
Functional Programming

by Łukasz Stafiniak

Email: lukstafi@gmail.com, lukstafi@ii.uni.wroc.pl

Web: www.ii.uni.wroc.pl/~lukstafi

Lecture 6: Folding and Backtracking

Mapping and folding.
Backtracking using lists. Constraint solving.

Martin Odersky “Functional Programming Fundamentals” Lectures 2, 5 and 6

Bits of Ralf Laemmel “Going Bananas”

Graham Hutton “Programming in Haskell” Chapter 11 “Countdown Problem”

Tomasz Wierzbicki “Honey Islands Puzzle Solver”

1

If you see any error on the slides, let me know!

Plan

• map and fold_right: recursive function examples, abstracting over gets
the higher-order functions.

• Reversing list example, tail-recursive variant, fold_left.

• Trimming a list: filter.

◦ Another definition via fold_right.

• map and fold for trees and other data structures.

• The point-free programming style. A bit of history: the FP language.

• Sum over an interval example:
∑

n=a

b
f(n).

• Combining multiple results: concat_map.

• Interlude: generating all subsets of a set (as list), and as exercise: all per-
mutations of a list.

2

• The Google problem: the map_reduce higher-order function.

◦ Homework reference: modified map_reduce to

1. build a histogram of a list of documents

2. build an inverted index for a list of documents

Later: use fold (?) to search for a set of words (conjunctive query).

• Puzzles: checking correctness of a solution.

• Combining bags of intermediate results: the concat_fold functions.

• From checking to generating solutions.

• Improving “generate-and-test” by filtering (propagating constraints) along
the way.

• Constraint variables, splitting and constraint propagation.

• Another example with “heavier” constraint propagation.

3

Basic generic list operations

How to print a comma-separated list of integers? In module String:

val concat : string -> string list -> string

First convert numbers into strings:

let rec strings_of_ints = function

| [] -> []

| hd::tl -> string_of_int hd :: strings_of_ints tl

let comma_sep_ints = String.concat ", " -| strings_of_ints

How to get strings sorted from shortest to longest? First find the length:

let rec strings_lengths = function

| [] -> []

| hd::tl -> (String.length hd, hd) :: strings_lengths tl

let by_size = List.sort compare -| strings_lengths

4

Always extract common patterns

let rec strings_of_ints = function

| [] -> []

| hd::tl -> string_of_int hd :: strings_of_ints tl

let rec strings_lengths = function

| [] -> []

| hd::tl -> (String.length hd, hd) :: strings_lengths tl

let rec list_map f = function

| [] -> []

| hd::tl -> f hd :: list_map f tl

Now use the generic function:

let comma_sep_ints =

String.concat ", " -| list_map string_of_int

let by_size =

List.sort compare -| list_map (fun s->String.length s, s)

5

How to sum elements of a list?
let rec balance = function

| [] -> 0

| hd::tl -> hd + balance tl

How to multiply elements in a list?
let rec total_ratio = function

| [] -> 1.

| hd::tl -> hd *. total_ratio tl

Generic solution:
let rec list_fold f base = function

| [] -> base

| hd::tl -> f hd (list_fold f base tl)

Caution: list_fold f base l = List.fold_right f l base.

6

map alters the contents of data fold computes a value using
without changing the structure: the structure as a scaffolding:

<

a <

b <

c <

d []

⇒

<

fa <

fb <

fc <

fd []
<

a <

b <

c <

d []

⇒

f

a f

b f

c f

d accu

7

Can we make fold tail-recursive?

Let’s investigate some tail-recursive functions. (Not hidden as helpers.)

let rec list_rev acc = function

| [] -> acc

| hd::tl -> list_rev (hd::acc) tl

let rec average (sum, tot) = function

| [] when tot = 0. -> 0.

| [] -> sum /. tot
| hd::tl -> average (hd +. sum, 1. +. tot) tl

let rec fold_left f accu = function

| [] -> accu

| a::l -> fold_left f (f accu a) l

8

• With fold_left, it is easier to hide the accumulator. The average

example is a bit more tricky than list_rev.

let list_rev l =

fold_left (fun t h->h::t) [] l

let average =

fold_left (fun (sum,tot) e->sum +. e, 1. +. tot) (0.,0.)

• The function names and order of arguments for List.fold_right /
List.fold_left are due to:

◦ fold_right f makes f right associative, like list constructor ::

List.fold_right f [a1; ...; an] b is f a1 (f a2 (... (f an b) ...)).

