
Functional Programming

Exam June 8th 2012

Exercise 1. Give types of the following expressions, either by guessing or inferring them by hand:

1. let double f y = f (f y) in fun g x -> double (g x)

2. let rec tails l = match l with [] -> [] | x::xs -> xs::tails xs in

fun l -> List.combine l (tails l)

Exercise 2. Assume that the corresponding expression from previous exercise is bound to name
foo. What are the values computed for the expressions (compute in your head or derive on paper):

1. foo (+) 2 3, foo (*) 2 3, foo (*) 3 2

2. foo [1; 2; 3]

Exercise 3. Give example expressions that have the following types (without using type con-
straints):

1. (int -> int) -> bool

2. ’a option -> ’a list

Exercise 4. Write function that returns the list of all lists containing elements from the input
list, preserving order from the input list, but without two elements.

Exercise 5. Write a breadth-first-search function that returns an element from a binary tree for
which a predicate holds, or None if no such element exists. The function should have signature:

val bfs : (’a -> bool) -> ’a btree -> ’a option

Exercise 6. Solve the n-queens problem using backtracking based on lists.
Available functions: from_to, concat_map, concat_foldl, unique.
Hint functions (asking for hint each loses one point): valid_queens, add_queen, find_queen,

find_queens. Final function solve takes n as an argument. Each function, other than
valid_queens that takes 3 lines, fits on one line.

Exercise 7. Provide an algebraic specification and an implementation for first-in-first-out queues
(lecture 5 exercise 9).

1

