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Completeness

An incomplete method uses clever intuitive heuristics for
searching but has no safeguards if the search gets stuck in a
local minimum.

An asymptotically complete method reaches a global min-
imum with certainty or at least with probability one if allowed
to run indefinitely long, but has no means to know when a
global minimizer has been found.

A complete method reaches a global minimum with certainty,
assuming exact computations and indefinitely long run time,
and knows after a finite time that an approximate global mini-
mizer has been found (to within prescribed tolerances).

A rigorous method reaches a global minimum with certainty
and within given tolerances even in the presence of rounding
errors, except in near-degenerate cases, where the tolerances
may be exceeded.



Some Use Domains

hard feasibility problems (e.g., robot arm design), where local
methods do not return useful information since they generally
get stuck in local minimizers of the merit function, not pro-
viding feasible points;

computer-assisted proofs (e.g., the proof of the Kepler con-
jecture by Hales [128]), where inequalities must be established
with mathematical guarantees;

safety verification problems, where treating nonglobal
extrema as worst cases may severely underestimate the true
risk:

many problems in chemistry, where often only the global mini-
mizer (of the free energy) corresponds to the situation
matching reality;



Formulation

A constrained global optimization problem

min f(x)
such that z€x, F(x) € F,x; integral
r={recR"z<r<1}

1= (Tiys ey Tyy)
C'={zx €x|x integral, F(z) € F'}

where x is a bounded or unbouded box, C is the feasible domain,
points x € C' are feasible, a solution (or global minimizer) x is a point
teC, f(r)=mingec f(x). A local (global) solver is an algorithm that
finds local (global) minimizers. A constraint satisfaction problem is to
decide if the feasible set C' is nonempty and find any z € C.



If I is nonempty, the problem is called mixed integer (e.g.
linear, nonlinear) program.

It is simply constrained when dim F' =0,
separable if f(z)=>",_, fu(zr) and F(z)=>"__, Fi(z),
factorable if f, F are polynomials of fi(xy),

DC when f, F are differences of convex functions.



Lagrange Multipliers and Kuhn-Tucker conditions

For every local minimizer =, there are a number k > 0 and a vector A,
not both zero, such that the vector

g =rf(2)+y F'(2)
satisfies
=0 IfZ_UZ<£IIAZ<fZ,Z¢],

\




For k =1 (i.e. kK> 0), then X are called Lagrange multipliers and g is
the gradient of the Lagrangian

L(x,\) = f(z) + M F(x).

[lllustration example.]



Methods for Local Optimization

Newton’s Method
The Taylor expansion of f(x)

fla+Ax)= f(@) + f(@)Az+ 5 f"(2) A’
attains extremum when Ax solves f'(x) 4+ f"(z)Az=0 and f"(x)>0.

_ S@)

Ln+1— Tn f”(:l:’ )
n

and in several dimensions
Tp1=Tn — [H f(2,)] 7V f ()

usually with a smaller step v € (0,1) (the Taylor is an approximation)
Tpp1=Tn — Y[ H f(2,)] 7V f(20)




Quasi-Newton Methods

approximate the inverse of Hessian, in each step updating the approxi-
mation.

[TODO]



Conjugate Gradients Methods

solve the update equation H f(x,)z,11=V f(x,) approximately (using
the so-called conjugate gradients). Quasi-Newton methods (e.g.,
BFGS method) - converge in fewer iterations, although each iteration
requires more computation and more memory than a conjugate gra-
dient iteration.
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Adaptive Step Methods
[TODO]
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Incomplete methods for simple constraints

Besides simulated annealing and genetic algorithms:

e multiple random start: repeat: pick random point and opti-
mize from it (e.g. locally)

¢ Smoothing (= homotopy = continuation) methods are
based on the intuition that, in nature, macroscopic features are
usually an average effect of microscopic details; averaging
smoothes out the details in such a way as to reveal the global
picture. The hope is, most or all local minima disappear, and
the remaining major features of the surface only show a single
minimizer. By adding more and more details, the approxima-
tions made by the smoothing are undone, and finally one ends
up at the global minimizer of the original surface. The quality
of the final local minimizer depends on the homotopy, and fre-
quently is the global or at least a good local minimizer.
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Response surface techniques are designed specifically for the
global optimization of functions that are very expensive to eval-
uate. They construct in each iteration an interpolation or
approximation surrogate function of known analytic form. The
surrogate function is then subjected to global optimization.
The resulting optimizers (or some points where the feasible
region has been only sparsely explored) are taken as new evalu-
ation points.

Clustering methods first sample the space, retain a fraction of
sampled points (e.g. 80%) (with promising values, and recently
with positive Hessians), perform clustering using data mining
techniques, and perform local minimization in each cluster.
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In general, incomplete methods tend to fail systematically to find the
global optimum on the more difficult problems in higher dimensions,
but they frequently give relatively good points with a reasonable
amount of effort. Beyond a certain number of function evaluations
(that depends on the problem), progress slows down drastically if the
global optimum has not yet been located already. This is unlikely to
change in the future, although new heuristics and variations of old
ones are discovered almost every year.
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Reduction to simple constraints

Penalty and barrier formulations.

