Genetic Programming

after A Field Guide to Genetic Programming by
Riccardo Poli, and more about NEAT and MOSES

BY LUKASZ STAFINIAK

Introduction to Genetic Programming

Solution
Generate Population Run Programs and
of Random Programs Evaluate Their Quality ¢ Eg“g;y;’é;és))
R VASEAETINYY

Breed Fitter Programs

Basic Program Generation
e Fixed depth e Maximal depth
e Maximal length (a bit more difficult)

e Ramped half-and-half: half population — fixed depth, half —
maximal depth, different depths used

Recombination

Parents = Offspring

—

Crossover .~~~ >

— T

-
-

Crossover

GARBAGE

L

Mutation

Parents Offspring

Mutation Mutation

f{@\(Point Point

Randomly Generated |
Sub tree X D'

- -
. -
e m e

Alternative Initialisations and Operators in Tree-based GP

Uniform initialisation produces more assymetric trees than

ramped half-and-half.

Crossover tends to create short programs (so called Lagrange
distribution); short programs surprisingly faciliate code bloat.

Mutation kinds:

O

O

size-fair subtree mutation

node-replacement mutation

hoist mutation promotes a subtree as the result
permutation mutation swaps arguments of a node

mutating constants systematically by numerical opti-
mization

Crossover

one-point e uniform e context-preserving

size-fair e crossover ops specific to other representations

Parent 1 Parent 2
(x)
Parent 1 —. Common
S -~ Region
Alignment)._-Parent 2
y Yy ¥ (%) y X
y y y y
Selection of
Common
- : Crossover Point
Offspring 1 Offspring 2 TP
() —_—
Swap
Q (+)

Modular and Grammatical Tree-based GP, Linear GP

Modularity can be introduced either by extracting a global
library of subroutines, or locally by evolving program-local func-
tions.

Automatically Defined Functions are attached to individuals,

recombination works within corresponding ADFs or Result-Pro-
ducing Branches (e.g. ADF2 from A crossed-over with ADF2

from B). To forbid looping, e.g. ADFi can call ADFj for i < j.

o Also a. d. iterations (ADlIs), a. d. loops (ADLs) and a.
d. recursions (ADRs) provide means to reuse code. A.
d. stores (ADSs) provide means to reuse the result of
executing code.

Architecture-altering Operators can introduce and remove
ADFs.

Strongly-typed GP.

o Similar trade-offs as with constrained optimization in

GAs.

Grammatical Evolution uses variable-length integer sequences
that encode rule choices when generating a phenotype from the
user-supplied grammar.

o Rules for a nonterminal selected “modulo”, ignore
unused tail of a sequence, wrap or fail when sequence
too short.

Linear GP uses variable-length sequences of instructions as indi-
viduals.

Two-point crossover affects length.

PARENT | S

PARENT 2

OFFSPRING [N I

10

“Homologous” crossover preserves lengths.

PARENT 1 [N I

PARENT 2

Orrsprine 1 [I

OFFSPRING 2

11

Applications

Human-competitive antenna design produced by GP:

12

Some Theory

Code Bloat
Some explanations of code bloat:

replication accuracy theory: bigger size lets children be more
functionally similar to parents

removal bias theory: inactive subtrees of fit programs are small
and close to leaves, replacing them with random size subtrees
preserves fitness and grows size

nature of program search spaces theory: there is more bigger
programs with the same fitness as smaller ones — sampling
effect

crossover bias theory: while crossover keeps the expected size of
programs constant, it pushes the distribution out of middle-
ground, generating either shorter or longer programs, and short
are unlikely to stay as fit

13

Neuro-Evolution

Neuro-evolution means creating Neural Networks by evolutionary algorithms.
Different apporaches:

1. Fix NN topology and use a GA or an ES to evolve weights
2. Evolve the NN as a graph: develop a subgraph-swapping crossover
3. Indirect encoding (artificial morphology):

a. DeGaris’ Cellular Automata

b. Gruau’s Cellular Encoding

Framsticks

Framsticks uses several encodings, with neurons attached to body parts: “brain
topology” refines the “body topology”. Framsticks £0 low-level encoding uses phe-
notype representation for crossover (cutting plane) (mixed encoding); £1 encoding
uses subtree (or substring) swapping crossover (direct encoding). 4 uses indirect
encoding based on Cellular Encoding.

14

Gruau’s Cellular Encoding

e operations: cell (proto-neuron) divisions PAR, SEQ, CPO, and cell register
modifications

EE

e cells develop concurrently one operation at a time by a FIFO queue man-
ager by executing a program tree

CPO:

e at a PROGN node of the tree a cell executes all subtrees in sequence, at
other nodes, after executing the node operation, it chooses a subtree

e crossover exchanges program subtrees

15

NeuroEvolution of Augmenting Topologies

Problem: Competing Conventions

3

[A,B,C]
X[C,B,A]

Crossovers: [A.B,A] [C,B.C]
(both are missing information)
Nature’s solution utilizes homology: alleles of the same trait are homologous.
(E.g. in E. coli, a special protein RecA lines up homologous genes.)
Actual homology between NNs is difficult to compute.
The main insight of NEAT": find homology based on historical markings.

