
Functional Programming

by Łukasz Stafiniak

Email: lukstafi@gmail.com, lukstafi@ii.uni.wroc.pl

Web: www.ii.uni.wroc.pl/~lukstafi

Lecture 4: Functions.

Programming in untyped λ-calculus.

Introduction to Lambda Calculus Henk Barendregt, Erik Barendsen

Lecture Notes on the Lambda Calculus Peter Selinger

1

Review: a “computation by hand” example

Let’s compute some larger, recursive program.
Recall that we use fix instead of let rec to simplify rules for recursion.
Also remember our syntactic conventions:
fun x y -> e stands for fun x -> (fun y -> e), etc.

let rec fix f x = f (fix f) x Preparations.

type int_list = Nil | Cons of int * int_list

We will evaluate (reduce) the following expression.

let length =

fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs) in

length (Cons (1, (Cons (2, Nil))))

2

let length =

fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs) in

length (Cons (1, (Cons (2, Nil))))

let x= v in a ! a[x6 v]

fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs) (Cons (1, (Cons (2, Nil))))

fix2 v1 v2 ! v1 (fix
2 v1) v2

3

fix2 v1 v2 ! v1 (fix2 v1) v2

(fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)

(fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs))

(Cons (1, (Cons (2, Nil))))

(fun x->a) v a[x6 v]

a1 a2 ! a1
′ a2

4

(fun x->a) v a[x6 v]

a1 a2 ! a1
′ a2

(fun l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) xs)

(Cons (1, (Cons (2, Nil))))

(fun x->a) v ! a[x6 v]

5

(fun x->a) v ! a[x6 v]

(match Cons (1, (Cons (2, Nil))) with

| Nil -> 0

| Cons (x, xs) -> 1 + (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) xs)

match C1
n(v1,	 , vn) with

C2
n(p1,	 , pk)->a | pm ! match C1

n(v1,	 , vn)

with pm

6

match C1
n(v1,	 , vn) with

C2
n(p1,	 , pk)->a | pm ! match C1

n(v1,	 , vn)

with pm

(match Cons (1, (Cons (2, Nil))) with

| Cons (x, xs) -> 1 + (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) xs)

match C1
n(v1,	 , vn) with

C1
n(x1,	 , xn)->a | 	 ! a[x16 v1;	 ;xn6 vn]

7

match C1
n(v1,	 , vn) with

C1
n(x1,	 , xn)->a | 	 ! a[x16 v1;	 ;xn6 vn]

1 + (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) (Cons (2, Nil))

fix2 v1 v2 v1 (fix2 v1) v2

a1 a2 ! a1 a2
′

8

fix2 v1 v2 v1 (fix2 v1) v2

a1 a2 ! a1 a2
′

1 + (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs))

(fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) (Cons (2, Nil))

(fun x->a) v a[x6 v]

a1 a2 ! a1 a2
′

9

(fun x->a) v a[x6 v]

a1 a2 ! a1 a2
′

1 + (fun l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) xs))

(Cons (2, Nil))

(fun x->a) v a[x6 v]

a1 a2 ! a1 a2
′

10

(fun x->a) v a[x6 v]

a1 a2 ! a1 a2
′

1 + (match Cons (2, Nil) with

| Nil -> 0

| Cons (x, xs) -> 1 + (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) xs))

match C1
n(v1,	 , vn) with

C2
n(p1,	 , pk)->a | pm match C1

n(v1,	 , vn)

with pm

a1 a2 ! a1 a2
′

11

match C1
n(v1,	 , vn) with

C2
n(p1,	 , pk)->a | pm match C1

n(v1,	 , vn)

with pm

a1 a2 ! a1 a2
′

1 + (match Cons (2, Nil) with

| Cons (x, xs) -> 1 + (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) xs)

match C1
n(v1,	 , vn) with

C1
n(x1,	 , xn)->a | 	 ! a[x16 v1;	 ;xn6 vn]

12

match C1
n(v1,	 , vn) with

C1
n(x1,	 , xn)->a | 	 a[x16 v1;	 ;xn6 vn]

a1 a2 ! a1 a2
′

1 + (1 + (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) Nil)

fix2 v1 v2 v1 (fix
2 v1) v2

a1 a2 ! a1 a2
′

a1 a2 ! a1 a2
′

13

fix2 v1 v2 v1 (fix2 v1) v2

a1 a2 ! a1 a2
′

a1 a2 ! a1 a2
′

1 + (1 + (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs) (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) Nil)

