over 3.8 million function evaluations! To do the same, the
ECGA needs a population size of 500 and 4 thousand function evaluations. On this small
40-bit problem, the ECGA is 1000 times faster than the simple GA. This speedup is due to
the careful attention paid to probabilistic modeling in the ECGA. This speedup should
theoretically also become much greater when solving larger problems. The following
shows the successive MPM structures used in one successful run of the ECGA:

GENERATION 0
[0-3][4 7 27][5-6 15][8-11][12-14 24][16-19][20-23][25][26 32-35][28-31][36-39]
GENERATION 1
[0-3 25][4-7 15][8-11][12-14][16-19][20-23][24 27][26 32-35][28-31][36-39]
GENERATION 2
[0-3][4-7][8-11][12-15][16-19][20-23][24-27][28-31] [32-35] [36-39]

Note that this structure changes from generation to generation. The ECGA makes
afew mistakesin the first pair of generations. The final result arrived at in generation 2,
however, completely discerns the subfunction structure of the given problem --- without
being given this information ahead of time. By simply searching for MPM-structures that
optimally compress the population, the ECGA has completely dissected the subproblem
structure of the 40-bit problem! It is no surprise that armed with this information, the
ECGA proceeded to optimize this problem much faster then the smple GA.
V.3 The Role of Selection

Therole of selection isacurious one in the ECGA and not at all immediately clear.

If the proper level of selection is not maintained in the above runs however, the ECGA
fails, and never models the problem structure correctly (the same is true but an often

ignored asped of the smple GA). Taking a second, we mnsider the dual roles of
probabili stic generation and seledion in the ECGA. Therole of generation (the ECGA's
crosover equivalent) isto creae more diromosomes that are like the ones in the present
population. These diromosomes will have no correlations aaossthe MPM structure
boundaries. That is, if the MPM structure says that genes 1 and 2 are independent, they
will acdually be independent in the generated population. Given that the dgorithm begins
by asauming that al genes are independent, one might wonder where dependencies come
fromat all.

The answer to that question isthat seledion recrrelates genes if a spedfic
combination of theirsis correlated with high fitness In the partially deceptive problems we
have experimented on, seledion correlates the group of Os defined over a @mmon
subproblem. This correlation is what the ECGA deteds. If the level of seledion isvery
low, this correlation will never be generated, and the ECGA will never deted that the
genes are related. Thus, alow level of seledion can cause the ECGA to fail. This point is
espedaly important in considering the future of reseach on such probabili stic dgorithms.
It also pointsto arelated classof agorithms that learn the proper MPM structures by
exploring intergene correlations.

V1. Summary, Conclusions and Future Work

This paper began by reviewing the smple GA and arelated set of probabili stic
algorithms. Past work has equated some of these dgorithms with the smple GA, and an
exploration of this relationship has pointed to the existence of more general
probabili sticdly-based GA-like dgorithms. That this classexists has been pointed out
before (6). However, the benefits of paying close dtention to the probabili stic modeling of
the aGA-like population have not previously been thoroughly explored.

This paper demonstrated that proper probabili stic modeling in these dgorithmsis
in effed the long-sought solution to the linkage-learning problem. It has also introduced
an operational complexity criterion for distinguishing between good models and bad
models. Experimental results have shown that by focusing on leaning marginal probabili ty
models, the ECGA can solve some difficult problems orders of magnitude faster than
simple GAs not using linkage information.

This paper has reveded a strong connedion between linkage leaning and proper
probabili stic modeling. Thisis however, only the tip of the iceberg inasmuch as effedive
optimization is concerned. The goal of linkage learning, while anbitious, is only a small
part of the more general goa of representation leaning. In representation learning, the
adual optimization problem is transformed into a different space and optimized in that
new space The optimization and design of biologicd entities --- which transforms fitness
functions defined on threedimensional moleaules into ones over a genetic representation -
-- isproof that such techniques can be dfedive. It isthis author's belief that even such a
seach for transformations can be placel into the framework of complexity based
modeling.

Several questions and difficulties remain to be aldressed by future work on

probabili ty based optimizaion in general, and MPM-like gproadesin particular. A few
of the more promising or addressable issuesin thisarea ae:

The ECGA is smple to parallelize by repladng the migration step of standard parall el
GAs by one of probability model exchange. This has the potential to grealy reducethe
amount of communicaion and synchronizaion needed over that of the paralel smple
GA.

The MPM model seach is potentialy computationally expensive. In some problems,
this poses the risk of overwhelming the function evaluation time with the search's own
computational overhead. One remurse in these caesisto use smpler probability
models, such as those used by the cGA or MIMIC. Another possble dternativeisto
implement this fixed search algorithm in hardware, or to look for heuristic
approximations to the MPM algorithm. For example, the MPM seach could be biased
somewhat to the encoder’s original linkage spedfication.

