
Functional Programming

by Łukasz Stafiniak

Email: lukstafi@gmail.com, lukstafi@ii.uni.wroc.pl

Web: www.ii.uni.wroc.pl/~lukstafi

Lecture 1: Logic

From logic rules to programming constructs

In the Beginning there was Logos

What logical connectives do you know?

⊤ ⊥ ∧ ∨ →

a∧ b a∨ b a→ b

truth falsehood conjunction disjunction implication

“trivial” “impossible” a and b a or b a gives b

shouldn’t get got both got at least one given a, we get b

How can we define them?
Think in terms of derivation trees:

a premise another premise

some fact

this we have by default

another fact

final conclusion

Define by providing rules for using the connectives: for example, a rule
a b

c

matches parts of the tree that have two premises, represented by variables a

and b, and have any conclusion, represented by variable c.
Try to use only the connective you define in its definition.

3

Rules for Logical Connectives

Introduction rules say how to produce a connective.
Elimination rules say how to use it.
Text in parentheses is comments. Letters are variables: stand for anything.

Introduction Rules Elimination Rules

⊤
⊤

doesn’t have

⊥ doesn’t have
⊥

a
(i.e., anything)

∧
a b

a∧ b

a∧ b

a
(take first)

a∧ b

b
(take second)

∨
a

a∨ b
(put first)

b

a∨ b
(put second)

a∨ b

a

c

x (consider a)
b

c

y (consider b)

c (since in both cases we get it)
using x, y

→

a

b

x

a→ b
using x

a→ b a

b

4

Notations

a

b

x, or
a

c

x

match any subtree that derives b (or c) and can use a (by assumption
a
x)

although otherwise a might not be warranted. For example:

sunny
x

go outdoor

playing

happy

sunny→happy
using x

Such assumption can only be used in the matched subtree! But it can be
used several times, e.g. if someone’s mood is more difficult to influence:

sunny
x

go outdoor

playing

sunny
x

sunny
x

go outdoor

nice view

happy

sunny→happy
using x

5

Elimination rule for disjunction represents reasoning by cases.
How can we use the fact that it is sunny∨cloudy (but not rainy)?

sunny∨cloudy
forecast sunny

x

no-umbrella

cloudy
y

no-umbrella

no-umbrella
using x, y

We know that it will be sunny or cloudy, by watching weather forecast. If it
will be sunny, we won’t need an umbrella. If it will be cloudy, we won’t need
an umbrella. Therefore, won’t need an umbrella.

6

We need one more kind of rules to do serious math: reasoning by induc-

tion (it is somewhat similar to reasoning by cases). Example rule for induc-
tion on natural numbers:

p(0)

p(x)
x

p(x+1)

p(n)
by induction, using x

So we get any p for any natural number n, provided we can get it for 0, and
using it for x we can derive it for the successor x + 1, where x is a unique
variable (we cannot substitute for it some particular number, because we
write “using x” on the side).

7

Logos was Programmed in OCaml

Logic Type Expr. Introduction Rules Elimination Rules

⊤ unit ()
(): unit

⊥ ’a raise
oops!

raise Not_found: c

∧ * (,)
s: a t: b

s,t: a*b

p: a*b

fst p: a

p: a*b

snd p: b

∨ | match

s: a

A(s):A of a|B of b

(need to name sides)

t: b

B(t):A of a|B of b

t:A of a|B of b

x: a

e1: c

x
y: b

e2: c

y

match t with A(x)->e1 | B(y)->e2: c

variables x, y

→ -> fun

x: a

e: b

x

fun x->e: a→ b
var x

f : a→ b t: a

ft: b
(application)

induction rec

x: a

e: a

x

rec x=e: a
variable x

8

• In the judgements above, e: a means that expression e has type a.

◦ Expressions describe computations, types say what the com-
puted value will be, generally speaking.

• Variables are like in mathematics, it would be better to call them
names.

• Not_found is just an example of an exception (any can be raised).

• Expressions (s,t), (r,s,t), ... are called tuples and types a*b, a*b*c,
... are called tuple types. For example we can have pair (7,"Mary")

of pair type int*string. Parentheses are not necessary.

• Types A of a | B of b, A of a | B of b | C of c, ... are called
variant types (or discriminated unions). The variants need to have
labels, like A and B above, because we need to recognize which case
we deal with!

9

Definitions

Writing out expressions and types repetitively is tedious: we need definitions.
Definitions for types are written: type ty = some type.

• Writing A(s): A of a|B of b in the table was cheating. Usually we
have to define the type and then use it, e.g. using int for a and
string for b:
type int_string_choice = A of int | B of string

allows us to write A(s): int_string_choice.

