Functional Programming

BY LLUKASZ STAFINIAK

Email: 1lukstafi@gmail.com, lukstafi@ii.uni.wroc.pl
Web: www.ii.uni.wroc.pl/“lukstafi

Lecture 5: Polymorphism & ADTs

Parametric types. Abstract Data Types.

Example: maps using red-black trees.

If you see any error on the slides, let me know!

Type Inference

We have seen the rules that govern the assignment of types to expressions,
but how does OCaml guess what types to use, and when no correct types
exist? It solves equations.

e Variables play two roles: of unknowns and of parameters.

©)

Inside:

let £ = List.hd;;
val £ : ?a list -> ’a

>a is a parameter: it can become any type. Mathematically we write:
f:Va.alist — o — the quantified type is called a type scheme.

Inside:

let x = ref [J;;
val x : ?_a list ref

>_a is an unknown. It stands for a particular type like float or
(int -> int), OCaml just doesn't yet know the type.

2

©)

OCaml only reports unknowns like ’>_a in inferred types for reasons
not relevant to functional programming. When unknowns appear in
inferred type against our expectations, n-expansion may help: writing
let f x = expr x instead of let f = expr — for example:

let £ = List.append [];;

val £ : ’_a list -> ’_a list = <fun>
let £ 1 = List.append [] 1;;

val £ : ’a list -> ’a list = <fun>

e A type environment specifies what names (corresponding to parameters
and definitions) are available for an expression, because they were intro-
duced above it, and it specifies their types.

e Type inference solves equations over unknowns. “What has to hold so
that e: 7 in type environment ['?”

©)

If, for example, f: Va.a list — o € I', then for f: 7 we introduce
~vlist — v =71 for some fresh unknown ~.

For e eo: 7 we introduce S = 7 and ask for e;: v — [and es: v, for
some fresh unknowns (3, ~.

For fun z — e: 7 we introduce 3 — v =7 and ask for e: v in environ-
ment {z: S} UL, for some fresh unknowns 5, .

Case let © = e in eo: 7 is different. One approach is to first solve the
equations that we get by asking for e;: 3, for some fresh unknown £.
Let's say a solution 5 = 73 has been found, a;...a,f;...6,, are the
remaining unknowns in 73, and «;...c,, are all that do not appear in
['. Then we ask for es: 7 in environment {z:Vay...cu,. 75} UT.

Remember that whenever we establish a solution 8 = 75 to an
unknown (3, it takes effect everywhere!

To find a type for e (in environment I'), we pick a fresh unknown g
and ask for e: 5 (in I').

The “top-level” definitions for which the system infers types with variables
are called polymorphic, which informally means “working with different
shapes of data”.

This kind of polymorphism is called parametric polymorphism, since
the types have parameters. A different kind of polymorphism is pro-
vided by object-oriented programming languages.

4

Parametric Types

e Polymorphic functions shine when used with polymorphic data types. In:
type ’a my_list = Empty | Cons of ’a * ’a my_list
we define lists that can store elements of any type ’a. Now:

let tail 1 =
match 1 with
| Empty -> invalid_arg
| Cons (_, tl) -> tl;;
val tail : ’a my_list -> ’a my_list

is a polymorphic function: works for lists with elements of any type.

e A parametric type like a my_list is not itself a data type but a family
of data types: bool my_list, int my_list etc. are different types.

o We say that the type int my_list instantiates the parametric type
’a my_list.

e In OCaml, the syntax is a bit confusing: type parameters precede type
name. For example:

type (’a, ’b) choice = Left of ’a | Right of ’b
has two parameters. Mathematically we would write choice(a,).
o Functions do not have to be polymorphic:

let get_int c =
match c with
| Left i -> i
| Right b -> if b then 1 else 0;;
val get_int : (int, bool) choice -> int

e In F#, we provide parameters (when more than one) after type name:
type choice<’a,’b> = Left of ’a | Right of ’b
e In Haskell, we provide type parameters similarly to function arguments:

data Choice a b = Left a | Right b

Type Inference, Formally

A statement that an expression has a type in an environment is called a
type judgement. For environment I' = {z: Vay...0,.7; ...}, expression e
and type 7 we write

I'Fe: T

We will derive the equations in one go using [-]|, to be solved later.
Besides equations we will need to manage introduced variables, using
existential quantification.

