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Completeness

• An incomplete method uses clever intuitive heuristics forsearching but has no safeguards if the search gets stuck in alocal minimum.

• An asymptotically complete method reaches a global min-imum with certainty or at least with probability one if allowedto run inde�nitely long, but has no means to know when aglobal minimizer has been found.
• A complete method reaches a global minimum with certainty,assuming exact computations and inde�nitely long run time,and knows after a �nite time that an approximate global mini-mizer has been found (to within prescribed tolerances).

• A rigorous method reaches a global minimum with certaintyand within given tolerances even in the presence of roundingerrors, except in near-degenerate cases, where the tolerancesmay be exceeded. 2



Some Use Domains

• hard feasibility problems (e.g., robot arm design), where localmethods do not return useful information since they generallyget stuck in local minimizers of the merit function, not pro-viding feasible points;

• computer-assisted proofs (e.g., the proof of the Kepler con-jecture by Hales [128]), where inequalities must be establishedwith mathematical guarantees;
• safety veri�cation problems, where treating nonglobalextrema as worst cases may severely underestimate the truerisk;

• many problems in chemistry, where often only the global mini-mizer (of the free energy) corresponds to the situationmatching reality;
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FormulationA constrained global optimization problemmin f(x)such that x∈x, F (x)∈F , xI integral
x= {x∈Rn|x

¯
6 x 6 x̄}

xI = (xi1,� , xil)

C = {x∈x|xI integral, F (x)∈F }where x is a bounded or unbouded box, C is the feasible domain,points x ∈ C are feasible, a solution (or global minimizer) x̂ is a point

x̂ ∈C, f(x̂) =minx∈C f(x). A local (global) solver is an algorithm that�nds local (global) minimizers. A constraint satisfaction problem is todecide if the feasible set C is nonempty and �nd any x̂ ∈C.
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• If I is nonempty, the problem is called mixed integer (e.g.linear, nonlinear) program.

• It is simply constrained when dimF = 0,

• separable if f(x) =
∑

k=1

n
fk(xk) and F (x) =

∑

k=1

n
Fk(xk),

• factorable if f , F are polynomials of fk(xk),
• DC when f , F are di�erences of convex functions.
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Lagrange Multipliers and Kuhn-Tucker conditionsFor every local minimizer x̂, there are a number κ > 0 and a vector λ,not both zero, such that the vector

gT = κf ′(x̂) + yTF ′(x̂)satis�es
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

> 0 if xi
¯

= xî < x̄i, i � I ,

6 0 if xi
¯

< xî = x̄i, i � I ,

= 0 if xi
¯

< xî < x̄i, i � I ,

λi



















> 0 if Fi
¯

= F (xî) < F̄i,

6 0 if Fi
¯

< F (xî) = F̄i,

= 0 if Fi
¯

< F (xî) < F̄i,
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For κ = 1 (i.e. κ > 0), then λ are called Lagrange multipliers and g isthe gradient of the Lagrangian

L(x, λ) = f(x) + λTF (x).[Illustration example.]
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Methods for Local OptimizationNewton's MethodThe Taylor expansion of f(x)

f(x + ∆x) = f(x) + f ′(x)∆x +
1
2
f ′′(x)∆x2

attains extremum when ∆x solves f ′(x) + f ′′(x)∆x = 0 and f ′′(x) > 0.

xn+1 = xn −
f ′(xn)

f ′′(xn)and in several dimensions

xn+1 = xn − [H f(xn)]−1∇f(xn)usually with a smaller step γ ∈ (0, 1) (the Taylor is an approximation)

xn+1 = xn − γ[H f(xn)]
−1∇f(xn)
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Quasi-Newton Methodsapproximate the inverse of Hessian, in each step updating the approxi-mation.[TODO]
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Conjugate Gradients Methodssolve the update equation H f(xn)xn+1 =∇f(xn) approximately (usingthe so-called conjugate gradients). Quasi-Newton methods (e.g.,BFGS method) - converge in fewer iterations, although each iterationrequires more computation and more memory than a conjugate gra-dient iteration.

x
0

x
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Adaptive Step Methods[TODO]
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Incomplete methods for simple constraintsBesides simulated annealing and genetic algorithms:
• multiple random start: repeat: pick random point and opti-mize from it (e.g. locally)