◦ fold_left f makes f left associative, like function application

List.fold_left f a [b1; ...; bn] is f (... (f (f a b1) b2) ...) bn.

9

• The “backward” structure of fold_left computation:

<

a <

b <

c <

d []

⇒

f

f

f

f

accu a

b

c

d

• List filtering, already rather generic (a polymorphic higher-order function)

let list_filter p l =

List.fold_right (fun h t->if p h then h::t else t) l []

• Tail-recursive map returning elements in reverse order:

let list_rev_map f l =

List.fold_left (fun t h->f h::t) [] l

10

map and fold for trees and other structures

• Mapping binary trees is straightforward:

type ’a btree = Empty | Node of ’a * ’a btree * ’a btree

let rec bt_map f = function

| Empty -> Empty

| Node (e, l, r) -> Node (f e, bt_map f l, bt_map f r)

let test = Node

(3, Node (5, Empty, Empty), Node (7, Empty, Empty))

let _ = bt_map ((+) 1) test

• map and fold we consider in this section preserve / respect the structure
of the data, they do not correspond to map and fold of abstract data

type containers, which are like List.rev_map and List.fold_left

over container elements listed in arbitrary order.

◦ I.e. here we generalize List.map and List.fold_right to other
structures.

11

• fold in most general form needs to process the element together with
partial results for the subtrees.

let rec bt_fold f base = function

| Empty -> base

| Node (e, l, r) ->

f e (bt_fold f base l) (bt_fold f base r)

• Examples:

let sum_els = bt_fold (fun i l r -> i + l + r) 0

let depth t = bt_fold (fun _ l r -> 1 + max l r) 1 t

12

map and fold for more complex structures

To have a data structure to work with, we recall expressions from lecture 3.

type expression =

Const of float

| Var of string

| Sum of expression * expression (* e1 + e2 *)

| Diff of expression * expression (* e1 - e2 *)

| Prod of expression * expression (* e1 * e2 *)

| Quot of expression * expression (* e1 / e2 *)

Multitude of cases make the datatype harder to work with. Fortunately,
or-patterns help a bit:

let rec vars = function

| Const _ -> []

| Var x -> [x]

| Sum (a,b) | Diff (a,b) | Prod (a,b) | Quot (a,b) ->

vars a @ vars b

13

Mapping and folding needs to be specialized for each case. We pack the
behaviors into a record.

type expression_map = {

map_const : float -> expression;

map_var : string -> expression;

map_sum : expression -> expression -> expression;

map_diff : expression -> expression -> expression;

map_prod : expression -> expression -> expression;

map_quot : expression -> expression -> expression;

}

Note how expression from above is substituted by ’a below, explain why?

type ’a expression_fold = {

fold_const : float -> ’a;

fold_var : string -> ’a;

fold_sum : ’a -> ’a -> ’a;

fold_diff : ’a -> ’a -> ’a;

fold_prod : ’a -> ’a -> ’a;

fold_quot : ’a -> ’a -> ’a;

}

14

Next we define standard behaviors for map and fold, which can be tailored
to needs for particular case.

let identity_map = {

map_const = (fun c -> Const c);

map_var = (fun x -> Var x);

map_sum = (fun a b -> Sum (a, b));

map_diff = (fun a b -> Diff (a, b));

map_prod = (fun a b -> Prod (a, b));

map_quot = (fun a b -> Quot (a, b));

}

let make_fold op base = {

fold_const = (fun _ -> base);

fold_var = (fun _ -> base);

fold_sum = op; fold_diff = op;

fold_prod = op; fold_quot = op;

}

15

The actual map and fold functions are straightforward:

let rec expr_map emap = function

| Const c -> emap.map_const c

| Var x -> emap.map_var x

| Sum (a,b) -> emap.map_sum (expr_map emap a) (expr_map emap b)

| Diff (a,b) -> emap.map_diff (expr_map emap a) (expr_map emap b)

| Prod (a,b) -> emap.map_prod (expr_map emap a) (expr_map emap b)

| Quot (a,b) -> emap.map_quot (expr_map emap a) (expr_map emap b)

let rec expr_fold efold = function

| Const c -> efold.fold_const c

| Var x -> efold.fold_var x

| Sum (a,b) -> efold.fold_sum (expr_fold efold a) (expr_fold efold b)

| Diff (a,b) -> efold.fold_diff (expr_fold efold a) (expr_fold efold b)

| Prod (a,b) -> efold.fold_prod (expr_fold efold a) (expr_fold efold b)

| Quot (a,b) -> efold.fold_quot (expr_fold efold a) (expr_fold efold b)