For local definitions we require to remember what constraints should hold
when the definition is used. Therefore we extend type schemes in the
environment to: I' = {x: V[31...6,n[Faq...a. D].7; ...} where D are equa-
tions — keeping the variables «;...c,, introduced while deriving D in
front.

o A simpler form would be enough: I'={x:V3[da;...a.,. D].5; ...}

II'Fa:7]

[T+ fun x->e: 7]

[T'Feqes: 7]
[T'FKej...en: 7]
[T'Fe:7]
e=letxz=e;ines

[T'Fe:7]

e=letrecx =e1ines

3B'a’.(D]Ba := B'a’| ATy[fa = f'a’|=T)
where T'(z) =V3[3a.D].7, B'a’#FV(T, 7)

Jagas.([T{x: a1} e as] A ag — as=7),
where ayas#FV (L, 1)

Jda.([TFer:a—= 7] A[TF e al), a#FV(T, 7)

da’.(N[TF e mila:=a’]] Ae(a’)=T),
w. K:Va.n x...xm—e(a),a’#FV (L, 1)

(FB.C)N[I'{z:VB|C].8} F ea: 7]
where C' ="' ey: F]

(FAB.C)N[I{z:VB|C].8} Fea: 7]
where C'=[I'{x: B} e1: B]

3

[T'Fe:7]
e =match e, with ¢

¢ = pi-€i|...|pn-€n

I, X Fp.e:m — 72

[[Z = piﬁ]]

[XFpt7]

o, [T F ey ap] As [T F pi.ei: o, — 7],
a,#FV (L, 1)

[EFplr] AJBIT Fe: 7]
where 3BT is [pt7], B#FV(L, 1)

derives constraints on type of matched value

derives environment for pattern variables

e By a or a; we denote a sequence of some length: a;...q,,

e By A;p; we denote a conjunction of ¢;: ©1...p,,.

Polymorphic Recursion

Note the limited polymorphism of let rec f = ... — we cannot use f
polymorphically in its definition.

o In modern OCaml we can bypass the problem if we provide type of f
upfront: let rec £ : ’a. ’a -> ’a list = ...

o where ’a. ’a -> ’a list stands for Va.a — o list.

Using the recursively defined function with different types in its definition
is called polymorphic recursion.

It is most useful together with irregular recursive datatypes where the
recursive use has different type arguments than the actual parameters.

10

Polymorphic Rec: A list alternating between two types of elements

type (’x, ’o0) alterning =
| Stop
| One of ’x * (%0, ’x) alterning

let rec to_list
’x 0 ’a. (’x->’a) -> (Po->’a) ->
(’x, ’0) alterning -> ’a list =
fun x2a o2a ->
function
| Stop -> []
| One (x, rest) -> x2a x::to_list o2a x2a rest

let to_choice_list alt =
to_list (fun x->Left x) (fun o->Right o) alt

let 1t = to_choice_1list
(One (1, One (, One (2, One (, Stop)))))

11

Polymorphic Rec: Data-Structural Bootstrapping

type ’a seq = Nil | Zero of (’a * ’a) seq | One of ’a * (’a * ’a) seq
We store a list of elements in exponentially increasing chunks.
let example =
One (0, One ((1,2), Zero (One ((((3,4),(5,6)), ((7,8),(9,10))), Nil))))

let rec cons : ’a. ’a -> ’a seq -> ’a seq =

fun x -> function Appending an element to the datastructure is like

| Nil -> One (x, Nil) adding one to a binary number: 140=1

| Zero ps -> One (x, ps) 14...0=...1

| One (y, ps) -> Zero (coms (x,y) ps) 14...1=[...41]0
let rec lookup : ’a. int -> ’a seq -> ’a =

fun i s -> match i, s with Rather than returning None : ’a option

| _, Nil -> raise Not_found we raise exception, for convenience.

| 0, One (x, _) -> x
| i, One (_, ps) -> lookup (i-1) (Zero ps)
|

i, Zero ps -> Random-Access lookup works
let x, y = lookup (i / 2) ps in in logarithmic time — much faster than
if i mod 2 = 0 then x else y in standard lists.

