Functional Programming

BY LUKASZ STAFINIAK

Email: 1lukstafi@gmail.com, lukstafi@ii.uni.wroc.pl
Web: www.ii.uni.wroc.pl/ lukstafi

Lecture 2: Algebra

Algebraic Data Types and some curious analogies

A Glimpse at Type Inference

For a refresher, let's try to use the rules we introduced last time on some
simple examples. Starting with fun x -> x. [?] will mean “dunno yet".

use — introduction:

e « matches with iR e
fun x -> x:[?]|—=[?] x:a R
e:b
S
X:Qa

since b=a because x:a matched with e: b
L G e - S PN L

Because a is arbitrary, OCaml puts a type variable ’a for it:

fun x -> x;;
SiEma ey e G ek >

Let's try fun x -> x+1, which is the same as fun x -> ((+) x) 1
(try it with OCaml/F#!). [?«a] will mean “dunno yet, but the same as in
other places with [7a]".

7]
fun x -> ((+)) 1:[7]
7]
EEDE 9 b la]
fun x -> ((+) x) 1:[?]—=[?q]

[7] [7]
e (B | [g[8

CCE)y-x)=1: [a]
fun x -> ((+) x) 1:[?7] = [?¢]

[?]
(+#) x:rint—[?a] 1: int(constant)

CER)—x)15 %er]
fun x -> ((+) x) 1:[?] = [?q]
[?] [?]

(1): [?v] — int—=[?a] x: [?7]
(+) x:int—[7a] = int(Constant)

CeR = e
fun x -> ((+) x) 1:[?]—=[?q]

use — introduction:

use — elimination:

we know that 1:int

application again:

it's our x|

[7]
#: [?v] = int—[?a] x: [?]
(+) x: int—[7] e int(Constant)

((+) x) 1:[?q]

X

fun x -> ((+) x) 1:[?79]—=[?q]

(constant) %

(+): int—int—int XERENG (Tant)
constan
(+) x:int—int 18:=5int;

CEI= Tt

R e S R e i) B B BV B MR ED

but (+):int—int—int

Curried form

When there are several arrows “on the same depth” in a function type, it
means that the function returns a function: e.g. (+): int—int—int is just
a shorthand for (+):int—(int—int). It is very different from

fun £ -> (£ 1) + 1:(int—int)— int

For addition, instead of (fun x -> x+1) we can write ((+) 1). What
expanded form does ((+) 1) correspond to exactly (computationally)?

We will get used to functions returning functions when learning about the
lambda calculus.

Algebraic Data Types

Last time we learned about the unit type, variant types like:

type int_string_choice = A of int | B of string

and also tuple types, record types, and type definitions.
Variants don't have to have arguments: instead of A of unit just use A.

o In OCaml, variants take multiple arguments rather than taking tuples
as arguments: A of int * string is different than
A of (int * string). Butit's not important unless you get bitten by it.

Type definitions can be recursive!

type int_list = Empty | Cons of int * int_list

Let's see what we have in int_list:
Empty, Cons (5, Cons (7, Cons (13, Empty))), etc.

Type bool can be seen as type bool = true | false, type int can
be seen as a very large type int =0 | -1 | 1 | -2 | 2 |

Type definitions can be parametric with respect to types of their compo-
nents (more on this in lecture about polymorphism), for example a list
elements of arbitrary type:

type ’elem list = Empty | Cons of ’elem * ’elem list

o Type variables must start with ?, but since OCaml will not remember
the names we give, it's customary to use the names OCaml uses: ’a,
S ol T

o The syntax in OCaml is a bit strange: in F# we write 1list<’elem>.
OCaml syntax mimics English, silly example:

type ’white_color dog = Dog of ’white_color

o With multiple parameters:

— OCaml:

type (’a, ’b) choice = Left of ’a | Right of ’b
— F:

type choice<’a,’b> = Left of ’a | Right of ’b
— Haskell:

data Choice a b = Left a | Right b

7

Syntactic Bread and Sugar

Names of variants, called constructors, must start with capital letter — so
if we wanted to define our own booleans, it would be

type my_bool = True | False

Only constructors and module names can start with capital letter.

o Modules are “shelves’ with values. For example, List has operations
on lists, like List.map and List.filter.