16

Now examples. We use {record with field=value} syntax which copies
record but puts value instead of record.field in the result.

let prime_vars = expr_map

{identity_map with map_var = fun x -> Var (x^"’")}

let subst s =

let apply x = try List.assoc x s with Not_found -> Var x in

expr_map {identity_map with map_var = apply}

let vars =

expr_fold {(make_fold (@) []) with fold_var = fun x-> [x]}

let size = expr_fold (make_fold (fun a b->1+a+b) 1)

let eval env = expr_fold {

fold_const = id;

fold_var = (fun x -> List.assoc x env);

fold_sum = (+.); fold_diff = (-.);

fold_prod = (*.); fold_quot = (/.);

}

17

Point-free Programming

• In 1977/78, John Backus designed FP, the first function-level program-

ming language. Over the next decade it evolved into the FL language.

◦ ”Clarity is achieved when programs are written at the function level –
that is, by putting together existing programs to form new ones,
rather than by manipulating objects and then abstracting from those
objects to produce programs.” The FL Project: The Design of a Functional Language

• For functionl-level programming style, we need functionals/combinators,
like these from OCaml Batteries: let const x _ = x

let (|-) f g x = g (f x)

let (-|) f g x = f (g x)

let flip f x y = f y x

let (***) f g = fun (x,y) -> (f x, g y)

let (&&&) f g = fun x -> (f x, g x)

let first f x = fst (f x)

let second f x = snd (f x)

let curry f x y = f (x,y)

let uncurry f (x,y) = f x y

18

• The flow of computation can be seen as a circuit where the results of
nodes-functions are connected to further nodes as inputs.

We can represent the cross-sections of the circuit as tuples of interme-
diate values.

• let print2 c i =

let a = Char.escaped c in

let b = string_of_int i in

a ^ b

let print2 = curry

((Char.escaped *** string_of_int) |- uncurry (^))

Char.escaped

string_of_int
uncurry (^)

• Since we usually work by passing arguments one at a time rather than in
tuples, we need uncurry to access multi-argument functions, and we
pack the result with curry.

◦ Turning C/Pascal-like function into one that takes arguments one at
a time is called currification, after the logician Haskell Brooks Curry.

19

• Another option to remove explicit use of function parameters, rather than
to pack intermediate values as tuples, is to use function composition,
flip, and the so called S combinator:

let s x y z = x z (y z)

to bring a particular argument of a function to “front”, and pass it a
result of another function. Example: a filter-map function

let func2 f g l = List.filter f (List.map g (l))

Definition of function composition.

let func2 f g = (-|) (List.filter f) (List.map g)

let func2 f = (-|) (List.filter f) -| List.map Composition

again, below without the infix notation.

let func2 f = (-|) ((-|) (List.filter f)) List.map

let func2 f = flip (-|) List.map ((-|) (List.filter f))

let func2 f = (((|-) List.map) -| ((-|) -| List.filter)) f

let func2 = (|-) List.map -| ((-|) -| List.filter)

20

Reductions. More higher-order/list functions

Mathematics has notation for sum over an interval:
∑

n=a

b
f(n).

In OCaml, we do not have a universal addition operator:

let rec i_sum_from_to f a b =

if a > b then 0

else f a + i_sum_from_to f (a+1) b

let rec f_sum_from_to f a b =

if a > b then 0.

else f a +. f_sum_from_to f (a+1) b

let pi2_over6 =

f_sum_from_to (fun i->1. /. float_of_int (i*i)) 1 5000

It is natural to generalize:

let rec op_from_to op base f a b =

if a > b then base

else op (f a) (op_from_to op base f (a+1) b)

21

Let’s collect the results of a multifunction (i.e. a set-valued function) for a
set of arguments, in math notation:

f(A)=
⋃

p∈A

f(p)

It is a useful operation over lists with union translated as append:

let rec concat_map f = function

| [] -> []

| a::l -> f a @ concat_map f l

and more efficiently:

let concat_map f l =

let rec cmap_f accu = function

| [] -> accu

| a::l -> cmap_f (List.rev_append (f a) accu) l in

List.rev (cmap_f [] l)

22

List manipulation: All subsequences of a list

let rec subseqs l =

match l with

| [] -> [[]]

| x::xs ->

let pxs = subseqs xs in

List.map (fun px -> x::px) pxs @ pxs

Tail-recursively:

let rec rmap_append f accu = function

| [] -> accu

| a::l -> rmap_append f (f a :: accu) l

let rec subseqs l =

match l with

| [] -> [[]]

| x::xs ->

let pxs = subseqs xs in

rmap_append (fun px -> x::px) pxs pxs

23

In-class work: Return a list of all possible ways of splitting a list into two
non-empty parts.