12

Algebraic Specification

e The way we introduce a data structure, like complex numbers or strings,
in mathematics, is by specifying an algebraic structure.

e Algebraic structures consist of a set (or several sets, for so-called multi-
sorted algebras) and a bunch of functions (aka. operations) over this set
(or sets).

e A signature is a rough description of an algebraic structure: it provides
sorts — names for the sets (in multisorted case) and names of the func-
tions-operations together with their arity (and what sorts of arguments
they take).

e We select a class of algebraic structures by providing axioms that have to
hold. We will call such classes algebraic specifications.

o In mathematics, a rusty name for some algebraic specifications is a
variety, a more modern and name is algebraic category.

e Algebraic structures correspond to “implementations” and signatures
to “interfaces’ in programming languages.

13

We will say that an algebraic structure implements an algebraic specifica-
tion when all axioms of the specification hold in the structure.

All algebraic specifications are implemented by multiple structures!

We say that an algebraic structure does not have junk, when all its ele-
ments (i.e. elements in the sets corresponding to sorts) can be built
using operations in its signature.

We allow parametric types as sorts. In that case, strictly speaking, we define a

family of algebraic specifications (a different specification for each instantiation of the

parametric type).

14

Algebraic specifications: examples

e An algebraic specification can also use an earlier specification.

e In “impure”’ languages like OCaml and F# we allow that the result of any
operation be an error. In Haskell we could use Maybe.

natp Stl"ingp

0: nat, uses char, nat,

succ: nat, — nat,, "": string,,

+:nat, — nat, — nat, "-":char — string,

*:nat, — nat, — nat, : string,, — string, — string,,
n,m: nat, -|-]: string,, — nat,, — char

, M

O+n=n n+0=n s:string,, ¢, cy, ..., ¢p: char, n: nat,,
m + succ(n) = succ(m +n) ""s=s, s ""=s

0xn =0, nx0=0 "c1" (... "¢p") = error

mxsucc(n) =m + (mxn) p times

succ(...succ(0)) #0 " (S B s
less than p times (c")[] =C
succ(....succ(())) =0 '(' "C[| _)[SUCC(”)] = s[n]

15

Homomorphisms

Mappings between algebraic structures with the same signature pre-
serving operations.

A homomorphism from algebraic structure (A, {f4, g*,...}) to (B, {f?,
gP, ...}) is a function h: A — B such that h(fA(al, ey Qny)) =
fB(h(ar), ..., hlay,)) for all (a1, ..., an,), h(g*(a1, ..., an,)) =
g®(h(ai), ..., h(ay,)) for all (a1, ...,an,), ...

Two algebraic structures are isomorphic if there are homomorphisms h:
A— B, ho: B— A from one to the other and back, that when composed
in any order form identity: V(b € B) hi(ha(b)) =0, V(a € A) ha(h1(a)) = a.

An algebraic specification whose all implementations without junk are
isomorphic is called “monomorphic”.

o We usually only add axioms that really matter to us to the specifica-
tion, so that the implementations have room for optimization. For
this reason, the resulting specifications will often not be monomorphic
in the above sense.

16

Example: Maps

(o,) map, or map(a,)

uses bool, type parameters o, (3

empty: (a,) map

member: o — (a,) map — bool

add: « — 8 — («, 8) map — («, 8) map
remove: o — («, §) map — (a, f) map
find: « — (o,) map —

k, ko, v,v2: B, m: (, B) map

member(k, add(k, v, m)) = true

member(k, remove(k,m)) = false

member(k, add(ke, v, m)) =true A k # ky < member(k, m) =true A k # ko
member(k, remove(ky, v, m)) =true A k # kg < member(k, m) =true A k # ko
find(k,add(k,v,m))=v

find(k, remove(k, m)) = error, find(k, empty) = error
find(k,add(ks,vo,m)) =v Ak # ko< find(k,m)=v Ak =+ ko

find(k, remove(ks, vo,m)) =v Ak # ko< find(k,m) =v Ak + ko
remove(k, empty) = empty

17

Modules and interfaces (signatures): syntax

In the ML family of languages, structures are given names by module
bindings, and signatures are types of modules.