Did | mention that we can use record.field to access a field?

fun x y -> e stands for fun x -> fun y -> e, etc. — and of course,
fun x -> fun y -> e parses as fun x -> (fun y -> e)

function A x -> el | By -> e2 stands for fun p -> match p
with A x -> el | By -> e2, etc.

o the general form is: function PATTERN-MATCHING stands for
fun v -> match v with PATTERN-MATCHING

let £ ARGS = e is a shorthand for 1et £ = fun ARGS -> e

Pattern Matching

Recall that we introduced fst and snd as means to access elements of a
pair. But what about bigger tuples? The “basic’ way of accessing any
tuple reuses the match construct. Functions fst and snd can easily be

defined!

let fst = fun p -> match p with (a, b) -> a
let snd = fun p -> match p with (a, b) -> b

It also works with records:

type person = {name: string; surname: string; age: int}
match {name="Walker"; surname="Johnnie"; age=207}
with {name=n; surname=sn; age=a} -> "Hi "~sn~"!"

The left-hand-sides of -> in match expressions are called patterns.
Patterns can be nested:

match Some (5, 7) with None -> "sum: nothing"
EESone G e dshnnas i anset i o ofe i ntn)

9

A pattern can just match the whole value, without performing destruc-
turing: match f x with v ->... isthesame aslet v = f x in ...

When we do not need a value in a pattern, it is good practice to use the
underscore: _ (which is not a variable!)

let fst (a,_) = a
let snd (_,b) = Db

A variable can only appear once in a pattern (it is called /linearity).

But we can add conditions to the patterns after when, so linearity is not
really a problem!

match p with (x, y) when x = y -> "diag" | _ -> "off-diag"

let compare a b = match a, b with

| (x, y) when x <y -> -1
| (x, y) when x =y -> 0
| -> 1

10

We can skip over unused fields of a record in a pattern.
We can compress our patterns by using | inside a single pattern:

type month =

| Jan | Feb | Mar | Apr | May | Jun

| Jul | Aug | Sep | Oct | Nov | Dec
type weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun
type date =

{year: int; month: month; day: int; weekday: weekday}
Let-day—

{year = 2012; month = Feb; day = 14; weekday = Wed};;
match day with

| {weekday = Sat | Sun} -> "Weekend!"

| _ -> "Work day"

11

e We use (pattern as v) to name a nested pattern:

match day with
| {weekday = (Mon | Tue | Wed | Thu | Fri as wday)}

|
when not (day.month = Dec && day.day = 24) ->

Some (work (get_plan wday))
| _ -> None

12

Interpreting Algebraic DTs as Polynomials

Let's do a peculiar translation: take a data type and replace | with +, * with
X, treating record types as tuple types (i.e. erasing field names and transla-
tiong ; as x).

There is a special type for which we cannot build a value:

type void

(yes, it is its definition, no = something part). Translate it as 0.

Translate the unit type as 1. Since variants without arguments behave as
variants of unit, translate them as 1 as well. Translate bool as 2.

Translate int, string, float, type parameters and other types of interest
as variables. Translate defined types by their translations (substituting vari-
ables if necessary).

Give name to the type being defined (denoting a function of the variables
introduced). Now interpret the result as ordinary numeric polynomial!
(Or “rational function” if it is recursively defined.)

Let's have fun with it.

13

type date = {year: int; month: int; day: int}

D=gxxx=2x>

type ’a option = None | Some of ’a (* built-in type *)
O=1+z
type ’a my_list = Empty | Cons of ’a * ’a my_list
e R
type btree = Tip | Node of int * btree * btree
=P R =

When translations of two types are equal according to laws of high-school
algebra, the types are isomorphic, that is, there exist 1-to-1 functions from
one type to the other.

14

Let's play with the type of binary trees:

e e e g e e eSS s R et e
= 1+z+22T?(1+T)=1+z2z(1+2T*(1+1T))

Now let's translate the resulting type:

type repr =
(int * (int * btree * btree * btree option) option) option

Try to find the isomorphism functions iso1l and iso2

val isol : btree -> repr
val iso2 : repr -> btree

i.e. functions such that for all trees t, iso2 (isol t) = t, and for all rep-
resentations r, isol (iso2 r) = r.