The reformulation changes the solution: an approximation method,
and the result should be used as a starting point for a subsequent local
optimization of the original problem.

With soft constraints (some violation is tolerated):

_ f(x)— fo
1) = @ - f

[ (Fi(2) — Fy)/o: if Fy(z) <F
Oir) = (Fix)—F)/6: if F(x)>F
0 otherwise

) = 22 )
153 o2(a)

q(z) +r(z)

E
|

fmerit(
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fmerit € (— 1, 3) and the global minimizer £ of fci¢ in @ either satis-
fles

Fz(f) c [Fz—QZ,FZ+U_Z] for all 2
f(@) < min{f(z)|F(z)eF,xex}
or one of the following holds

{rex|F(zr)eF}=0
fo<min{ f(x)|F(x)e F,rex}
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Projection penalties.

In certain cases (e.g. linear and convex quadratic constraints) an exact
reformulation as a nonsmooth but Lipschitz continuous simply con-
strained problem is possible. The idea is to project infeasible points to
the feasible domain. For known interior point x:

fl@) = f@)+7l|7 |
T = Aro+ (1=
A=X, € [0,1]

A, is smallest such that z satisfies the constraints.
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Pure branching methods

Density Theorem

Any method based on local information only that converges for every
continuous f to a global minimizer of f in a feasible domain C iff it
produces a sequence of points x1, X9, ... that is dense in C.

No Free Lunch Theorem

The set of all objective functions is Y, where X is a finite solution
space and Y is a finite poset. The set of all permutations of X is J.
Random variable F' is distributed on Y*. For all jin J, Fo jis a
random variable distributed on Y%, with Pr{Foj= f}=Pr{F = fo
771} forall fin Y

Let a(f) denote the output of search algorithm a on input f. If a(F)
and b(F') are identically distributed for all search algorithms a and b,
then F' has an NFL distribution. This condition holds if and only if F
and [F'o j are identically distributed for all 7 in J.
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Branching scheme / splitting rules

To comply with Density Theorem, split boxes so that their
diameters tend to zero; the key to efficiency is a proper balance
of global and local search.

DIRECT splits in each round all boxes for which the pair (v, f)
(where v is the volume and f the midpoint function value) is
not dominated by another such pair. Here (v, f) is dominated

by (v, f) if both v/ <wv and f'> f.

MCS uses domination of pairs (I, f), where [ is a suitably
assigned level, and in addition employs local optimization steps
(using line searches and sequential bound constrained quadratic
programs) from appropriate candidate points.

LGO uses lower bounds L >maxy || f(zr) — f(x)||/||xx — 21|
on Lipschitz constants L obtained from the previous function
evaluations to decide on the promising boxes to split first.
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Box reduction

The search is organized into “boxes’; box reduction = reducing the
size (and possibly discarding boxes when size = 0) by discarding
unfeasible fragments.

Constraint propagation is a very cheap and easily formaliz-
able process that gives important initial range reductions in
many otherwise difficult problems. It consists in deducing
better bounds for a variable by using the other bounds and one
of the constraints.

Interval analysis can be applied in a number of different ways.
E.g. to produce linear relaxations of the nonlinear constraint.

Other relaxation techniques to create a convex relaxation of
the constraints.

It might still be the case that there is a second, undiscovered
global minimizer. This can be checked with multiplier tech-
niques.
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Branch and Bound

Branching rules
Select a bisection coordinate j and split the j-th component of the
box at bisection point &.

e midpoint: {=(z;+x;)/2

e safeguarded geometric mean (when the interval is wide):

sign;l:j /;ijj ifO<Q?jfj<OO

0 if 2, <0<,

y

€:< min (,LL,(]f]) If ij:O

max(— M, (].fj) if .fj:O
q_lgjj if ij>0 thus fj:OO

q_lfj if fj>0 thUSij:—OO

\

where g€ (0,1) is a fixed constant (e.g. ¢=0.01).
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Bounding rules

Usually a convex relaxation: a convex (and often linear) optimization
problem whose feasible set contains the feasible set of the subproblem
(outer approximation) and whose objective function is at no feasible
point larger than the original objective function (underestimation). If
the convex problem is infeasible or provides a lower bound larger than
best so far feasible f(z), the subproblem can be discarded. It is equiv-
alent to adding a cut f(z) < fP*¢ (for known f(zfound) = fbest)  Cuts
can be more complicated, linear cuts are called cutting planes and
using cuts is called branch and cut.

