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Review: a “computation by hand” example

Let’s compute some larger, recursive program.
Recall that we use fix instead of let rec to simplify rules for recursion.
Also remember our syntactic conventions:
fun x y -> e stands for fun x -> (fun y -> e), etc.

let rec fix f x = f (fix f) x Preparations.

type int_list = Nil | Cons of int * int_list

We will evaluate (reduce) the following expression.

let length =

fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs) in

length (Cons (1, (Cons (2, Nil))))
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let length =

fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs) in

length (Cons (1, (Cons (2, Nil))))

let x= v in a ! a[x6 v]

fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs) (Cons (1, (Cons (2, Nil))))

fix2 v1 v2 ! v1 (fix
2 v1) v2
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fix2 v1 v2 ! v1 (fix2 v1) v2

(fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)

(fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs))

(Cons (1, (Cons (2, Nil))))

(fun x->a) v  a[x6 v]

a1 a2 ! a1
′ a2
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(fun x->a) v  a[x6 v]

a1 a2 ! a1
′ a2

(fun l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) xs)

(Cons (1, (Cons (2, Nil))))

(fun x->a) v ! a[x6 v]
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(fun x->a) v ! a[x6 v]

(match Cons (1, (Cons (2, Nil))) with

| Nil -> 0

| Cons (x, xs) -> 1 + (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) xs)

match C1
n(v1,	 , vn) with

C2
n(p1,	 , pk)->a | pm ! match C1

n(v1,	 , vn)

with pm
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match C1
n(v1,	 , vn) with

C2
n(p1,	 , pk)->a | pm ! match C1

n(v1,	 , vn)

with pm

(match Cons (1, (Cons (2, Nil))) with

| Cons (x, xs) -> 1 + (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) xs)

match C1
n(v1,	 , vn) with

C1
n(x1,	 , xn)->a | 	 ! a[x16 v1;	 ;xn6 vn]
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match C1
n(v1,	 , vn) with

C1
n(x1,	 , xn)->a | 	 ! a[x16 v1;	 ;xn6 vn]

1 + (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) (Cons (2, Nil))

fix2 v1 v2  v1 (fix2 v1) v2

a1 a2 ! a1 a2
′
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fix2 v1 v2  v1 (fix2 v1) v2

a1 a2 ! a1 a2
′

1 + (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs))

(fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) (Cons (2, Nil))

(fun x->a) v  a[x6 v]

a1 a2 ! a1 a2
′
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(fun x->a) v  a[x6 v]

a1 a2 ! a1 a2
′

1 + (fun l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) xs))

(Cons (2, Nil))

(fun x->a) v  a[x6 v]

a1 a2 ! a1 a2
′
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(fun x->a) v  a[x6 v]

a1 a2 ! a1 a2
′

1 + (match Cons (2, Nil) with

| Nil -> 0

| Cons (x, xs) -> 1 + (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) xs))

match C1
n(v1,	 , vn) with

C2
n(p1,	 , pk)->a | pm  match C1

n(v1,	 , vn)

with pm

a1 a2 ! a1 a2
′
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match C1
n(v1,	 , vn) with

C2
n(p1,	 , pk)->a | pm  match C1

n(v1,	 , vn)

with pm

a1 a2 ! a1 a2
′

1 + (match Cons (2, Nil) with

| Cons (x, xs) -> 1 + (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) xs)

match C1
n(v1,	 , vn) with

C1
n(x1,	 , xn)->a | 	 ! a[x16 v1;	 ;xn6 vn]
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match C1
n(v1,	 , vn) with

C1
n(x1,	 , xn)->a | 	  a[x16 v1;	 ;xn6 vn]

a1 a2 ! a1 a2
′

1 + (1 + (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) Nil)

fix2 v1 v2  v1 (fix
2 v1) v2

a1 a2 ! a1 a2
′

a1 a2 ! a1 a2
′
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fix2 v1 v2  v1 (fix2 v1) v2

a1 a2 ! a1 a2
′

a1 a2 ! a1 a2
′

1 + (1 + (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs) (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) Nil)

(fun x->a) v  a[x6 v]

a1 a2 ! a1 a2
′

a1 a2 ! a1 a2
′
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(fun x->a) v  a[x6 v]

a1 a2 ! a1 a2
′

a1 a2 ! a1 a2
′

1 + (1 + (fun l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) xs) Nil)

