
Functional Programming

Computation

Exercise 1. By “traverse a tree” below we mean: write a function that takes a tree and returns a list of
values in the nodes of the tree.

1. Write a function (of type btree -> int list) that traverses a binary tree: in prefix order – first the
value stored in a node, then values in all nodes to the left, then values in all nodes to the right;

2. in infix order – first values in all nodes to the left, then value stored in a node, then values in all nodes
to the right (so it is “left-to-right” order);

3. in breadth-first order – first values in more shallow nodes.

Exercise 2. Turn the function from ex. 1 point 1 or 2 into continuation passing style.

Exercise 3. Do the homework from the end of last week slides: write btree_deriv_at.

Exercise 4. Write a function simplify: expression -> expression that simplifies the expression a
bit, so that for example the result of simplify (deriv exp dv) looks more like what a human would get
computing the derivative of exp with respect to dv:

Write a simplify_once function that performs a single step of the simplification, and wrap it using
a general fixpoint function that performs an operation until a fixed point is reached: given f and x, it
computes fn(x) such that fn(x)= fn+1(x).

Exercise 5. Write two sorting algorithms, working on lists: merge sort and quicksort.

1. Merge sort splits the list roughly in half, sorts the parts, and merges the sorted parts into the sorted
result.

2. Quicksort splits the list into elements smaller/greater than the first element, sorts the parts, and puts
them together.

1