Homework:

Find all permutations of a list.

Find all ways of choosing without repetition from a list.

24

By key: group_by and map_reduce

It is often useful to organize values by some property.

First we collect an elements from an association list by key.

let collect l =

match List.sort (fun x y -> compare (fst x) (fst y)) l with

| [] -> [] Start with associations sorted by key.

| (k0, v0)::tl ->

let k0, vs, l = List.fold_left

(fun (k0, vs, l) (kn, vn) -> Collect values for the current key

if k0 = kn then k0, vn::vs, l and when the key changes

else kn, [vn], (k0,List.rev vs)::l) stack the collected values.

(k0, [v0], []) tl in What do we gain by reversing?

List.rev ((k0,List.rev vs)::l)

Now we can group by an arbitrary property:

let group_by p l = collect (List.map (fun e->p e, e) l)

25

But we want to process the results, like with an aggregate operation in SQL.
The aggregation operation is called reduction.

let aggregate_by p red base l =

let ags = group_by p l in

List.map (fun (k,vs)->k, List.fold_right red vs base) ags

We can use the feed-forward operator: let (|>) x f = f x

let aggregate_by p redf base l =

group_by p l

|> List.map (fun (k,vs)->k, List.fold_right redf vs base)

Often it is easier to extract the property over which we aggregate upfront.
Since we first map the elements into the extracted key-value pairs, we call
the operation map_reduce:

let map_reduce mapf redf base l =

List.map mapf l

|> collect

|> List.map (fun (k,vs)->k, List.fold_right redf vs base)

26

map_reduce/concat_reduce examples

Sometimes we have multiple sources of information rather than records.

let concat_reduce mapf redf base l =

concat_map mapf l

|> collect

|> List.map (fun (k,vs)->k, List.fold_right redf vs base)

Compute the merged histogram of several documents:

let histogram documents =

let mapf doc =

Str.split (Str.regexp "[t.,;]+") doc

|> List.map (fun word->word,1) in

concat_reduce mapf (+) 0 documents

27

Now compute the inverted index of several documents (which come with
identifiers or addresses).

let cons hd tl = hd::tl

let inverted_index documents =

let mapf (addr, doc) =

Str.split (Str.regexp "[t.,;]+") doc

|> List.map (fun word->word,addr) in

concat_reduce mapf cons [] documents

And now... a “search engine”:

let search index words =

match List.map (flip List.assoc index) words with

| [] -> []

| idx::idcs -> List.fold_left intersect idx idcs

where intersect computes intersection of sets represented as lists.

28

Tail-recursive variants

let rev_collect l =

match List.sort (fun x y -> compare (fst x) (fst y)) l with

| [] -> []

| (k0, v0)::tl ->

let k0, vs, l = List.fold_left

(fun (k0, vs, l) (kn, vn) ->

if k0 = kn then k0, vn::vs, l

else kn, [vn], (k0, vs)::l)

(k0, [v0], []) tl in

List.rev ((k0, vs)::l)

let tr_concat_reduce mapf redf base l =

concat_map mapf l

|> rev_collect

|> List.rev_map (fun (k,vs)->k, List.fold_left redf base vs)

let rcons tl hd = hd::tl

let inverted_index documents =

let mapf (addr, doc) = ... in

tr_concat_reduce mapf rcons [] documents

29

Helper functions for inverted index demonstration

let intersect xs ys = Sets as sorted lists.

let rec aux acc = function

| [], _ | _, [] -> acc

| (x::xs’ as xs), (y::ys’ as ys) ->

let c = compare x y in

if c = 0 then aux (x::acc) (xs’, ys’)

else if c < 0 then aux acc (xs’, ys)

else aux acc (xs, ys’) in

List.rev (aux [] (xs, ys))

let read_lines file =

let input = open_in file in

let rec read lines = The Scanf library uses continuation passing.

try Scanf.fscanf input "%[^\r\n]\n"

(fun x -> read (x :: lines))

with End_of_file -> lines in

List.rev (read [])

30

let indexed l = Index elements by their positions.