Another approad to reducing the mmplexity of the MPM model search isto sample
from the population when huilding the corred MPM structure.

On the other spedrum of function evaluation complexity, it is possble that more time
for population analysis might be available. In these caes, bayesian network leaning,
although more complex, is likely to yield even more powerful algorithms than the one
described in this paper. In some caes, such as optimization in euclidean spaces, dired
probabili stic modeling might also offer more acarrate methodologies than modeling
using arbitrary binary encodings over the selfsame space

The probabili ty modeling framework suggested here deds particularly well with
multidimensional data, but does not trivialy extend to optimizaion over more
complex structures sich as permutations, or programs. This issue deserves rious
consideration.

Algorithmic complexity analysis of the ECGA islikely to be difficult. However, it is
quite likely that smple estimates of its overheal costs over the smple GA on ron-
deceotive problems would be straightforward to cdculate.

Even when using the most complex probability models, it is quite likely that high levels
of seledion will be required to solve cetain problems. The role of seledion there will
be to correlate the feaures of the population, so that they may be deteded in the
probabili stic model. To date, few theories explain this dependence of GA-like
algorithms on seledion. The SEARCH framework seams likely to offer at least a
partial answer to this puzze.

It is quite possble that by searching for mixtures of different models, one might be
able to optimally dedde between the gplicaion of different GA operators. That is, the
probabili stic goproacdh could settle once and for all, on a problem by problem basis, the
efficagy question of crossover versus mutation.

Finally, while in theory the ECGA seamsto provide ahuge advantage over optimizing
with the smple GA, this result has yet to be extended to the solution of a pradicd,
red-world problem.

References

1.

2.

10.
11

12.

13.

14.

15.

Cover, T.M. and Thomas, J.A., Elements of Information Theory. John Wiley & Sons,
1991

Thierens, D. and Goldberg, D.E., “Mixing in genetic dgorithms.” Proceedings of the
Fifth International Conference on Genetic Algorithms pp. 38-45, 1993

Goldberg, D.E., Korb, B. and Deb, K., “Messg/ genetic dgorithms. Motivation,
analysis and first results.” Complex Systems, 1989 vol. 3, no. 5, pp. 493-530.

Harik, G., “Leaning Linkage to Efficiently Solve Problems of Bounded Difficulty
Using Genetic Algorithms.” 1lli GAL Tedhnicd Report No. 97005 University of
[linois at Urbana-Champaign, Urbana, IL, 1997

Kargupa, H., “SEARCH, polynomial complexity, and the fast messy genetic
algorithm.” 1lliGAL Tedhnicd Report No. 95008 University of Illinois at Urbana-
Champaign, Urbana, IL, 1995

Muehlenbein, H., “ Schemata, Distributions and Graphica Models in Evolutionary
Optimization.” Unpublished manuscript. Http://set.gmd.de/AS/ga/publi-neu.html
Baluja, S. and Caruana, R., “Removing the Genetics from the Standard Genetic
Algorithm.”, CMU Tednicd Report CMU-CS-95-141
Http://www.cs.cmu.edu/afs/cs/user/balujalwww/tedreps.html, 1995

Baluja, S., “Population-Based Incremental Leaning: A Method for Integrating
Genetic Search Based Function Optimization and Competitive Leaning.”, CMU
Tednicd Report CMU-CS-94-163
Http://www.cs.cmu.edu/afs/cs/user/balujalwww/tedreps.html, 1994

Harik, G., Lobo, F. and Goldberg, D.E., “The Compad Genetic Algorithm.”
Proceedings of the 1998 |EEE Conference on Evolutionary Computation, pp. 523
528 1998

Mitchell, T.M., Machine Learning. McGraw Hill Text, 1997

De Bonet, J.S., Isbell, C.L, and ViolaP., “MIMIC: Finding Optima by Estimating
Probability Densities. ” Advances in Neural Information Processing Systems, 1996
vol. 9.

Goldberg, D.E., Genetic Algorithms in Search Optimization and Machine Learning.
Reading, MA: Addison-Wedley, 1989

Holland, J.H., Adaptation in Natural and Artificial Systems. Ann Arbor, Ml:
University of Michigan, 1975

Muhlenbein, H. and Schlierkamp-Voosen, D., “Predictive Models for the Breeder
Genetic Algorithm: 1. Continuous Parameter Optimization. " Evolutionary
Computation, 1993 vol. 1, num. 1.

Syswerda, G., “Uniform Crossover in Genetic Algorithms.” Proceedings of the Third
International Conference on Genetic Algorithms, pp. 2-9, Morgan Kaufmann, 1989