16

Protecting Innovation with Speciation.

Structural innovations need to be tuned before they are competitive.

In NEAT, distance between genomes is easy to compute: use speciation.
Explicit fitness sharing;:

f/_ fz

_alk D _
=N + N + csW

Distance:

0

where
e N — the number of genes in larger genome,
e F — number of excess genes (intuition: they came after the lineage split),
e [— number of disjoint genes,

e IV — distance of weights for matching genes.

Protection of innovation allows NEAT to start from minimal structure: no hidden
neurons. Only useful topology extensions are kept: this avoids bloat.

17

Historical (genealogical) markings and structure growth.
Structural neighborhood is processed effectively: a connection between fixed

nodes is only introduced once.
Genome (Genotype)

Node [node 1 [mode 2 |node 3 [wode 4 |wode s

Genes |sensor |sensor |sensor Qutput |Hidden

Connect, | In 1 In 2 In 3 In 2 In 5 In 1 In 4

Genes Out 4 Out 4 Qut 4 Out 5 Out 4 Cut 5 Cut 5
Weight 0.7 |Weight-0.5|Weight 0.5 |Weight 0.2 |Weight 0.4 | Weight 0.6| Weight 0.6
Enabled DISABLED Enabled Enabled Enabled Enabled Enabled
Innov 1 Innov 2 Innov 3 Innov 4 Innowv 5 Innov 6 Innov 11

N

Network (Phenotype) 4

Representation:
Starting minimally

Historical Marking

NEAT “architecture”:

18

Mutation;

1 2 |13 4 5 6 11213 4 51 6 7
| —>4 P—4 [3—>42—>5[5—>4|1—>5 | —>4 R—>4|3—>4|2—>55—>4 [1—>5[3—>5
DIS DIS
Mutate Add Connection
1 1 2 3
1 2 13 4 516 112 (3 4 5 6 | 8 9
>4 R—>4|3—>4|2—>5|5—>4[{1->5| [->4 P—>4[3—>4|2—>55—>4 || ->5]3—>6[6—>4
DIS DIS | DIS
Mutate Add Node
4 4

19

Crossover:

Parent1 Parent2
ilz2 |3 4 s | s 1| 2 3 |4 5 6 | 7| o 10
=>4 | 2=54 | 354 | 255 | 5-sa| 1-55| | 154 | 254 | 3-54| 2-55 | 554 | 5-56| 6-4| 3-55] 1->6
DISAB DISA DISAB
1 3 4 5 8
Parentl | 154|254 | 3-54 | 255 | 5-54 1->5
DISAB
) 1 3|4 5 6 | 7 9 10
Parent2| | 157 4] 3704|2255 |54 | 5-56| 6-54 3->5 | 1-6
DISAH] pisal
disjointdisjoint EXCessexcess
. 1 3]a s | s 7] 8| 9 10
Offspringl | 12504 | 354 2-55 [554 | 556 | 6-54| 15| 35| 156
DISAB DISAB

20

Illustration of evolution:

Species

)

=2
)

Generations

s
[o5]

22

24

26

28

pole balancing problem

21

Meta-Optimizing Semantic Evolutionary Search (M OSES)

explores the space of arbitrary programs but exploits domain-specific
knowledge, which can be combined from more-or-less generally applicable
libraries

has the “Starting minimally-Growth-Speciation” traits of NEAT on a whole
new level

is organized in demes, each deme is a combinatorial space built around an
exemplar program from representation-building domain-specific generators
which are modifications minimal both syntactically and behaviorally
(semantically)

o eg xr=— 04+ x or x = 1 *x x, which can later evolve into behav-
iorally very different —x

22

Normalization

exemplar programs are kept in domain-specific normal form, which also

governs representation-building generators

o e.g. Elegant Normal Form for boolean formulas which preserves

hierarchical structure (over OR, AND, NOT)

negation only in literals, conjunction and disjunction alter-
nate

no node has multiple occurrences of the same variable’s lit-
eral as children

no two literals of a variable are conjuncted (x and x or ~ x
have V as youngest common ancestor)

common literals in a node are factored out

no set of literal children of a node is a subset of a sibling’s
set

no third sibling’s set (of literal children) is a subset of S; U
Sy if two siblings’ sets are {x} U S and { ~z} U .S,

normalization correlates syntactic and semantic distances

23

e ecach possible knob (generator application) is checked for redundancy (if
program reduces size by normalization)

More
e within-deme evolution by hBOA

e to attack harder problems, additional subsampling of \/n programs at dis-
tances up to v/n from the exemplar

e approximate bounds for time complexities (one deme):

o for a deme O(N n?), where N is the population size, n = O(a 1) is
the size of representation (a is the arity of the function set, [is the
size of the exemplar)

o from which n? for representation building and n for number of gen-
erations

o letting N = O(2"n'%), where k is the highest degree of subproblem
interaction, and ¢(l) the cost of scoring a function

O(N(nc(l) +n7)) = 02" (al)** (c(l) + (al)?))

24