Array.of_list l |> Array.mapi (fun i e->i,e)

|> Array.to_list

let search_engine lines =

let lines = indexed lines in

let index = inverted_index lines in

fun words ->

let ans = search index words in

List.map (flip List.assoc lines) ans

let search_bible =

search_engine (read_lines "./bible-kjv.txt")

let test_result =

search_bible ["Abraham"; "sons"; "wife"]

31

Higher-order functions for the option type

Operate on an optional value:

let map_option f = function

| None -> None

| Some e -> f e

Map an operation over a list and filter-out cases when it does not succeed:

let rec map_some f = function

| [] -> []

| e::l -> match f e with

| None -> map_some f l

| Some r -> r :: map_some f l Tail-recurively:

let map_some f l =

let rec maps_f accu = function

| [] -> accu

| a::l -> maps_f (match f a with None -> accu

| Some r -> r::accu) l in

List.rev (maps_f [] l)

32

The Countdown Problem Puzzle

• Using a given set of numbers and arithmetic operators + , - , * , / ,

construct an expression with a given value.

• All numbers, including intermediate results, must be positive integers.

• Each of the source numbers can be used at most once when constructing
the expression.

• Example:

◦ numbers 1 , 3 , 7 , 10 , 25 , 50

◦ target 765

◦ possible solution (25-10) * (50+1)

• There are 780 solutions for this example.

• Changing the target to 831 gives an example that has no solutions.

33

• Operators:

type op = Add | Sub | Mul | Div

• Apply an operator:

let apply op x y =

match op with

| Add -> x + y

| Sub -> x - y

| Mul -> x * y

| Div -> x / y

34

• Decide if the result of applying an operator to two positive integers is
another positive integer:

let valid op x y =

match op with

| Add -> true

| Sub -> x > y

| Mul -> true

| Div -> x mod y = 0

• Expressions:

type expr = Val of int | App of op * expr * expr

35

• Return the overall value of an expression, provided that it is a positive
integer:

let rec eval = function

| Val n -> if n > 0 then Some n else None

| App (o,l,r) ->

eval l |> map_option (fun x ->

eval r |> map_option (fun y ->

if valid o x y then Some (apply o x y)

else None))

• Homework: Return a list of all possible ways of choosing zero or more
elements from a list – choices.

• Return a list of all the values in an expression:

let rec values = function

| Val n -> [n]

| App (_,l,r) -> values l @ values r

36

• Decide if an expression is a solution for a given list of source numbers
and a target number:

let solution e ns n =

list_diff (values e) ns = [] && is_unique (values e) &&

eval e = Some n

37

Brute force solution

• Return a list of all possible ways of splitting a list into two non-empty
parts:

let split l =

let rec aux lhs acc = function

| [] | [_] -> []

| [y; z] -> (List.rev (y::lhs), [z])::acc

| hd::rhs ->

let lhs = hd::lhs in

aux lhs ((List.rev lhs, rhs)::acc) rhs in

aux [] [] l

38

• We introduce an operator to work on multiple sources of data, producing
even more data for the next stage of computation:

let (|->) x f = concat_map f x

• Return a list of all possible expressions whose values are precisely a given
list of numbers:

let combine l r = Combine two expressions using each operator.

List.map (fun o->App (o,l,r)) [Add; Sub; Mul; Div]

let rec exprs = function

| [] -> []

| [n] -> [Val n]

| ns ->

split ns |-> (fun (ls,rs) -> For each split ls,rs of numbers,

exprs ls |-> (fun l -> for each expression l over ls

exprs rs |-> (fun r -> and expression r over rs

combine l r))) produce all l ? r expressions.

39

• Return a list of all possible expressions that solve an instance of the
countdown problem:

let guard n =

List.filter (fun e -> eval e = Some n)

let solutions ns n =

choices ns |-> (fun ns’ ->

exprs ns’ |> guard n)

• Another way to express this:

let guard p e =

if p e then [e] else []

let solutions ns n =

choices ns |-> (fun ns’ ->

exprs ns’ |->

guard (fun e -> eval e = Some n))

40

Fuse the generate phase with the test phase

• We seek to define a function that fuses together the generation and eval-
uation of expressions:

◦ We memorize the value together with the expression – in pairs
(e, eval e) – so only valid subexpressions are ever generated.

let combine’ (l,x) (r,y) =

[Add; Sub; Mul; Div]

|> List.filter (fun o->valid o x y)

|> List.map (fun o->App (o,l,r), apply o x y)

let rec results = function

| [] -> []

| [n] -> if n > 0 then [Val n, n] else []

| ns ->

split ns |-> (fun (ls,rs) ->

results ls |-> (fun lx ->

results rs |-> (fun ry ->

combine’ lx ry)))

41

• Once the result is generated its value is already computed, we only check
if it equals the target.

let solutions’ ns n =

choices ns |-> (fun ns’ ->

results ns’ |>

List.filter (fun (e,m)-> m=n) |>

List.map fst) We discard the memorized values.