From outside of a structure or signature, we refer to the values or types
it provides with a dot notation: Module.value.

Module (and module type) names have to start with a capital letter (in
ML languages).

Since modules and module types have names, there is a tradition to
name the central type of a signature (the one that is “specified” by the
signature), for brevity, t.

Module types are often named with “all-caps” (all letters upper case).

18

module type MAP = sig
type (’a, ’b) t
val empty : (’a, ’b) t

val member : ’a -> (’a, ’b) t -> bool
val add : ’a -> ’b -> (’a, ’b) t -> (’a, ’b) t
val remove : ’a -> (’a, ’b) t -> (’a, ’b) t
val find : ’a -> (’a, ’b) t -> ’b

end

module ListMap : MAP = struct
type (’a, ’b) t = (Pa * ’b) list
let empty = []
let member = List.mem_assoc
let add k vm = (k, v)::m
let remove = List.remove_assoc
let find = List.assoc

end

19

Implementing maps: Association lists

Let's now build an implementation of maps from the ground up. The most
straightforward implementation... might not be what you expected:

module TrivialMap : MAP = struct
type (’a, ’b) t =
| Empty
| Add of ’a * ’b *x (’a, ’b) t
| Remove of ’a * (’a, ’b) t
let empty = Empty
let rec member k m =
match m with
| Empty -> false
| Add (k2, _, _) when k = k2 -> true
| Remove (k2, _) when k = k2 -> false
| Add (_, _, m2) -> member k m2
| Remove (_, m2) -> member k m2
let add k v m = Add (k, v, m)
let remove k m = Remove (k, m)

20

let rec find k m =

match m with

| Empty -> raise Not_found

Add (k2, v, _) when k = k2 -> v
Remove (k2, _) when k = k2 -> raise Not_found
Add (_, _, m2) -> find k m2
Remove (_, m2) -> find k m2
end

21

Here is an implementation based on association lists, i.e. on lists of key-

value pairs.

module MyListMap : MAP = struct
type (’a, ’b) t = Empty | Add of ’a * ’b * (’a, ’b) t
let empty = Empty
let rec member k m =
match m with
| Empty -> false
| Add (k2, _, _) when k = k2 -> true
| Add (_, _, m2) -> member k m2
let rec add k v m =
match m with
| Empty -> Add (k, v, Empty)
| Add (k2, _, m) when k = k2 -> Add (k, v, m)
| Add (k2, v2, m) -> Add (k2, v2, add k v m)

22

let rec remove k m =
match m with
| Empty -> Empty
| Add (k2, _, m) when k = k2 ->m
| Add (k2, v, m) -> Add (k2, v, remove k m)
let rec find k m =
match m with
| Empty -> raise Error
| Add (k2, v, _) when k = k2 -> v
| Add (_, _, m2) -> find k m2
end

23

Implementing maps: Binary search trees

Binary search trees are binary trees with elements stored at the interior
nodes, such that elements to the left of a node are smaller than, and ele-
ments to the right bigger than, elements within a node.

For maps, we store key-value pairs as elements in binary search trees, and
compare the elements by keys alone.

On average, binary search trees are fast because they use “divide-and-
conquer’ to search for the value associated with a key. (O(logn) compl.)

o In worst case they reduce to association lists.

The simple polymorphic signature for maps is only possible with imple-
mentations based on some total order of keys because OCaml has poly-
morphic comparison (and equality) operators.

o These operators work on elements of most types, but not on func-
tions. They may not work in a way you would want though!

o Qur signature for polymorphic maps is not the standard approach
because of the problem of needing the order of keys; it is just to keep
things simple.