Reduction rules approximate the feasible set to reduce the size of the
box.
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Use of Local Optimization

Tunneling tries to find a better solution starting from a local min-
imum. One technique is to minimize the sum of squares of constraint
violations, with additional constraint f(z) < fPest — A,

Rules of thumb for problem difficulty, solving a problem of compa-
rable size and sparsity structure:

time needed to solve a linear program LP
convex quadratic program QP =5 LP
local min. of a nonconv. quadratic program QP =10 LP
for a convex nonlinear program SQP =30« QP

local minimizer of a nonconv. nonlin. program SQP =200 % QP
global min. of a nonconv. nonlin. program GLP ;=100 *SQP
verifying that it is a global minimizer GLP,=1000x*SQP
Pure constraint satisfaction dominates global search at initial stage:
find first feasible point, and at final stage: show no feasible points
smaller than found minimizer.
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Constraint Propagation

Examples of theorems useful for box reduction:

Let J, be subsets of indices, let ¢, be real-valued functions on x;. If
for suitable g, s

Qr = sup { (T 5,) | g, €Ty}, 5 2 Z i
k

then, for arbitrary a,

TET, aS Z qk(xJk) — QI‘&(ZUJk) Za—5+qg (Vk)
k

Dually for g, <inf. It is easily generalized to double-sided inequalities

useful in interval arithmetic.
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More difficult example: semiseparable constraints. We have a
semiseparable inequality of the form

Z Qk(il?k) + (:17 — :EO)TH(:L’ — CEO) <a

with possibly nonsymmetric H, and (modified Cholesky factorization)
H+H'=R'R—D

with a nonnegative diagonal D. Then

2
2

|R(z — %)) <2(a — s)

Conditioning can be used to separate variables: rewrite F;(x) € F; as
Fi(€) + F/(m)(z — )N Fi4 o

(e.g. use with qr(zr) = awxi). Going second-order may let use the
result for semiseparable constraints.
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Shaving: trying to discard a small slab of an interval [z;, z;]. While

expensive, it reduces the overestimation in the processing of con-
straints which contain a variable several times.
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The cluster problem

When programming a simple branch and bound algorithm for global
optimization, it is fairly easy to eliminate boxes far away from the
global minimizer, while, especially in higher dimensions, there remains
a large cluster of tiny boxes in a neighborhood of the global minimizer
that is difficult to eliminate. Often, algorithms try to avoid the cluster
problem by providing only a A-optimal solution; i.e., the program
stops when it has shown that there is no feasible point with an objec-
tive function value of f"** — A. However, when A is small then the
cluster problem is still present.

For the cluster problem for unconstrained global optimization (Kear-
fott & Du), the source of the problem is the limited accuracy with
which the function values were bounded: it disappears if, for x in a
box of diameter O(g), one can bound the overestimation of fPest —
f(x) by O(g%). For pure constraint satisfaction problems, a similar
cluster effect is present (Schichl & Neumaier), but with O(g?) suffi-
cient. Several techniques to deal with these cases. If after using them

27



we are still left with a box of significant size, we must have been close
to a degeneracy; splitting would probably not improve this and lead to
an exponential number of boxes; thus it is preferable to put this box in
the list of output boxes to indicate that a low resolution candidate for
a solution has been found. Usually a large region (box) around the
output box can be excluded (basin of the minimum) (backboxing).
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Linear and convex relaxations

By introducing new variables, factorable problems can be rewritten
with unary z = ¢(x) and binary z = x o y constraints only. Unary ele-
mentary functions can be easily linearly over/under-estimated (e.g.
secant/tangent). Only binary operations that need to be analyzed are
products and quotients. r€x, yE€y,z=2V:

Semidefinite relaxations (aka convex conic relaxations) are a

3
recent and efficient approach (not yet fully integrated with global opti-
mization software).

29



Relaxations without extra variables

The first possibility is to write the constraints as a difference of convex
functions (DC representation). The package aBB separates in each
inequality constraint a recognizable linear, convex or concave parts
from a “general” remainder. Linear and convex parts are kept, concave
parts are overestimated by secant type constructions, and general
terms are made convex by adding a nonpositive separable quadratic
function.

The second possibility is to use centered forms, e.g. based on first-
order Taylor form f(z) € f+c'(z —2).
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Semilinear constraints and MILP

A constraint is semilinear if, for arguments x in a bounded box x, it is
equivalent to a finite list of linear constraints and integer constraints.
The objective function f(z) is called semilinear if the inequality
f(x) < xg, where zq is an additional variable, is semilinear. A semi-
linear program is an optimization problem with a semilinear objective
function and a bounded feasible domain defined by semilinear con-
straints only. They are equivalent to mixed integer linear programs
for which efficient solvers exist.
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Examples of semilinear constraints

z€{0,1} z€[0,1],z€Z

Binary Special Ordered Set D orer tr=1,1,€{0,1}(k € K)

zis a BSOS, Fi(x) > Fi(1 — z)
Aixeby V...V A € by

Agxr —b
Fy(x) :< b—:_ Akz )
K

Pl\/...\/PK ZC1—|——|—ZUK>1

Pl/\.../\PK xk:1f0r k=1...

IZR= r1=2I9

P =P T1 < T

PV. VPk=Px  V.VP|lop<xgi1+...+xpfor k=1.. K
Axeaif Bx<b AxeaV (Bz)12bV..V(Bx),>b,
a’r <min;—1_q(Az —b); a'lr <(Ax —b);fori=1...d

alr >min;_q 4 (A:l? —b)i alr>(Az—0b)V..Valz > (Ax —b),

the components of x - are distinct integers T € 1, |£Ej — Zlfk‘ >1for j,ke K, 7é k
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The End
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