(fun x->a) v  a[x6 v]

a1 a2 ! a1 a2
′

a1 a2 ! a1 a2
′
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(fun x->a) v  a[x6 v]

a1 a2 ! a1 a2
′

a1 a2 ! a1 a2
′

1 + (1 + (match Nil with

| Nil -> 0

| Cons (x, xs) -> 1 + (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) xs))

match C1
n(v1,	 , vn) with

C1
n(x1,	 , xn)->a | 	  a[x16 v1;	 ;xn6 vn]

a1 a2 ! a1 a2
′

a1 a2 ! a1 a2
′
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match C1
n(v1,	 , vn) with

C1
n(x1,	 , xn)->a | 	  a[x16 v1;	 ;xn6 vn]

a1 a2 ! a1 a2
′

a1 a2 ! a1 a2
′

1 + (1 + 0)

fn v1	 vn  f(v1,	 , vn)

a1 a2 ! a1 a2
′

1 + 1

fn v1	 vn ! f(v1,	 , vn)

2
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Language and rules of the untyped λ-calculus

• First, let’s forget about types.

• Next, let’s introduce a shortcut:

◦ We write λx.a for fun x->a, λxy.a for fun x y->a, etc.

• Let’s forget about all other constructions, only fun and variables.

• The real λ-calculus has a more general reduction:

(fun x->a1) a2  a1[x6 a2]

(called β-reduction) and uses bound variable renaming (called α-conver-

sion), or some other trick, to avoid variable capture. But let’s not over-
complicate things.

◦ We will look into the β-reduction rule in the laziness lecture.

◦ Why is β-reduction more general than the rule we use?
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Booleans

• Alonzo Church introduced λ-calculus to encode logic.

• There are multiple ways to encode various sorts of data in λ-calculus.
Not all of them make sense in a typed setting, i.e. the straightforward
encode/decode functions do not type-check for them.

• Define c_true=λxy.x and c_false=λxy.y.

• Define c_and=λxy.xy c_false. Check that it works!

◦ I.e. that c_and c_true c_true = c_true,
otherwise c_and a b = c_false.

let c_true = fun x y -> x “True” is projection on the first argument.

let c_false = fun x y -> y And “false” on the second argument.

let c_and = fun x y -> x y c_false If one is false, then return false.

let encode_bool b = if b then c_true else c_false

let decode_bool c = c true false Test the functions in the toplevel.

• Define c_or and c_not yourself!
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If-then-else and pairs

• We will just use the OCaml syntax from now.

let if_then_else = fun b -> b Booleans select the argument!

Remember to play with the functions in the toplevel.

let c_pair m n = fun x -> x m n We couple things

let c_first = fun p -> p c_true by passing them together.

let c_second = fun p -> p c_false Check that it works!

let encode_pair enc_fst enc_snd (a, b) =

c_pair (enc_fst a) (enc_snd b)

let decode_pair de_fst de_snd c = c (fun x y -> de_fst x, de_snd y)

let decode_bool_pair c = decode_pair decode_bool decode_bool c

• We can define larger tuples in the same manner:

let c_triple l m n = fun x -> x l m n
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Pair-encoded natural numbers

• Our first encoding of natural numbers is as the depth of nested pairs
whose rightmost leaf is λx.x and whose left elements are c_false.

let pn0 = fun x -> x Start with the identity function.

let pn_succ n = c_pair c_false n Stack another pair.

let pn_pred = fun x -> x c_false [Explain these functions.]

let pn_is_zero = fun x -> x c_true

We program in untyped lambda calculus as an exercise, and we need
encoding / decoding to verify our exercises, so using “magic” for encoding /
decoding is “fair game”.

let rec encode_pnat n = We use Obj.magic to forget types.

if n <= 0 then Obj.magic pn0

else pn_succ (Obj.magic (encode_pnat (n-1))) Disregarding types,

let rec decode_pnat pn = these functions are straightforward!

if decode_bool (pn_is_zero pn) then 0

else 1 + decode_pnat (pn_pred (Obj.magic pn))
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Church numerals (natural numbers in Ch. enc.)