• Smoothing (= homotopy = continuation) methods arebased on the intuition that, in nature, macroscopic features areusually an average e�ect of microscopic details; averagingsmoothes out the details in such a way as to reveal the globalpicture. The hope is, most or all local minima disappear, andthe remaining major features of the surface only show a singleminimizer. By adding more and more details, the approxima-tions made by the smoothing are undone, and �nally one endsup at the global minimizer of the original surface. The qualityof the �nal local minimizer depends on the homotopy, and fre-quently is the global or at least a good local minimizer.12



• Response surface techniques are designed speci�cally for theglobal optimization of functions that are very expensive to eval-uate. They construct in each iteration an interpolation orapproximation surrogate function of known analytic form. Thesurrogate function is then subjected to global optimization.The resulting optimizers (or some points where the feasibleregion has been only sparsely explored) are taken as new evalu-ation points.

• Clustering methods �rst sample the space, retain a fraction ofsampled points (e.g. 80%) (with promising values, and recentlywith positive Hessians), perform clustering using data miningtechniques, and perform local minimization in each cluster.

13



In general, incomplete methods tend to fail systematically to �nd theglobal optimum on the more di�cult problems in higher dimensions,but they frequently give relatively good points with a reasonableamount of e�ort. Beyond a certain number of function evaluations(that depends on the problem), progress slows down drastically if theglobal optimum has not yet been located already. This is unlikely tochange in the future, although new heuristics and variations of oldones are discovered almost every year.
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Reduction to simple constraintsPenalty and barrier formulations.The reformulation changes the solution: an approximation method,and the result should be used as a starting point for a subsequent localoptimization of the original problem.With soft constraints (some violation is tolerated):
q(x) =

f(x)− f0

∆ + |f(x)− f0|

δi(x) =











(Fi(x)−F
¯

i)/σ
¯

i if Fi(x) 6 F
¯

i

(Fi(x)− F̄i)/σ̄i if Fi(x) > F̄i

0 otherwise

r(x) =
2
∑

δi
2(x)

1 +
∑

δi
2(x)

fmerit(x) = q(x) + r(x)
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fmerit ∈ (− 1, 3) and the global minimizer x̂ of fmerit in x either satis-�es

Fi(x̂) ∈ [F
¯

i − σ
¯

i, F̄i + σ̄i] for all i

f(x̂) 6 min {f(x)|F (x)∈F , x∈x}or one of the following holds

{x∈x|F (x)∈F }= ∅

f0 <min {f(x)|F (x)∈F , x∈x}
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Projection penalties.In certain cases (e.g. linear and convex quadratic constraints) an exactreformulation as a nonsmooth but Lipschitz continuous simply con-strained problem is possible. The idea is to project infeasible points tothe feasible domain. For known interior point x0:
f̄ (x) 4 f(x̄) + γ‖x̄ − x‖

2

x̄ = λx0 + (1−λ)x

λ = λx ∈ [0, 1]

λx is smallest such that x̄ satis�es the constraints.
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Pure branching methodsDensity TheoremAny method based on local information only that converges for everycontinuous f to a global minimizer of f in a feasible domain C i� itproduces a sequence of points x1, x2,� that is dense in C.No Free Lunch TheoremThe set of all objective functions is Y X, where X is a �nite solutionspace and Y is a �nite poset. The set of all permutations of X is J .Random variable F is distributed on Y X. For all j in J , F ◦ j is arandom variable distributed on Y X, with Pr{F ◦ j = f } = Pr{F = f ◦
j−1} for all f in Y X.Let a(f) denote the output of search algorithm a on input f . If a(F )and b(F ) are identically distributed for all search algorithms a and b,then F has an NFL distribution. This condition holds if and only if Fand F ◦ j are identically distributed for all j in J .
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Branching scheme / splitting rules

• To comply with Density Theorem, split boxes so that theirdiameters tend to zero; the key to e�ciency is a proper balanceof global and local search.

• DIRECT splits in each round all boxes for which the pair (v, f)(where v is the volume and f the midpoint function value) isnot dominated by another such pair. Here (v, f) is dominatedby (v, f) if both v ′< v and f ′> f .
• MCS uses domination of pairs (l, f), where l is a suitablyassigned level, and in addition employs local optimization steps(using line searches and sequential bound constrained quadraticprograms) from appropriate candidate points.

