
Genetic Programming

after A Field Guide to Genetic Programming byRiccardo Poli, and more about NEAT and MOSES

by �ukasz Stafiniak



Introduction to Genetic Programming
2



Basic Program Generation

• Fixed depth • Maximal depth

• Maximal length (a bit more di�cult)

• Ramped half-and-half: half population � �xed depth, half �maximal depth, di�erent depths used
3



Recombination

4



Mutation

5



Alternative Initialisations and Operators in Tree-based GP
• Uniform initialisation produces more assymetric trees thanramped half-and-half.

• Crossover tends to create short programs (so called Lagrangedistribution); short programs surprisingly faciliate code bloat.
• Mutation kinds:

◦ size-fair subtree mutation
◦ node-replacement mutation
◦ hoist mutation promotes a subtree as the result

◦ permutation mutation swaps arguments of a node

◦ mutating constants systematically by numerical opti-mization
6



Crossover

• one-point • uniform • context-preserving
• size-fair • crossover ops speci�c to other representations

7



Modular and Grammatical Tree-based GP, Linear GP
• Modularity can be introduced either by extracting a globallibrary of subroutines, or locally by evolving program-local func-tions.

• Automatically De�ned Functions are attached to individuals,recombination works within corresponding ADFs or Result-Pro-ducing Branches (e.g. ADF2 from A crossed-over with ADF2from B). To forbid looping, e.g. ADFi can call ADFj for i < j.

◦ Also a. d. iterations (ADIs), a. d. loops (ADLs) and a.d. recursions (ADRs) provide means to reuse code. A.d. stores (ADSs) provide means to reuse the result ofexecuting code.
• Architecture-altering Operators can introduce and removeADFs. 8



• Strongly-typed GP.

◦ Similar trade-o�s as with constrained optimization inGAs.

• Grammatical Evolution uses variable-length integer sequencesthat encode rule choices when generating a phenotype from theuser-supplied grammar.

◦ Rules for a nonterminal selected �modulo�, ignoreunused tail of a sequence, wrap or fail when sequencetoo short.
• Linear GP uses variable-length sequences of instructions as indi-viduals.

9



Two-point crossover a�ects length.
10



�Homologous� crossover preserves lengths.
11



ApplicationsHuman-competitive antenna design produced by GP:
12



Some TheoryCode BloatSome explanations of code bloat:

• replication accuracy theory: bigger size lets children be morefunctionally similar to parents

• removal bias theory: inactive subtrees of �t programs are smalland close to leaves, replacing them with random size subtreespreserves �tness and grows size
• nature of program search spaces theory: there is more biggerprograms with the same �tness as smaller ones � samplinge�ect

• crossover bias theory: while crossover keeps the expected size ofprograms constant, it pushes the distribution out of middle-ground, generating either shorter or longer programs, and shortare unlikely to stay as �t
13



Neuro-EvolutionNeuro-evolution means creating Neural Networks by evolutionary algorithms.Di�erent apporaches:1. Fix NN topology and use a GA or an ES to evolve weights2. Evolve the NN as a graph: develop a subgraph-swapping crossover3. Indirect encoding (arti�cial morphology):a. DeGaris' Cellular Automatab. Gruau's Cellular EncodingFramsticksFramsticks uses several encodings, with neurons attached to body parts: �braintopology� re�nes the �body topology�. Framsticks f0 low-level encoding uses phe-notype representation for crossover (cutting plane) (mixed encoding); f1 encodinguses subtree (or substring) swapping crossover (direct encoding). f4 uses indirectencoding based on Cellular Encoding.
14



Gruau's Cellular Encoding

• operations: cell (proto-neuron) divisions PAR, SEQ, CPO, and cell registermodi�cations
CPO:

• cells develop concurrently one operation at a time by a FIFO queue man-ager by executing a program tree
• at a PROGN node of the tree a cell executes all subtrees in sequence, atother nodes, after executing the node operation, it chooses a subtree

• crossover exchanges program subtrees
15



NeuroEvolution of Augmenting TopologiesProblem: Competing Conventions

Nature's solution utilizes homology: alleles of the same trait are homologous.(E.g. in E. coli, a special protein RecA lines up homologous genes.)Actual homology between NNs is di�cult to compute.The main insight of NEAT: �nd homology based on historical markings.16



Protecting Innovation with Speciation.Structural innovations need to be tuned before they are competitive.In NEAT, distance between genomes is easy to compute: use speciation.Explicit �tness sharing:

fi
′=

fi∑
j=1
n 1δ(i,j)6δtDistance:

δ =
c1E

N
+

c2D

N
+ c3W̄where

• N � the number of genes in larger genome,
• E � number of excess genes (intuition: they came after the lineage split),

• D � number of disjoint genes,
• W̄ � distance of weights for matching genes.Protection of innovation allows NEAT to start from minimal structure: no hiddenneurons. Only useful topology extensions are kept: this avoids bloat.

17



Historical (genealogical) markings and structure growth.Structural neighborhood is processed e�ectively: a connection between �xednodes is only introduced once.

Representation:
NEAT �architecture�:

18



Mutation:

19



Crossover:

20



Illustration of evolution:

pole balancing problem 21



Meta-Optimizing Semantic Evolutionary Search (MOSES)
• explores the space of arbitrary programs but exploits domain-speci�cknowledge, which can be combined from more-or-less generally applicablelibraries

• has the �Starting minimally-Growth-Speciation� traits of NEAT on a wholenew level

• is organized in demes, each deme is a combinatorial space built around anexemplar program from representation-building domain-speci�c generatorswhich are modi�cations minimal both syntactically and behaviorally(semantically)

◦ e.g. x� 0 + x or x� 1 ∗ x, which can later evolve into behav-iorally very di�erent −x

22



Normalization

• exemplar programs are kept in domain-speci�c normal form, which alsogoverns representation-building generators

◦ e.g. Elegant Normal Form for boolean formulas which preserveshierarchical structure (over OR, AND, NOT)
− negation only in literals, conjunction and disjunction alter-nate

− no node has multiple occurrences of the same variable's lit-eral as children

− no two literals of a variable are conjuncted (x and x or ∼ xhave ∨ as youngest common ancestor)
− common literals in a node are factored out

− no set of literal children of a node is a subset of a sibling'sset
− no third sibling's set (of literal children) is a subset of S1 ∪

S2 if two siblings' sets are {x}∪S1 and {∼x}∪S2

• normalization correlates syntactic and semantic distances23



• each possible knob (generator application) is checked for redundancy (ifprogram reduces size by normalization)More

• within-deme evolution by hBOA

• to attack harder problems, additional subsampling of n
√ programs at dis-tances up to n

√ from the exemplar

• approximate bounds for time complexities (one deme):
◦ for a deme O(N n3), where N is the population size, n = O(a l) isthe size of representation (a is the arity of the function set, l is thesize of the exemplar)
◦ from which n2 for representation building and n for number of gen-erations

◦ letting N = O(2kn1.05), where k is the highest degree of subprobleminteraction, and c(l) the cost of scoring a function

O(N(n c(l)+ n3)) = O(2k (a l)2.05 (c(l)+ (a l)2))

24