42

Eliminate symmetric cases

• Strengthening the valid predicate to take account of commutativity and
identity properties:

let valid op x y =

match op with

| Add -> x <= y

| Sub -> x > y

| Mul -> x <= y && x <> 1 && y <> 1

| Div -> x mod y = 0 && y <> 1

◦ We eliminate repeating symmetrical solutions on the semantic level,
i.e. on values, rather than on the syntactic level of expressions – it is
both easier and gives better results.

• Now recompile combine’, results and solutions’.

43

The Honey Islands Puzzle

• Be a bee! Find the cells to eat honey out of, so that the least amount of
honey becomes sour, assuming that sourness spreads through contact.

◦ Honey sourness is totally made up, sorry.

• Each honeycomb cell is connected with 6 other cells, unless it is a border
cell. Given a honeycomb with some cells initially marked as black, mark
some more cells so that unmarked cells form num_islands disconnected
components, each with island_size cells.

Task: 3 islands x 3 Solution:

44

Representing the honeycomb

type cell = int * int We address cells using “cartesian” coordinates

module CellSet = and store them in either lists or sets.

Set.Make (struct type t = cell let compare = compare end)

type task = { For board “size” N , the honeycomb coordinates

board_size : int; range from (−2N,−N) to 2N,N .

num_islands : int; Required number of islands

island_size : int; and required number of cells in an island.

empty_cells : CellSet.t; The cells that are initially without honey.

}

let cellset_of_list l = List into set, inverse of CellSet.elements

List.fold_right CellSet.add l CellSet.empty

45

Neighborhood

x,y x+2,y

x+1,y+1x-1,y+1

x-2,y

x-1,y-1 x+1,y-1

let neighbors n eaten (x,y) =

List.filter

(inside_board n eaten)

[x-1,y-1; x+1,y-1; x+2,y;

x+1,y+1; x-1,y+1; x-2,y]

46

Building the honeycomb

0,0

0,2

0,-2

1,1

4,0

3,1

2,2

-2,0

let even x = x mod 2 = 0

let inside_board n eaten (x, y) =

even x = even y && abs y <= n &&

abs x + abs y <= 2*n &&

not (CellSet.mem (x,y) eaten)

let honey_cells n eaten =

from_to (-2*n) (2*n)|->(fun x ->

from_to (-n) n |-> (fun y ->

guard (inside_board n eaten)

(x, y)))

47

Drawing honeycombs

We separately generate colored polygons:

let draw_honeycomb ∼w ∼h task eaten =

let i2f = float_of_int in

let nx = i2f (4 * task.board_size + 2) in

let ny = i2f (2 * task.board_size + 2) in

let radius = min (i2f w /. nx) (i2f h /. ny) in

let x0 = w / 2 in

let y0 = h / 2 in

let dx = (sqrt 3. /. 2.) *. radius +. 1. in The distance between

let dy = (3. /. 2.) *. radius +. 2. in (x, y) and (x+1, y+1).

let draw_cell (x,y) =

Array.init 7 We draw a closed polygon by placing 6 points

(fun i -> evenly spaced on a circumcircle.

let phi = float_of_int i *. pi /. 3. in

x0 + int_of_float (radius *. sin phi +. float_of_int x *. dx),

y0 + int_of_float (radius *. cos phi +. float_of_int y *. dy)) in

48

let honey =

honey_cells task.board_size (CellSet.union task.empty_cells

(cellset_of_list eaten))

|> List.map (fun p->draw_cell p, (255, 255, 0)) in

let eaten = List.map

(fun p->draw_cell p, (50, 0, 50)) eaten in

let old_empty = List.map

(fun p->draw_cell p, (0, 0, 0))

(CellSet.elements task.empty_cells) in

honey @ eaten @ old_empty

49

We can draw the polygons to an SVG image:

let draw_to_svg file ∼w ∼h ?title ?desc curves =

let f = open_out file in

Printf.fprintf f "<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg width="%d" height="%d" viewBox="0 0 %d %d"

xmlns="http://www.w3.org/2000/svg" version="1.1">

" w h w h;

(match title with None -> ()

| Some title -> Printf.fprintf f " <title>%s</title>n" title);

(match desc with None -> ()

| Some desc -> Printf.fprintf f " <desc>%s</desc>n" desc);

let draw_shape (points, (r,g,b)) =

uncurry (Printf.fprintf f " <path d="M %d %d") points.(0);

Array.iteri (fun i (x, y) ->

if i > 0 then Printf.fprintf f " L %d %d" x y) points;

Printf.fprintf f

""n fill="rgb(%d, %d, %d)" stroke-width="3" />n"

r g b in

List.iter draw_shape curves;

Printf.fprintf f "</svg>%!"