• LGO uses lower bounds L >maxk,l ‖f(xk)− f(xl)‖/‖xk − xl‖on Lipschitz constants L obtained from the previous functionevaluations to decide on the promising boxes to split �rst.
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Box reductionThe search is organized into �boxes�; box reduction = reducing thesize (and possibly discarding boxes when size = 0) by discardingunfeasible fragments.

• Constraint propagation is a very cheap and easily formaliz-able process that gives important initial range reductions inmany otherwise di�cult problems. It consists in deducingbetter bounds for a variable by using the other bounds and oneof the constraints.

• Interval analysis can be applied in a number of di�erent ways.E.g. to produce linear relaxations of the nonlinear constraint.

• Other relaxation techniques to create a convex relaxation ofthe constraints.
• It might still be the case that there is a second, undiscoveredglobal minimizer. This can be checked with multiplier tech-niques. 20



Branch and BoundBranching rulesSelect a bisection coordinate j and split the j-th component of thebox at bisection point ξ.

• midpoint: ξ = (x̄j + x
¯

j)/2

• safeguarded geometric mean (when the interval is wide):
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



signx
¯

j x
¯

jx̄j

√ if 0 < x
¯

jx̄j <∞

0 if x
¯

j < 0< x̄jmin (µ, qx̄j) if x
¯

j = 0max (− µ, qx̄j) if x̄j = 0

q−1x
¯

j if x
¯

j > 0 thus x̄j =∞

q−1x̄j if x̄j > 0 thus x
¯

j =−∞

where q ∈ (0, 1) is a �xed constant (e.g. q = 0.01).21



Bounding rulesUsually a convex relaxation: a convex (and often linear) optimizationproblem whose feasible set contains the feasible set of the subproblem(outer approximation) and whose objective function is at no feasiblepoint larger than the original objective function (underestimation). Ifthe convex problem is infeasible or provides a lower bound larger thanbest so far feasible f(x), the subproblem can be discarded. It is equiv-alent to adding a cut f(x) 6 fbest (for known f(xfound) = fbest). Cutscan be more complicated, linear cuts are called cutting planes andusing cuts is called branch and cut.Reduction rules approximate the feasible set to reduce the size of thebox.
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Use of Local OptimizationTunneling tries to �nd a better solution starting from a local min-imum. One technique is to minimize the sum of squares of constraintviolations, with additional constraint f(x) 6 fbest−∆.Rules of thumb for problem di�culty, solving a problem of compa-rable size and sparsity structure:time needed to solve a linear program LPconvex quadratic program QP= 5 ∗LPlocal min. of a nonconv. quadratic program QP′= 10 ∗LPfor a convex nonlinear program SQP= 30 ∗QPlocal minimizer of a nonconv. nonlin. program SQP= 200 ∗QPglobal min. of a nonconv. nonlin. program GLPf = 100 ∗ SQPverifying that it is a global minimizer GLPv = 1000 ∗ SQPPure constraint satisfaction dominates global search at initial stage:�nd �rst feasible point, and at �nal stage: show no feasible pointssmaller than found minimizer.
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Constraint PropagationExamples of theorems useful for box reduction:Let Jk be subsets of indices, let qk be real-valued functions on xk. Iffor suitable q̄k, s̄

q̄k > sup {qk(xJk
)|xJk

∈xJk
}, s̄ >

∑

k

q̄k

then, for arbitrary a
¯

,

x∈x, a
¯

6
∑

k

qk(xJk
)� qk(xJk

) > a
¯
− s̄ + q̄k (∀k)

Dually for q
¯

k 6 inf . It is easily generalized to double-sided inequalitiesuseful in interval arithmetic. 24



More di�cult example: semiseparable constraints. We have asemiseparable inequality of the form

∑

k

qk(xk) + (x− x0)TH(x−x0) 6 ā

with possibly nonsymmetric H, and (modi�ed Cholesky factorization)
H + HT = RTR−Dwith a nonnegative diagonal D. Then

∥

∥R(x−x0)
∥

∥

2

2
6 2(ā − s

¯
)Conditioning can be used to separate variables: rewrite Fi(x)∈Fi as

Fi(ξ) + F ′(x)(x− ξ)∩Fi� ∅(e.g. use with qk(xk) = αxk). Going second-order may let use theresult for semiseparable constraints. 25