• Without the type definition, it is difficult to know what other variants
there are when one infers (i.e. “guesses”, computes) the type!

• In OCaml we can write A8 (s): [A8 of a|B8 of b]. With “8” variants,
OCaml does guess what other variants are. These types are fun, but
we will not use them in future lectures.

10

• Tuple elements don’t need labels because we always know at which
position a tuple element stands. But having labels makes code more
clear, so we can define a record type:

type int_string_record = {a: int; b: string}

and create its values: {a = 7; b = "Mary"}.

• We access the fields of records using the dot notation:
{a=7; b="Mary"}.b = "Mary".

11

Recursive expression rec x=e in the table was cheating: rec (usually called
fix) cannot appear alone in OCaml! It must be part of a definition.
Definitions for expressions are introduced by rules a bit more complex
than these:

e1: a

x: a

e2: b

x

let x=e1 in e2: b

(note that this rule is the same as introducing and eliminating →), and:

x: a

e1: a

x
x: a

e2: b

x

let rec x=e1 in e2: b

We will cover what is missing in above rules when we will talk about
polymorphism.

12

• Type definitions we have seen above are global: they need to be at the
top-level, not nested in expressions, and they extend from the point
they occur till the end of the source file or interactive session.

• let-in definitions for expressions: let x=e1 in e2 are local, x is only
visible in e2. But let definitions are global: placing let x=e1 at the
top-level makes x visible from after e1 till the end of the source file or
interactive session.

• In the interactive session, we mark an end of a top-level “sentence” by
;; – it is unnecessary in source files.

• Operators like +, *, <, =, are names of functions. Just like other
names, you can use operator names for your own functions:
let (+:) a b = String.concat "" [a; b];; Special way of defining

"Alpha" +: "Beta";; but normal way of using operators.

• Operators in OCaml are not overloaded. It means, that every type
needs its own set of operators. For example, +, *, / work for intigers,
while +., *., /. work for floating point numbers. Exception: com-
parisons <, =, etc. work for all values other than functions.

13

Exercises

Exercises from Think OCaml. How to Think Like a Computer Scientist by
Nicholas Monje and Allen Downey.

1. Assume that we execute the following assignment statements:
let width = 17;;

let height = 12.0;;

let delimiter = ’.’;;

For each of the following expressions, write the value of the expression
and the type (of the value of the expression), or the resulting type
error.

a. width/2

b. width/.2.0

c. height/3

d. 1 + 2 * 5

e. delimiter * 5

14

2. Practice using the OCaml interpreter as a calculator:

a. The volume of a sphere with radius r is
4

3
πr3. What is the

volume of a sphere with radius 5?
Hint: 392.6 is wrong!

b. Suppose the cover price of a book is $24.95, but bookstores get
a 40% discount. Shipping costs $3 for the first copy and 75
cents for each additional copy. What is the total wholesale cost
for 60 copies?

c. If I leave my house at 6:52 am and run 1 mile at an easy pace
(8:15 per mile), then 3 miles at tempo (7:12 per mile) and 1
mile at easy pace again, what time do I get home for break-
fast?

15

3. You’ve probably heard of the fibonacci numbers before, but in case
you haven’t, they’re defined by the following recursive relationship:







f(0) = 0
f(1) = 1
f(n+1) = f(n)+ f(n− 1) for n=2, 3,	

Write a recursive function to calculate these numbers.

16

4. A palindrome is a word that is spelled the same backward and for-
ward, like “noon” and “redivider”. Recursively, a word is a palindrome
if the first and last letters are the same and the middle is a palin-
drome.
The following are functions that take a string argument and return
the first, last, and middle letters:
let first_char word = word.[0];;

let last_char word =

let len = String.length word - 1 in

word.[len];;

let middle word =

let len = String.length word - 2 in

String.sub word 1 len;;

a. Enter these functions into the toplevel and test them out.
What happens if you call middle with a string with two let-
ters? One letter? What about the empty string, which is
written ""?

b. Write a function called is_palindrome that takes a string argu-
ment and returns true if it is a palindrome and false other-
wise.

17

5. The greatest common divisor (GCD) of a and b is the largest number
that divides both of them with no remainder.
One way to find the GCD of two numbers is Euclid’s algorithm,
which is based on the observation that if r is the remainder when a is
divided by b, then gcd (a, b)= gcd (b, r). As a base case, we can con-
sider gcd (a, 0)=a.
Write a function called gcd that takes parameters a and b and returns
their greatest common divisor.
If you need help, see http://en.wikipedia.org/wiki/Euclidean_algo-
rithm.

18