• Do you remember our function power f n? We will use its variant for a
different representation of numbers:

let cn0 = fun f x -> x The same as c_false.

let cn1 = fun f x -> f x Behaves like identity.

let cn2 = fun f x -> f (f x)

let cn3 = fun f x -> f (f (f x))

• This is the original Alonzo Church encoding.

let cn_succ = fun n f x -> f (n f x)

• Define addition, multiplication, comparing to zero, and the predecesor
function “-1” for Church numerals.

• Turns out even Alozno Church couldn’t define predecesor right away! But
try to make some progress before you turn to the next slide.

◦ His student Stephen Kleene found it.
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let rec encode_cnat n f =

if n <= 0 then (fun x -> x) else f -| encode_cnat (n-1) f

let decode_cnat n = n ((+) 1) 0

let cn7 f x = encode_cnat 7 f x We need to η-expand these definitions

let cn13 f x = encode_cnat 13 f x for type-system reasons.

(Because OCaml allows side-effects .)

let cn_add = fun n m f x -> n f (m f x) Put n of f in front.

let cn_mult = fun n m f -> n (m f) Repeat n times

putting m of f in front.

let cn_prev n =

fun f x -> This is the “Church numeral signature”.

n The only thing we have is an n-step loop.

(fun g v -> v (g f)) We need sth that operates on f.

(fun z->x) We need to ignore the innermost step.

(fun z->z) We’ve build a “machine” not results – start the machine.

cn_is_zero left as an exercise.
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decode_cnat (cn_prev cn3) !

(cn_prev cn3) ((+) 1) 0 !

(fun f x ->

cn3

(fun g v -> v (g f))

(fun z->x)

(fun z->z)) ((+) 1) 0 !
((fun f x -> f (f (f x)))

(fun g v -> v (g ((+) 1)))

(fun z->0)

(fun z->z)) !
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((fun g v -> v (g ((+) 1)))

((fun g v -> v (g ((+) 1)))

((fun g v -> v (g ((+) 1)))

(fun z->0))))

(fun z->z)) !
((fun z->z)

(((fun g v -> v (g ((+) 1)))

((fun g v -> v (g ((+) 1)))

(fun z->0)))) ((+) 1))) !
(fun g v -> v (g ((+) 1)))

((fun g v -> v (g ((+) 1)))

(fun z->0)) ((+) 1) !
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((+) 1) ((fun g v -> v (g ((+) 1)))

(fun z->0) ((+) 1)) !

((+) 1) (((+) 1) ((fun z->0) ((+) 1)))!
((+) 1) (((+) 1) (0)) !
((+) 1) 1 !
2
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Recursion: Fixpoint Combinator

• Turing’s fixpoint combinator: Θ=(λxy.y (xxy)) (λxy.y (xxy))

N = ΘF

= (λxy.y (xxy)) (λxy.y (xxy))F

=→→ F ((λxy.y (xxy)) (λxy.y (xxy))F )

= F (ΘF )=FN

• Curry’s fixpoint combinator: Y =λf.(λx.f (xx)) (λx.f (xx))

N = YF

= (λf.(λx.f (xx)) (λx.f (xx)))F

=→ (λx.F (xx)) (λx.F (xx))

=→ F ((λx.F (xx)) (λx.F (xx)))

=← F ((λf.(λx.f (xx)) (λx.f (xx)))F )

= F (YF )=FN
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• Call-by-value fixpoint combinator: λf ′.(λfx.f ′ (ff)x) (λfx.f ′ (ff) x)

N = fixF

= (λf ′.(λfx.f ′ (ff)x) (λfx.f ′ (ff) x))F

=→ (λfx.F (ff) x) (λfx.F (ff) x)

=→ λx.F ((λfx.F (ff)x) (λfx.F (ff) x))x

=← λx.F ((λf ′.(λfx.f ′ (ff) x) (λfx.f ′ (ff)x))F ) x

= λx.F (fixF ) x=λx.FNx

=η FN

• The λ-terms we have seen above are fixpoint combinators – means
inside λ-calculus to perform recursion.

• What is the problem with the first two combinators?

ΘF   F ((λxy.y (xxy)) (λxy.y (xxy))F )

  F (F ((λxy.y (xxy)) (λxy.y (xxy))F ))

  F (F (F ((λxy.y (xxy)) (λxy.y (xxy))F )))
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• Recall the distinction between expressions and values from the previous
lecture Computation.