Shaving: trying to discard a small slab of an interval [x
¯

i, x̄i]. Whileexpensive, it reduces the overestimation in the processing of con-straints which contain a variable several times.
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The cluster problemWhen programming a simple branch and bound algorithm for globaloptimization, it is fairly easy to eliminate boxes far away from theglobal minimizer, while, especially in higher dimensions, there remainsa large cluster of tiny boxes in a neighborhood of the global minimizerthat is di�cult to eliminate. Often, algorithms try to avoid the clusterproblem by providing only a ∆-optimal solution; i.e., the programstops when it has shown that there is no feasible point with an objec-tive function value of fbest − ∆. However, when ∆ is small then thecluster problem is still present.For the cluster problem for unconstrained global optimization (Kear-fott & Du), the source of the problem is the limited accuracy withwhich the function values were bounded: it disappears if, for x in abox of diameter O(ε), one can bound the overestimation of fbest −
f(x) by O(ε3). For pure constraint satisfaction problems, a similarcluster e�ect is present (Schichl & Neumaier), but with O(ε2) su�-cient. Several techniques to deal with these cases. If after using them27



we are still left with a box of signi�cant size, we must have been closeto a degeneracy; splitting would probably not improve this and lead toan exponential number of boxes; thus it is preferable to put this box inthe list of output boxes to indicate that a low resolution candidate fora solution has been found. Usually a large region (box) around theoutput box can be excluded (basin of the minimum) (backboxing).
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Linear and convex relaxationsBy introducing new variables, factorable problems can be rewrittenwith unary z = ϕ(x) and binary z = x ◦ y constraints only. Unary ele-mentary functions can be easily linearly over/under-estimated (e.g.secant/tangent). Only binary operations that need to be analyzed areproducts and quotients. x∈x, y ∈ y , z = x y:
y
¯

x + x
¯

y − x
¯

y
¯

6 z 6 y
¯

x + x̄ y − x̄ y
¯

ȳ x + x̄ y − x̄ ȳ 6 z 6 ȳ x + x
¯

y − x
¯

ȳSemide�nite relaxations (aka convex conic relaxations) are arecent and e�cient approach (not yet fully integrated with global opti-mization software).
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Relaxations without extra variablesThe �rst possibility is to write the constraints as a di�erence of convexfunctions (DC representation). The package αBB separates in eachinequality constraint a recognizable linear, convex or concave partsfrom a �general� remainder. Linear and convex parts are kept, concaveparts are overestimated by secant type constructions, and generalterms are made convex by adding a nonpositive separable quadraticfunction.The second possibility is to use centered forms, e.g. based on �rst-order Taylor form f(x)∈ f + cT(x− z).
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Semilinear constraints and MILPA constraint is semilinear if, for arguments x in a bounded box x, it isequivalent to a �nite list of linear constraints and integer constraints.The objective function f(x) is called semilinear if the inequality
f(x) 6 x0, where x0 is an additional variable, is semilinear. A semi-linear program is an optimization problem with a semilinear objectivefunction and a bounded feasible domain de�ned by semilinear con-straints only. They are equivalent to mixed integer linear programsfor which e�cient solvers exist.
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Examples of semilinear constraints

z ∈{0, 1} z ∈ [0, 1], z ∈ZBinary Special Ordered Set ∑

k∈K
xk = 1, xk ∈{0, 1}(k ∈K)

A1x∈ b1∨� ∨Adx∈ bd

z is a BSOS,Fk(x) >F
¯

k(1− zk)

Fk(x) =
(

Akx − b
¯

k

b̄k −Akx

)

P1∨� ∨PK x1 +� + xK > 1

P1∧� ∧PK xk = 1 for k = 1�K

P1⇔P2 x1 = x2

P1⇒P2 x1 6 x2

P1∨� ∨PK ⇒PK+1∨� ∨PL xk 6xK+1 +� + xL for k = 1�K

A x∈a if B x < b A x∈a∨ (B x)1 > b1∨� ∨ (B x)n > bn

aTx 6mini=1� d (A x− b)i aTx 6 (A x− b)i for i= 1� d

aTx >mini=1� d (A x− b)i aTx> (A x− b)1∨� ∨ aTx > (Ax− b)dthe components of x
K

are distinct integers xk ∈Z, |xj − xk|> 1 for j , k ∈K, j � k
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The End
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