50

But we also want to draw on a screen window – we need to link the
Graphics library. In the interactive toplevel:

#load "graphics.cma";;

When compiling we just provide graphics.cma to the command.

let draw_to_screen ∼w ∼h curves =

Graphics.open_graph (" "^string_of_int w^"x"^string_of_int h);

Graphics.set_color (Graphics.rgb 50 50 0); We draw a brown background.

Graphics.fill_rect 0 0 (Graphics.size_x ()) (Graphics.size_y ());

List.iter (fun (points, (r,g,b)) ->

Graphics.set_color (Graphics.rgb r g b);

Graphics.fill_poly points) curves;

if Graphics.read_key () = ’q’ We wait so that solutions can be seen

then failwith "User interrupted finding solutions."; as they’re computed.

Graphics.close_graph ()

51

Testing correctness of a solution

We walk through each island counting its cells, depth-first: having visited
everything possible in one direction, we check whether something remains in
another direction.

Correctness means there are num_islands components each with
island_size cells. We start by computing the cells to walk on: honey.

let check_correct n island_size num_islands empty_cells =

let honey = honey_cells n empty_cells in

52

We keep track of already visited cells and islands. When an unvisited cell is
there after walking around an island, it must belong to a different island.

let rec check_board been_islands unvisited visited =

match unvisited with

| [] -> been_islands = num_islands

| cell::remaining when CellSet.mem cell visited ->

check_board been_islands remaining visited Keep looking.

| cell::remaining (* when not visited *) ->

let (been_size, unvisited, visited) =

check_island cell Visit another island.

(1, remaining, CellSet.add cell visited) in

been_size = island_size

&& check_board (been_islands+1) unvisited visited

53

When walking over an island, besides the unvisited and visited cells, we
need to remember been_size – number of cells in the island visited so far.

and check_island current state =

neighbors n empty_cells current

|> List.fold_left Walk into each direction and accumulate visits.

(fun (been_size, unvisited, visited as state)

neighbor ->

if CellSet.mem neighbor visited then state

else

let unvisited = remove neighbor unvisited in

let visited = CellSet.add neighbor visited in

let been_size = been_size + 1 in

check_island neighbor

(been_size, unvisited, visited))

state in Start from the current overall state (initial been_size is 1).

Initially there are no islands already visited.

check_board 0 honey empty_cells

54

Interlude: multiple results per step

When there is only one possible result per step, we work through a list using
List.fold_right and List.fold_left functions.

What if there are multiple results? Recall that when we have multiple
sources of data and want to collect multiple results, we use concat_map:

concat_map
f xs =

List.map f xs

|> List.concat

We shortened concat_map calls using “work |-> (fun a_result -> ...)”
scheme. Here we need to collect results once per step.

let rec concat_fold f a = function

| [] -> [a]

| x::xs ->

f x a |-> (fun a’ -> concat_fold f a’ xs)

55

Generating a solution

We turn the code for testing a solution into one that generates a correct
solution.

• We pass around the current solution eaten.

• The results will be in a list.

• Empty list means that in a particular case there are no (further) results.

• When walking an island, we pick a new neighbor and try eating from it in
one set of possible solutions – which ends walking in its direction, and
walking through it in another set of possible solutions.

◦ When testing a solution, we never decided to eat from a cell.

The generating function has the same signature as the testing function:

let find_to_eat n island_size num_islands empty_cells =

let honey = honey_cells n empty_cells in

56

Since we return lists of solutions, if we are done with current solution eaten

we return [eaten], and if we are in a “dead corner” we return [].

let rec find_board been_islands unvisited visited eaten =

match unvisited with

| [] ->

if been_islands = num_islands then [eaten] else []

| cell::remaining when CellSet.mem cell visited ->

find_board been_islands

remaining visited eaten

| cell::remaining (* when not visited *) ->

find_island cell

(1, remaining, CellSet.add cell visited, eaten)

|-> Concatenate solutions for each way of eating cells around and island.