• The reduction rule for λ-calculus is just meant to determine which
expressions are considered “equal” – it is highly non-deterministic , while
on a computer, computation needs to go one way or another.

• Using the general reduction rule of λ-calculus, for a recursive definition,
it is always possible to find an infinite reduction sequence (which means

that you couldn’t complain when a nasty λ-calculus compiler generates infinite loops

for all recursive definitions).

◦ Why?

• Therefore, we need more specific rules. For example, most languages use
(fun x->a) v a[x6 v], which is called call-by-value, or eager compu-
tation (because the program eagerly computes the arguments before
starting to compute the function). (It’s exactly the rule we introduced in
Computation lecture.)
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• What happens with call-by-value fixpoint combinator?

fixF  (λfx.F (ff) x) (λfx.F (ff)x)

 λx.F ((λfx.F (ff) x) (λfx.F (ff) x)) x

Voila – if we use (fun x->a) v a[x6 v] as the rule
rather than (fun x->a1) a2 a1[x 6 a2], the computation stops. Let’s
compute the function on some input:

fixFv  (λfx.F (ff)x) (λfx.F (ff) x) v

 (λx.F ((λfx.F (ff) x) (λfx.F (ff)x)) x) v

 F ((λfx.F (ff) x) (λfx.F (ff) x)) v

 F (λx.F ((λfx.F (ff) x) (λfx.F (ff)x)) x) v

 depends on F
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• Why the name fixpoint? If you look at our derivations, you’ll see that
they show what in math can be written as x = f(x). Such values x are
called fixpoints of f . An arithmetic function can have several fixpoints,
for example f(x) = x2 (which xes are fixpoints?) or no fixpoints, for
example f(x)=x+1.

• When you define a function (or another object) by recursion, it has very
similar meaning: there is a name that is on both sides of =.

• In λ-calculus, there are functions like Θ and Y , that take any function as
an argument, and return its fixpoint.

• We turn a specification of a recursive object into a definition, by solving
it with respect to the recurring name: deriving x = f(x) where x is the
recurring name. We then have x= fix(f).
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• Let’s walk through it for the factorial function (we omit the prefix cn_ –
could be pn_ if pn1 was used instead of cn1 – for numeric functions, and
we shorten if_then_else into if_t_e):

factn = if_t_e (is_zeron) cn1 (multn (fact (predn)))

fact = λn.if_t_e (is_zeron) cn1 (multn (fact (predn)))

fact = (λfn.if_t_e (is_zeron) cn1 (multn (f (predn)))) fact

fact = fix (λfn.if_t_e (is_zeron) cn1 (multn (f (predn))))

The last specification is a valid definition: we just give a name to a
(ground , a.k.a. closed ) expression.

• We have seen how fix works already!

◦ Compute fact cn2.

• What does fix (fun x -> cn_succ x) mean?
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Encoding of Lists and Trees

• A list is either empty, which we often call Empty or Nil, or it consists of
an element followed by another list (called “tail”), the other case often
called Cons.

• Define nil=λxy.y and consHT =λxy.xHT .

• Add numbers stored inside a list:

addlist l = l (λht.cn_addh (addlist t)) cn0

To make a proper definition, we need to apply fix to the solution of
above equation.

addlist = fix (λfl.l (λht.cn_add h (ft)) cn0)
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• For trees, let’s use a different form of binary trees than so far: instead of
keeping elements in inner nodes, we will keep elements in leaves.

• Define leafn=λxy.xn and nodeLR=λxy.yLR.

• Add numbers stored inside a tree:

addtree t = t (λn.n) (λlr.cn_add (addtree l) (addtree r))

and, in solved form:

addtree = fix (λft.t (λn.n) (λlr.cn_add (fl) (fr)))
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let nil = fun x y -> y

let cons h t = fun x y -> x h t

let addlist l =

fix (fun f l -> l (fun h t -> cn_add h (f t)) cn0) l

;;

decode_cnat

(addlist (cons cn1 (cons cn2 (cons cn7 nil))));;

let leaf n = fun x y -> x n

let node l r = fun x y -> y l r

let addtree t =

fix (fun f t ->

t (fun n -> n) (fun l r -> cn_add (f l) (f r))

) t

;;

decode_cnat

(addtree (node (node (leaf cn3) (leaf cn7))

(leaf cn1)));;
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• Observe a regularity: when we encode a variant type with n variants, for
each variant we define a function that takes n arguments.