24

module BTreeMap : MAP = struct
type (’a, ’b) t = Empty | T of (’a, ’b) t * ’a * ’b * (’a, ’b) t
let empty = Empty
let rec member k m = “Divide and conquer’ search through the tree.
match m with
| Empty -> false

| T (_, k2, _, _) when k = k2 -> true
| T (m1, k2, _, _) when k < k2 -> member k ml
| T (_, _, _, m2) -> member k m2
let rec add k vm = Searches the tree in the same way as member
match m with but copies every node along the way.

| Empty -> T (Empty, k, v, Empty)

| T (m1, k2, _, m2) when k = k2 -> T (ml1, k, v, m2)

| T (m1, k2, v2, m2) when k < k2 -> T (add k v m1, k2, v2, m2)
| T (m1, k2, v2, m2) -> T (m1, k2, v2, add k v m2)

let rec split_rightmost m = A helper function, it does not belong
match m with to the “exported” signature.
| Empty -> raise Not_found
| T (Empty, k, v, Empty) -> k, v, Empty We remove one element,
| T (mi, k, v, m2) -> the one that is on the bottom right.

let rk, rv, rm = split_rightmost m2 in
rk, rv, T (ml1, k, v, rm)

25

let rec remove k m =
match m with
| Empty -> Empty
| T (ml, k2, _, Empty) when k = k2 -> mil
| T (Empty, k2, _, m2) when k = k2 -> m2
| T (m1, k2, _, m2) when k = k2 ->
let rk, rv, rm = split_rightmost ml in
T (rm, rk, rv, m2)
| T (m1, k2, v, m2) when k < k2 -> T (remove k ml, k2, v, m2)
| T (m1, k2, v, m2) -> T (m1l, k2, v, remove k m2)
let rec find k m =
match m with
| Empty -> raise Not_found
| T (_, k2, v, _) when k = k2 -> v
| T (m1, k2, _, _) when k < k2 -> find k mil
| T (_, _, _, m2) -> find k m2
end

26

Implementing maps: red-black trees

Based on Wikipedia http://en.wikipedia.org/wiki/Red-black tree, Chris
Okasaki's “Functional Data Structures’ and Matt Might's excellent blog post

http://matt.might.net/articles/red-black-delete/.

e Binary search trees are good when we encounter keys in random order,
because the cost of operations is limited by the depth of the tree which is
small relatively to the number of nodes...

e ...unless the tree grows unbalanced achieving large depth (which means
there are sibling subtrees of vastly different sizes on some path).

e To remedy it, we rebalance the tree while building it — i.e. while adding
elements.

e |In red-black trees we achieve balance by remembering one of two colors
with each node, keeping the same length of each root-leaf path if only
black nodes are counted, and not allowing a red node to have a red child.

o This way the depth is at most twice the depth of a perfectly balanced
tree with the same number of nodes.

27

B-trees of order 4 (2-3-4 trees)

How can we have perfectly balanced trees without worrying about having
2% — 1 elements? 2-3-4 trees can store from 1 to 3 elements in each node

and have 2 to 4 subtrees correspondingly. Lots of freedom!

abc

A AN

p q T
2-node 3-node 4—node

28

To insert “25" into (“." stand for leaves, ignored later)

10 20

//\

22 24 29

/\/\ /NN

we descend right, but it is a full node, so we move the middle up and split
the remaining elements:

10 20 24
VAN
5 17 22

29

Now there is a place between 24 and 29: next to 29

10 20 24

PN

25 29

29

To represent 2-3-4 tree as a binary tree with one element per node, we color
the middle element of a 4-node, or the first element of 2-/3-node, black and
make it the parent of its neighbor elements, and make them parents of the
original subtrees. Turning this:

30

into this Red-Black tree:

31

Red-Black trees, without deletion

e Invariant 1. No red node has a red child.

e Invariant 2. Every path from the root to an empty node contains the
same number of black nodes.

e First we implement Red-Black tree based sets without deletion.

e The implementation proceeds almost exactly like for unbalanced binary
search trees, we only need to restore invariants.

e By keeping balance at each step of constructing a node, it is enough to
check locally (around the root of the subtree).

e For understandable implementation of deletion, we need to introduce
more colors. See Matt Might's post edited in a separate file.

32

type
type
let
let

color = R | B

’at =E | T of color * ’a t * ’a x*
empty = E
rec member x m =

match m with

Empty -> false
T (_, _, ¥y, _) when x =y -> true

a t

T (_, a, y, _) when x <y -> member x a

T (_, _, _, b) -> member x b
balance = function

B, T (R,T (R,a,x,b),y,c),z,d

B, T (R,a,x,T (R,b,y,c)),z,d
B,a,x,T (R,T (R,b,y,c),z,d)
B,a,x,T (R,b,y,T (R,c,z,d))

-> T (R, T (B,a,x,b),y,T (B,c,z,d))
color,a,x,b -> T (color,a,x,b)

33

Like in

unbalanced binary search tree.