(fun x->a) v a[x6 v]

a1 a2 ! a1 a2
′

a1 a2 ! a1 a2
′

14

(fun x->a) v a[x6 v]

a1 a2 ! a1 a2
′

a1 a2 ! a1 a2
′

1 + (1 + (fun l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) xs) Nil)

(fun x->a) v a[x6 v]

a1 a2 ! a1 a2
′

a1 a2 ! a1 a2
′

15

(fun x->a) v a[x6 v]

a1 a2 ! a1 a2
′

a1 a2 ! a1 a2
′

1 + (1 + (match Nil with

| Nil -> 0

| Cons (x, xs) -> 1 + (fix (fun f l ->

match l with

| Nil -> 0

| Cons (x, xs) -> 1 + f xs)) xs))

match C1
n(v1,	 , vn) with

C1
n(x1,	 , xn)->a | 	 a[x16 v1;	 ;xn6 vn]

a1 a2 ! a1 a2
′

a1 a2 ! a1 a2
′

16

match C1
n(v1,	 , vn) with

C1
n(x1,	 , xn)->a | 	 a[x16 v1;	 ;xn6 vn]

a1 a2 ! a1 a2
′

a1 a2 ! a1 a2
′

1 + (1 + 0)

fn v1	 vn f(v1,	 , vn)

a1 a2 ! a1 a2
′

1 + 1

fn v1	 vn ! f(v1,	 , vn)

2

17

Language and rules of the untyped λ-calculus

• First, let’s forget about types.

• Next, let’s introduce a shortcut:

◦ We write λx.a for fun x->a, λxy.a for fun x y->a, etc.

• Let’s forget about all other constructions, only fun and variables.

• The real λ-calculus has a more general reduction:

(fun x->a1) a2 a1[x6 a2]

(called β-reduction) and uses bound variable renaming (called α-conver-

sion), or some other trick, to avoid variable capture. But let’s not over-
complicate things.

◦ We will look into the β-reduction rule in the laziness lecture.

◦ Why is β-reduction more general than the rule we use?

18

Booleans

• Alonzo Church introduced λ-calculus to encode logic.

• There are multiple ways to encode various sorts of data in λ-calculus.
Not all of them make sense in a typed setting, i.e. the straightforward
encode/decode functions do not type-check for them.

• Define c_true=λxy.x and c_false=λxy.y.

• Define c_and=λxy.xy c_false. Check that it works!

◦ I.e. that c_and c_true c_true = c_true,
otherwise c_and a b = c_false.

let c_true = fun x y -> x “True” is projection on the first argument.

let c_false = fun x y -> y And “false” on the second argument.

let c_and = fun x y -> x y c_false If one is false, then return false.

let encode_bool b = if b then c_true else c_false

let decode_bool c = c true false Test the functions in the toplevel.

• Define c_or and c_not yourself!

19

If-then-else and pairs

• We will just use the OCaml syntax from now.

let if_then_else = fun b -> b Booleans select the argument!

Remember to play with the functions in the toplevel.

let c_pair m n = fun x -> x m n We couple things

let c_first = fun p -> p c_true by passing them together.

let c_second = fun p -> p c_false Check that it works!

let encode_pair enc_fst enc_snd (a, b) =

c_pair (enc_fst a) (enc_snd b)

let decode_pair de_fst de_snd c = c (fun x y -> de_fst x, de_snd y)

let decode_bool_pair c = decode_pair decode_bool decode_bool c

• We can define larger tuples in the same manner:

let c_triple l m n = fun x -> x l m n

20

Pair-encoded natural numbers

• Our first encoding of natural numbers is as the depth of nested pairs
whose rightmost leaf is λx.x and whose left elements are c_false.

let pn0 = fun x -> x Start with the identity function.

let pn_succ n = c_pair c_false n Stack another pair.

let pn_pred = fun x -> x c_false [Explain these functions.]

let pn_is_zero = fun x -> x c_true

We program in untyped lambda calculus as an exercise, and we need
encoding / decoding to verify our exercises, so using “magic” for encoding /
decoding is “fair game”.

let rec encode_pnat n = We use Obj.magic to forget types.

if n <= 0 then Obj.magic pn0

else pn_succ (Obj.magic (encode_pnat (n-1))) Disregarding types,

let rec decode_pnat pn = these functions are straightforward!

if decode_bool (pn_is_zero pn) then 0

else 1 + decode_pnat (pn_pred (Obj.magic pn))

21

Church numerals (natural numbers in Ch. enc.)