• If the kth variant Ck has mk parameters, then the function ck that
encodes it will have the form:

Ck(v1,	 , vmk
)∼ ck v1	 vmk

=λx1	xn.xk v1	 vmk

• The encoded variants serve as a shallow pattern matching with guaran-
teed exhaustiveness: kth argument corresponds to kth branch of pattern
matching.
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Looping Recursion

• Let’s come back to numbers defined as lengths lists and define addition:

let pn_add m n =

fix (fun f m n ->

if_then_else (pn_is_zero m)

n (pn_succ (f (pn_pred m) n))

) m n;;

decode_pnat (pn_add pn3 pn3);;

• Oops... OCaml says:
Stack overflow during evaluation (looping recursion?).

• What is wrong? Nothing as far as λ-calculus is concerned. But OCaml
and F# always compute arguments before calling a function. By defini-
tion of fix, f corresponds to recursively calling pn_add. Therefore,
(pn_succ (f (pn_pred m) n)) will be called regardless of what
(pn_is_zero m) returns!

• Why addlist and addtree work?
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• addlist and addtree work because their recursive calls are “guarded” by
corresponding fun. What is inside of fun is not computed immediately,
only when the function is applied to argument(s).

• To avoid looping recursion, you need to guard all recursive calls. Besides
putting them inside fun, in OCaml or F# you can also put them in
branches of a match clause, as long as one of the branches does not have
unguarded recursive calls!
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• The trick to use with functions like if_then_else, is to guard their
arguments with fun x ->, where x is not used, and apply the result of
if_then_else to some dummy value.

◦ In OCaml or F# we would guard by fun () ->, and then apply to
(), but we do not have datatypes like unit in λ-calculus.

let pn_add m n =

fix (fun f m n ->

(if_then_else (pn_is_zero m)

(fun x -> n) (fun x -> pn_succ (f (pn_pred m) n)))

id

) m n;;

decode_pnat (pn_add pn3 pn3);;

decode_pnat (pn_add pn3 pn7);;
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In-class Work and Homework

Define (implement) and verify:

1. c_or and c_not;

2. exponentiation for Church numerals;

3. is-zero predicate for Church numerals;

4. even-number predicate for Church numerals;

5. multiplication for pair-encoded natural numbers;

6. factorial n! for pair-encoded natural numbers.

7. Construct λ-terms m0,m1,	 such that for all n one has:

m0 = x

mn+1 = mn+2mn

(where equality is after performing β-reductions).
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8. Define (implement) and verify a function computing: the length of a list
(in Church numerals);

9. cn_max – maximum of two Church numerals;

10. the depth of a tree (in Church numerals).

11. Representing side-effects as an explicitly “passed around” state value,
write combinators that represent the imperative constructs:

a. for...to...

b. for...downto...

c. while...do...

d. do...while...

e. repeat...until...
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Rather than writing a λ-term using the encodings that we’ve learnt, just
implement the functions in OCaml / F#, using built-in int and bool

types. You can use let rec instead of fix.

• For example, in exercise (a), write a function let rec for_to f

beg_i end_i s =... where f takes arguments i ranging from beg_i

to end_i, state s at given step, and returns state s at next step; the
for_to function returns the state after the last step.

• And in exercise (c), write a function let rec while_do p f s =...
where both p and f take state s at given step, and if p s returns
true, then f s is computed to obtain state at next step; the
while_do function returns the state after the last step.

Do not use the imperative features of OCaml and F#, we will not even
cover them in this course!
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Despite we will not cover them, it is instructive to see the implementation
using the imperative features, to better understand what is actually required
of a solution to the last exercise.

a) let for_to f beg_i end_i s =

let s = ref s in

for i = beg_i to end_i do

s := f i !s

done;

!s

b) let for_downto f beg_i end_i s =

let s = ref s in

for i = beg_i downto end_i do

s := f i !s

done;

!s
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c) let while_do p f s =

let s = ref s in

while p !s do

s := f !s

done;

!s

d) let do_while p f s =

let s = ref (f s) in

while p !s do

s := f !s

done;

!s

e) let repeat_until p f s =

let s = ref (f s) in

while not (p !s) do

s := f !s

done;

!s
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