
Functional Programming

by Łukasz Stafiniak

Email: lukstafi@gmail.com, lukstafi@ii.uni.wroc.pl

Web: www.ii.uni.wroc.pl/~lukstafi

Lecture 3: Computation

“Using, Understanding and Unraveling the OCaml Language” Didier Rémy, chapter 1

“The OCaml system” manual, the tutorial part, chapter 1

1

Function Composition

• The usual way function composition is defined in math is “backward”:

◦ math: (f ◦ g)(x)= f(g(x))

◦ OCaml: let (-|) f g x = f (g x)

◦ F#: let (<<) f g x = f (g x)

◦ Haskell: (.) f g = \x -> f (g x)

• It looks like function application, but needs less parentheses. Do you
recall the functions iso1 and iso2 from previous lecture?

let iso2 = step1l -| step2l -| step3l

2

• A more natural definition of function composition is “forward”:

◦ OCaml: let (|-) f g x = g (f x)

◦ F#: let (>>) f g x = g (f x)

• It follows the order in which computation proceeds.

let iso1 = step1r |- step2r |- step3r

• Partial application is e.g. ((+) 1) from last week: we don’t pass all
arguments a function needs, in result we get a function that requires the
remaining arguments. How is it used above?

3

• Now we define fn(x)6 (f ◦	 ◦ f)(x) (f appears n times).

let rec power f n =

if n <= 0 then (fun x -> x) else f -| power f (n-1)

• Now we define a numerical derivative:

let derivative dx f = fun x -> (f(x +. dx) -. f(x)) /. dx

where the intent to use with two arguments is stressed, or for short:

let derivative dx f x = (f(x +. dx) -. f(x)) /. dx

• We have (+): int -> int -> int, so cannot use with floating point
numbers – operators followed by dot work on float numbers.

let pi = 4.0 *. atan 1.0

let sin”’ = (power (derivative 1e-5) 3) sin;;

sin”’ pi;;

4

Evaluation Rules (reduction semantics)

• Programs consist of expressions:

a6 x variables

| fun x->a (defined) functions

| aa applications

| C0 value constructors of arity 0

| Cn(a,	 , a) value constructors of arity n

| fn built-in values (primitives) of a. n

| let x= a in a name bindings (local definitions)

| match a with

p->a | 	 | p->a pattern matching

p6 x pattern variables

| (p,	 , p) tuple patterns

| C0 variant patterns of arity 0

| Cn(p,	 , p) variant patterns of arity n

5

• Arity means how many arguments something requires; (and for tuples,
the length of a tuple).

• To simplify presentation, we will use a primitive fix to define a limited
form of let rec:

let rec f x= e1 in e2≡ let f = fix (fun f x->e1) in e2

• Expressions evaluate (i.e. compute) to values:

v6 fun x->a (defined) functions

| Cn(v1,	 , vn) constructed values

| fn v1	 vk k <n partially applied primitives

• To substitute a value v for a variable x in expression a we write a[x6 v]
– it behaves as if every occurrence of x in a was rewritten by v.

◦ (But actually the value v is not duplicated.)

6

• Reduction (i.e. computation) proceeds as follows: first we give redexes

(fun x->a) v a[x6 v]

let x= v in a a[x6 v]

fn v1	 vn f(v1,	 , vn)

match v with x->a | 	 a[x6 v]

match C1
n(v1,	 , vn) with

C2
n(p1,	 , pk)->a | pm match C1

n(v1,	 , vn)

with pm

match C1
n(v1,	 , vn) with

C1
n(x1,	 , xn)->a | 	 a[x16 v1;	 ;xn6 vn]

If n=0, C1
n(v1,	 , vn) stands for C1

0, etc. By f(v1,	 , vn) we denote the
actual value resulting from computing the primitive. We omit the more
complex cases of pattern matching.

• Rule variables: x matches any expression/pattern variable; a, a
1
, 	 , a

n
match any expression;

v, v
1
, 	 , v

n
match any value. Substitute them so that the left-hand-side of a rule is your

expression, then the right-hand-side is the reduced expression.

7

• The remaining rules evaluate the arguments in arbitrary order, but keep
the order in which let...in and match...with is evaluated.