Restoring the invariants.
On next figure: left,
top,

bottom,

right,

center tree.

We allow red-red violation for now.

let insert x s =
let rec ins = function Like in unbalanced binary search tree,
| E->T (R,E,x,E) but fix violation above created node.
| T (color,a,y,b) as s ->
if x<y then balance (color,ins a,y,b)
else if x>y then balance (color,a,y,ins b)
else s in
match ins s with We could still have red-red violation at root,
| T (_,a,y,b) -> T (B,a,y,b) fixed by coloring it black.
| E -> failwith

34

z B, T (R,a,x,T (R,b,y,c)),z,d

/ ™\

x d
A

/\

b c

B, T (R,T (R,a,x,b),y,c),z,d U
NN
/\ AN ANV
r c a b c d b =z
/\ /\
a b c d

f
x B,a,x,T (R,b,y,T (R,c,z,d))
a z

/\
y d
/\
b c

B,a,x,T (R,T (R,b,y,c),z,d)

35

Homework

1. Derive the equations and solve them to find the type for:

let cadr 1 = List.hd (List.tl 1) in
cadr (1::2::[]1), cadr (true::false::[])

in environ. I' = {List.hd: Va.a list — «; List.tl: Va.a list — « list}.
You can take “shortcuts” if it is too many equations to write down.

2. What does it mean that an implementation has junk (as an algebraic
structure for a given signature)? |s it bad?

3. Define a monomorphic algebraic specification (other than, but similar to,
nat, or string,, some useful data type).

4. Discuss an example of a (monomorphic) algebraic specification where it
would be useful to drop some axioms (giving up monomorphicity) to
allow more efficient implementations.

36

. Does the example ListMap meet the requirements of the algebraic speci-
fication for maps? Hint: here is the definition of List.remove_assoc;
compare a x equals O if and only if a = x.

let rec remove_assoc x = function

| 1 -> []
| (a, b as pair) :: 1 ->
if compare a x = 0 then 1 else pair :: remove_assoc x 1

. Trick question: what is the computational complexity of ListMap or
TrivialMap?

. * The implementation MyListMap is inefficient: it performs a lot of
copying and is not tail-recursive. Optimize it (without changing the type
definition).

. Add (and specify) isEmpty: («, §) map — bool to the example algebraic
specification of maps without increasing the burden on its implementa-
tions (i.e. without affecting implementations of other operations). Hint:
equational reasoning might be not enough; consider an equivalence rela-
tion ~ meaning “have the same keys’, defined and used just in the
axioms of the specification.

37

9.

10.

Design an algebraic specification and write a signature for first-in-first-
out queues. Provide two implementations: one straightforward using a
list, and another one using two lists: one for freshly added elements pro-
viding efficient queueing of new elements, and “reversed” one for efficient
popping of old elements.

Design an algebraic specification and write a signature for sets. Provide
two implementations: one straightforward using a list, and another one
using a map into the unit type.

38

11.

12.

13.

(Ex. 2.2 in Chris Okasaki “Purely Functional Data Structures’) In the
worst case, member performs approximately 2d comparisons, where d is
the depth of the tree. Rewrite member to take no mare than d + 1 com-
parisons by keeping track of a candidate element that might be equal to
the query element (say, the last element for which < returned false) and
checking for equality only when you hit the bottom of the tree.

(Ex. 3.10 in Chris Okasaki “Purely Functional Data Structures’) The
balance function currently performs several unnecessary tests: when e.g.
ins recurses on the left child, there are no violations on the right child.

a. Split balance into 1balance and rbalance that test for violations
of left resp. right child only. Replace calls to balance appropriately.

b. One of the remaining tests on grandchildren is also unnecessary.
Rewrite ins so that it never tests the color of nodes not on the
search path.

* Implement maps (i.e. write a module for the map signature) based on
AVL trees. See http://en.wikipedia.org/wiki/AVL_tree.

39