15

My first failed attempt:

let isol (t : btree) : repr =
match t with
| Tip -> None
| Node (x, Tip, Tip) -> Some (x, None)
| Node (x, Node (y, ti1, t2), Tip) ->
Some (x, Some (y, tl, t2, None))
| Node (x, Node (y, t1, t2), t3) ->
Some (x, Some (y, tl, t2, Some t3));;
Characters 32-261: [...]
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
Node=(=: sThp5:Node =6 ey)

| forgot about one case. It seems difficult to guess the solution, have you
found it on your try?

16

Let's divide the task into smaller steps corresponding to selected interme-
diate points in the transformation of the polynomial:

type (’a, ’b) choice = Left of ’a | Right of ’b

type interml =
((int * btree, int * int * btree * btree * btree) choice)
option

type interm2 =
((int, int * int * btree * btree * btree option) choice)
option

let steplr (t : btree) : interml =
match t with
| Tip -> None
| Node (x, tl1, Tip) -> Some (Left (x, t1))
| Node (x, t1, Node (y, t2, t3)) ->
Somez=(Rightlx, syt =825 743

17

let step2r (r : interml) : interm2 =
match r with

| None -> None

| Some (Left (x, Tip)) -> Some (Left x)

| Some (Left (x, Node (y, tl, t2))) ->
Some (Right (x, y, tl, t2, None))

| Some (Right (x, y, t1, t2, t3)) ->
Some=(Right= €k, £yt 1 425 Some 63))

let step3r (r : interm2) : repr =
match r with
| None -> None
| Some (Left x) -> Some (x, None)
| Some (Right (x, y, tl1, t2, t3opt)) ->
Some (x, Some (y, tl, t2, t3opt))

let isol (t : btree) : repr =
step3r (step2r (steplr t))

Define stepll, step2l, step3l, and iso2. Hint: now it's triviall

18

Take-home lessons:

Try to define data structures so that only information that makes sense
can be represented — as long as it does not overcomplicate the data
structures. Avoid catch-all clauses when defining functions. The compiler
will then tell you if you have forgotten about a case.

Divide solutions into small steps so that each step can be easily under-
stood and checked.

19

Differentiating Algebraic Data Types

Of course, you would say, the pompous title is wrong, we will differentiate
the translated polynomials. But what sense does it make?

It turns out, that taking the partial derivative of a polynomial resulting from
translating a data type, gives us, when translated back, a type representing
how to change one occurrence of a value of type corresponding to the vari-
able with respect to which we computed the partial derivative.

Take the “date” example:

type date = {year: int; month: int; day: int}

D = zxx=21

oD
ox

— 3x2=xx+4+zr+zx

(we could have left it at 3z as well). Now we construct the type:

type date_deriv =
Year of int * int | Month of int * int | Day of int * int

20

Now we need to introduce and use (“eliminate”) the type date_deriv.

let date_deriv {year=y; month=m; day=d} =
[Year (m, d); Month (y, d); Day (y, m)]

let date_integr n = function
| Year (m, d) -> {year=n; month=m; day=d}
| Month (y, d) -> {year=y; month=n; day=d}
| Day (y, m) -> {year=y; month=m, day=n}
List.map (date_integr 7)
(date_deriv {year=2012; month=2; day=14})

21

Let's do now the more difficult case of binary trees:

type btree = Tip | Node of int * btree * btree

=] e

Gt Rl e e T

Ox Ox Ox
(again, we could expand further into %:TT+xT%+xT%).

Instead of translating 2 as bool, we will introduce new type for clarity:

type btree_dir = LeftBranch | RightBranch
type btree_deriv =
| Here of btree * btree
| Below of btree_dir * int * btree * btree_deriv

(You might someday hear about zippers — they are “inverted” w.r.t. our type,
in zippers the hole comes first.)

Write a function that takes a number and a btree_deriv, and builds a
btree by putting the number into the “hole” in btree_deriv.

22

Solution:

let rec btree_integr n =
| Here (ltree, rtree) -> Node (n, ltree, rtree)
| Below (LeftBranch, m, rtree) ->
Node (m, btree_integr n ltree, rtree)
| Below (RightBranch, m, ltree) ->
Node (m, ltree, btree_integr n rtree)

Homework

Write a function btree_deriv_at that takes a predicate over integers (i.e.
a function f: int -> bool), and a btree, and builds a btree_deriv
whose “hole” is in the first position for which the predicate returns true. It
should actually return a btree_deriv option, with None in case the predi-
cate does not hold for any node.

This homework is due for the class after the Computation class, i.e. for
(before) the Functions class.

23