If ai ai
′, then:

a1 a2 a1
′ a2

a1 a2 a1 a2
′

Cn(a1,	 , ai,	 , an) Cn(a1,	 , ai
′,	 , an)

let x= a1 in a2 let x= a1
′ in a2

match a1 with pm match a1
′ with pm

• Finally, we give the rule for the primitive fix – it is a binary primitive:

fix2 v1 v2 v1 (fix2 v1) v2

Because fix is binary, (fix2 v1) is already a value so it will not be fur-
ther computed until it is applied inside of v1.

• Compute some programs using the rules by hand.

8

Symbolic Derivation Example

Go through the examples from the Lec3.ml file in the toplevel.

9

eval_1_2 <-- 3.00 * x + 2.00 * y + x * x * y

eval_1_2 <-- x * x * y

eval_1_2 <-- y

eval_1_2 --> 2.

eval_1_2 <-- x * x

eval_1_2 <-- x

eval_1_2 --> 1.

eval_1_2 <-- x

eval_1_2 --> 1.

eval_1_2 --> 1.

eval_1_2 --> 2.

eval_1_2 <-- 3.00 * x + 2.00 * y

eval_1_2 <-- 2.00 * y

eval_1_2 <-- y

eval_1_2 --> 2.

eval_1_2 <-- 2.00

eval_1_2 --> 2.

eval_1_2 --> 4.

eval_1_2 <-- 3.00 * x

eval_1_2 <-- x

eval_1_2 --> 1.

eval_1_2 <-- 3.00

eval_1_2 --> 3.

eval_1_2 --> 3.

eval_1_2 --> 7.

eval_1_2 --> 9.

- : float = 9.

10

Tail Calls (and tail recursion)

• Excuse me for not defining what a function call is...

• Computers normally evaluate programs by creating stack frames on the
stack for function calls (roughly like indentation levels in the above
example).

• A tail call is a function call that is performed last when computing a
function.

• Functional language compilers will often insert a “jump” for a tail call
instead of creating a stack frame.

• A function is tail recursive if it calls itself, or functions it mutually-
recurively depends on, only using a tail call.

• Tail recursive functions often have special accumulator arguments that
store intermediate computation results which in a non-tail-recursive func-
tion would just be values of subexpressions.

• The accumulated result is computed in “reverse order” – while climbing
up the recursion rather than while descending (i.e. returning) from it.

11

• The issue is not relevant for lazy programming languages like Haskell.

• Compare:

let rec unfold n = if n <= 0 then [] else n :: unfold (n-1);;

val unfold : int -> int list = <fun>

unfold 100000;;

- : int list =

[100000; 99999; 99998; 99997; 99996; 99995; 99994; 99993; ...]

unfold 1000000;;

Stack overflow during evaluation (looping recursion?).

let rec unfold_tcall acc n =

if n <= 0 then acc else unfold_tcall (n::acc) (n-1);;

val unfold_tcall : int list -> int -> int list = <fun>

unfold_tcall [] 100000;;

- : int list =

[1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; ...]

unfold_tcall [] 1000000;;

- : int list =

[1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; ...]

• Is it possible to find the depth of a tree using a tail-recursive function?

12

First Encounter of Continuation Passing Style

We can postpone doing the actual work till the last moment:

let rec depth tree k = match tree with

| Tip -> k 0

| Node(_,left,right) ->

depth left (fun dleft ->

depth right (fun dright ->

k (1 + (max dleft dright))))

let depth tree = depth tree (fun d -> d)

13

Homework

By “traverse a tree” below we mean: write a function that takes a tree and
returns a list of values in the nodes of the tree.

1. Write a function (of type btree -> int list) that traverses a binary
tree: in prefix order – first the value stored in a node, then values in all
nodes to the left, then values in all nodes to the right;

2. in infix order – first values in all nodes to the left, then value stored in a
node, then values in all nodes to the right (so it is “left-to-right” order);

3. in breadth-first order – first values in more shallow nodes.

4. Turn the function from ex. 1 or 2 into continuation passing style.

14

5. Do the homework from the end of last week slides: write
btree_deriv_at.

6. Write a function simplify: expression -> expression that simpli-
fies the expression a bit, so that for example the result of simplify

(deriv exp dv) looks more like what a human would get computing
the derivative of exp with respect to dv.

• Write a simplify_once function that performs a single step of the
simplification, and wrap it using a general fixpoint function that
performs an operation until a fixed point is reached: given f and x, it
computes fn(x) such that fn(x)= fn+1(x).

15