• Do you remember our function power f n? We will use its variant for a
different representation of numbers:

let cn0 = fun f x -> x The same as c_false.

let cn1 = fun f x -> f x Behaves like identity.

let cn2 = fun f x -> f (f x)

let cn3 = fun f x -> f (f (f x))

• This is the original Alonzo Church encoding.

let cn_succ = fun n f x -> f (n f x)

• Define addition, multiplication, comparing to zero, and the predecesor
function “-1” for Church numerals.

• Turns out even Alozno Church couldn’t define predecesor right away! But
try to make some progress before you turn to the next slide.

◦ His student Stephen Kleene found it.

22

let rec encode_cnat n f =

if n <= 0 then (fun x -> x) else f -| encode_cnat (n-1) f

let decode_cnat n = n ((+) 1) 0

let cn7 f x = encode_cnat 7 f x We need to η-expand these definitions

let cn13 f x = encode_cnat 13 f x for type-system reasons.

(Because OCaml allows side-effects .)

let cn_add = fun n m f x -> n f (m f x) Put n of f in front.

let cn_mult = fun n m f -> n (m f) Repeat n times

putting m of f in front.

let cn_prev n =

fun f x -> This is the “Church numeral signature”.

n The only thing we have is an n-step loop.

(fun g v -> v (g f)) We need sth that operates on f.

(fun z->x) We need to ignore the innermost step.

(fun z->z) We’ve build a “machine” not results – start the machine.

cn_is_zero left as an exercise.

23

decode_cnat (cn_prev cn3) !

(cn_prev cn3) ((+) 1) 0 !

(fun f x ->

cn3

(fun g v -> v (g f))

(fun z->x)

(fun z->z)) ((+) 1) 0 !
((fun f x -> f (f (f x)))

(fun g v -> v (g ((+) 1)))

(fun z->0)

(fun z->z)) !

24

((fun g v -> v (g ((+) 1)))

((fun g v -> v (g ((+) 1)))

((fun g v -> v (g ((+) 1)))

(fun z->0))))

(fun z->z)) !
((fun z->z)

(((fun g v -> v (g ((+) 1)))

((fun g v -> v (g ((+) 1)))

(fun z->0)))) ((+) 1))) !
(fun g v -> v (g ((+) 1)))

((fun g v -> v (g ((+) 1)))

(fun z->0)) ((+) 1) !

25

((+) 1) ((fun g v -> v (g ((+) 1)))

(fun z->0) ((+) 1)) !

((+) 1) (((+) 1) ((fun z->0) ((+) 1)))!
((+) 1) (((+) 1) (0)) !
((+) 1) 1 !
2

26

Recursion: Fixpoint Combinator

• Turing’s fixpoint combinator: Θ=(λxy.y (xxy)) (λxy.y (xxy))

N = ΘF

= (λxy.y (xxy)) (λxy.y (xxy))F

=→→ F ((λxy.y (xxy)) (λxy.y (xxy))F)

= F (ΘF)=FN

• Curry’s fixpoint combinator: Y =λf.(λx.f (xx)) (λx.f (xx))

N = YF

= (λf.(λx.f (xx)) (λx.f (xx)))F

=→ (λx.F (xx)) (λx.F (xx))

=→ F ((λx.F (xx)) (λx.F (xx)))

=← F ((λf.(λx.f (xx)) (λx.f (xx)))F)

= F (YF)=FN

27

• Call-by-value fixpoint combinator: λf ′.(λfx.f ′ (ff)x) (λfx.f ′ (ff) x)

N = fixF

= (λf ′.(λfx.f ′ (ff)x) (λfx.f ′ (ff) x))F

=→ (λfx.F (ff) x) (λfx.F (ff) x)

=→ λx.F ((λfx.F (ff)x) (λfx.F (ff) x))x

=← λx.F ((λf ′.(λfx.f ′ (ff) x) (λfx.f ′ (ff)x))F) x

= λx.F (fixF) x=λx.FNx

=η FN

• The λ-terms we have seen above are fixpoint combinators – means
inside λ-calculus to perform recursion.

• What is the problem with the first two combinators?

ΘF F ((λxy.y (xxy)) (λxy.y (xxy))F)

 F (F ((λxy.y (xxy)) (λxy.y (xxy))F))

 F (F (F ((λxy.y (xxy)) (λxy.y (xxy))F)))

 	
28

• Recall the distinction between expressions and values from the previous
lecture Computation.

• The reduction rule for λ-calculus is just meant to determine which
expressions are considered “equal” – it is highly non-deterministic , while
on a computer, computation needs to go one way or another.

• Using the general reduction rule of λ-calculus, for a recursive definition,
it is always possible to find an infinite reduction sequence (which means

that you couldn’t complain when a nasty λ-calculus compiler generates infinite loops

for all recursive definitions).

◦ Why?

• Therefore, we need more specific rules. For example, most languages use
(fun x->a) v a[x6 v], which is called call-by-value, or eager compu-
tation (because the program eagerly computes the arguments before
starting to compute the function). (It’s exactly the rule we introduced in
Computation lecture.)

29

• What happens with call-by-value fixpoint combinator?

fixF (λfx.F (ff) x) (λfx.F (ff)x)

 λx.F ((λfx.F (ff) x) (λfx.F (ff) x)) x

Voila – if we use (fun x->a) v a[x6 v] as the rule
rather than (fun x->a1) a2 a1[x 6 a2], the computation stops. Let’s
compute the function on some input:

fixFv (λfx.F (ff)x) (λfx.F (ff) x) v

 (λx.F ((λfx.F (ff) x) (λfx.F (ff)x)) x) v

 F ((λfx.F (ff) x) (λfx.F (ff) x)) v

 F (λx.F ((λfx.F (ff) x) (λfx.F (ff)x)) x) v

 depends on F

30

• Why the name fixpoint? If you look at our derivations, you’ll see that
they show what in math can be written as x = f(x). Such values x are
called fixpoints of f . An arithmetic function can have several fixpoints,
for example f(x) = x2 (which xes are fixpoints?) or no fixpoints, for
example f(x)=x+1.

• When you define a function (or another object) by recursion, it has very
similar meaning: there is a name that is on both sides of =.

• In λ-calculus, there are functions like Θ and Y , that take any function as
an argument, and return its fixpoint.

• We turn a specification of a recursive object into a definition, by solving
it with respect to the recurring name: deriving x = f(x) where x is the
recurring name. We then have x= fix(f).

31

• Let’s walk through it for the factorial function (we omit the prefix cn_ –
could be pn_ if pn1 was used instead of cn1 – for numeric functions, and
we shorten if_then_else into if_t_e):

factn = if_t_e (is_zeron) cn1 (multn (fact (predn)))

fact = λn.if_t_e (is_zeron) cn1 (multn (fact (predn)))

fact = (λfn.if_t_e (is_zeron) cn1 (multn (f (predn)))) fact

fact = fix (λfn.if_t_e (is_zeron) cn1 (multn (f (predn))))

The last specification is a valid definition: we just give a name to a
(ground , a.k.a. closed) expression.

• We have seen how fix works already!

◦ Compute fact cn2.

• What does fix (fun x -> cn_succ x) mean?

32

Encoding of Lists and Trees

• A list is either empty, which we often call Empty or Nil, or it consists of
an element followed by another list (called “tail”), the other case often
called Cons.

• Define nil=λxy.y and consHT =λxy.xHT .

• Add numbers stored inside a list:

addlist l = l (λht.cn_addh (addlist t)) cn0

To make a proper definition, we need to apply fix to the solution of
above equation.

addlist = fix (λfl.l (λht.cn_add h (ft)) cn0)

33

• For trees, let’s use a different form of binary trees than so far: instead of
keeping elements in inner nodes, we will keep elements in leaves.

• Define leafn=λxy.xn and nodeLR=λxy.yLR.

• Add numbers stored inside a tree:

addtree t = t (λn.n) (λlr.cn_add (addtree l) (addtree r))

and, in solved form:

addtree = fix (λft.t (λn.n) (λlr.cn_add (fl) (fr)))

34

let nil = fun x y -> y

let cons h t = fun x y -> x h t

let addlist l =

fix (fun f l -> l (fun h t -> cn_add h (f t)) cn0) l

;;

decode_cnat

(addlist (cons cn1 (cons cn2 (cons cn7 nil))));;

let leaf n = fun x y -> x n

let node l r = fun x y -> y l r

let addtree t =

fix (fun f t ->

t (fun n -> n) (fun l r -> cn_add (f l) (f r))

) t

;;

decode_cnat

(addtree (node (node (leaf cn3) (leaf cn7))

(leaf cn1)));;

35

• Observe a regularity: when we encode a variant type with n variants, for
each variant we define a function that takes n arguments.

• If the kth variant Ck has mk parameters, then the function ck that
encodes it will have the form:

Ck(v1,	 , vmk
)∼ ck v1	 vmk

=λx1	xn.xk v1	 vmk

• The encoded variants serve as a shallow pattern matching with guaran-
teed exhaustiveness: kth argument corresponds to kth branch of pattern
matching.

36

Looping Recursion

• Let’s come back to numbers defined as lengths lists and define addition:

let pn_add m n =

fix (fun f m n ->

if_then_else (pn_is_zero m)

n (pn_succ (f (pn_pred m) n))

) m n;;

decode_pnat (pn_add pn3 pn3);;

• Oops... OCaml says:
Stack overflow during evaluation (looping recursion?).

• What is wrong? Nothing as far as λ-calculus is concerned. But OCaml
and F# always compute arguments before calling a function. By defini-
tion of fix, f corresponds to recursively calling pn_add. Therefore,
(pn_succ (f (pn_pred m) n)) will be called regardless of what
(pn_is_zero m) returns!

• Why addlist and addtree work?

37

• addlist and addtree work because their recursive calls are “guarded” by
corresponding fun. What is inside of fun is not computed immediately,
only when the function is applied to argument(s).

• To avoid looping recursion, you need to guard all recursive calls. Besides
putting them inside fun, in OCaml or F# you can also put them in
branches of a match clause, as long as one of the branches does not have
unguarded recursive calls!

38

• The trick to use with functions like if_then_else, is to guard their
arguments with fun x ->, where x is not used, and apply the result of
if_then_else to some dummy value.

◦ In OCaml or F# we would guard by fun () ->, and then apply to
(), but we do not have datatypes like unit in λ-calculus.

let pn_add m n =

fix (fun f m n ->

(if_then_else (pn_is_zero m)

(fun x -> n) (fun x -> pn_succ (f (pn_pred m) n)))

id

) m n;;

decode_pnat (pn_add pn3 pn3);;

decode_pnat (pn_add pn3 pn7);;

39

In-class Work and Homework

Define (implement) and verify:

1. c_or and c_not;

2. exponentiation for Church numerals;

3. is-zero predicate for Church numerals;

4. even-number predicate for Church numerals;

5. multiplication for pair-encoded natural numbers;

6. factorial n! for pair-encoded natural numbers.

7. Construct λ-terms m0,m1,	 such that for all n one has:

m0 = x

mn+1 = mn+2mn

(where equality is after performing β-reductions).

40

8. Define (implement) and verify a function computing: the length of a list
(in Church numerals);

9. cn_max – maximum of two Church numerals;

10. the depth of a tree (in Church numerals).

11. Representing side-effects as an explicitly “passed around” state value,
write combinators that represent the imperative constructs:

a. for...to...

b. for...downto...

c. while...do...

d. do...while...

e. repeat...until...

41

Rather than writing a λ-term using the encodings that we’ve learnt, just
implement the functions in OCaml / F#, using built-in int and bool

types. You can use let rec instead of fix.

• For example, in exercise (a), write a function let rec for_to f

beg_i end_i s =... where f takes arguments i ranging from beg_i

to end_i, state s at given step, and returns state s at next step; the
for_to function returns the state after the last step.

• And in exercise (c), write a function let rec while_do p f s =...
where both p and f take state s at given step, and if p s returns
true, then f s is computed to obtain state at next step; the
while_do function returns the state after the last step.

Do not use the imperative features of OCaml and F#, we will not even
cover them in this course!

42

Despite we will not cover them, it is instructive to see the implementation
using the imperative features, to better understand what is actually required
of a solution to the last exercise.

a) let for_to f beg_i end_i s =

let s = ref s in

for i = beg_i to end_i do

s := f i !s

done;

!s

b) let for_downto f beg_i end_i s =

let s = ref s in

for i = beg_i downto end_i do

s := f i !s

done;

!s

43

c) let while_do p f s =

let s = ref s in

while p !s do

s := f !s

done;

!s

d) let do_while p f s =

let s = ref (f s) in

while p !s do

s := f !s

done;

!s

e) let repeat_until p f s =

let s = ref (f s) in

while not (p !s) do

s := f !s

done;

!s

44