(fun (been_size, unvisited, visited, eaten) ->

if been_size = island_size

then find_board (been_islands+1)

unvisited visited eaten

else [])

57

We step into each neighbor of a current cell of the island, and either eat it
or walk further.

and find_island current state =

neighbors n empty_cells current

|> concat_fold Instead of fold_left since multiple results.

(fun neighbor

(been_size, unvisited, visited, eaten as state) ->

if CellSet.mem neighbor visited then [state]

else

let unvisited = remove neighbor unvisited in

let visited = CellSet.add neighbor visited in

(been_size, unvisited, visited,

neighbor::eaten)::

(* solutions where neighbor is honey *)

find_island neighbor

(been_size+1, unvisited, visited, eaten))

state in

58

The initial partial solution is – nothing eaten yet.

check_board 0 honey empty_cells []

We can test it now:

let w = 800 and h = 800

let ans0 = find_to_eat test_task0.board_size test_task0.island_size

test_task0.num_islands test_task0.empty_cells

let _ = draw_to_screen ∼w ∼h

(draw_honeycomb ∼w ∼h test_task0 (List.hd ans0))

But in a more complex case, finding all solutions takes too long:

let ans1 = find_to_eat test_task1.board_size test_task1.island_size

test_task1.num_islands test_task1.empty_cells

let _ = draw_to_screen ∼w ∼h

(draw_honeycomb ∼w ∼h test_task1 (List.hd ans1))

(See Lec6.ml for definitions of test cases.)

59

Optimizations for Honey Islands

• Main rule: fail (drop solution candidates) as early as possible.

◦ Is the number of solutions generated by the more brute-force
approach above 2n for n honey cells, or smaller?

• We will guard both choices (eating a cell and keeping it in island).

• We know exactly how much honey needs to be eaten.

• Since the state has many fields, we define a record for it.

type state = {

been_size: int; Number of honey cells in current island.

been_islands: int; Number of islands visited so far.

unvisited: cell list; Cells that need to be visited.

visited: CellSet.t; Already visited.

eaten: cell list; Current solution candidate.

more_to_eat: int; Remaining cells to eat for a complete solution.

}

60

We define the basic operations on the state up-front. If you could keep them
inlined, the code would remain more similar to the previous version.

let rec visit_cell s =

match s.unvisited with

| [] -> None

| c::remaining when CellSet.mem c s.visited ->

visit_cell {s with unvisited=remaining}

| c::remaining (* when c not visited *) ->

Some (c, {s with

unvisited=remaining;

visited = CellSet.add c s.visited})

let eat_cell c s =

{s with eaten = c::s.eaten;

visited = CellSet.add c s.visited;

more_to_eat = s.more_to_eat - 1}

let keep_cell c s = Actually c is not used...

{s with been_size = s.been_size + 1;

visited = CellSet.add c s.visited}

61

let fresh_island s = We increase been_size at the start of find_island

{s with been_size = 0; rather than before calling it.

been_islands = s.been_islands + 1}

let init_state unvisited more_to_eat = {

been_size = 0;

been_islands = 0;

unvisited; visited = CellSet.empty;

eaten = []; more_to_eat;

}

62

We need a state to begin with:

let init_state unvisited more_to_eat = {

been_size = 0; been_islands = 0;

unvisited; visited = CellSet.empty;

eaten = []; more_to_eat;

}

The “main loop” only changes because of the different handling of state.

let rec find_board s =

match visit_cell s with

| None ->

if s.been_islands = num_islands then [eaten] else []

| Some (cell, s) ->

find_island cell (fresh_island s)

|-> (fun s ->

if s.been_size = s.island_size

then find_board s

else [])

63

In the “island loop” we only try actions that make sense:

and find_island current s =

let s = keep_cell current s in

neighbors n empty_cells current

|> concat_fold

(fun neighbor s ->

if CellSet.mem neighbor s.visited then [s]

else

let choose_eat = Guard against actions that would fail.

if s.more_to_eat = 0 then []

else [eat_cell neighbor s]

and choose_keep =

if s.been_size >= island_size then []

else find_island neighbor s in

choose_eat @ choose_keep)

s in

64

Finally, we compute the required length of eaten and start searching.

let cells_to_eat =

List.length honey - island_size * num_islands in

find_board (init_state honey cells_to_eat)

65

Constraint-based puzzles

• Puzzles can be presented by providing the general form of solutions, and
additional requirements that the solutions must meet.

• For many puzzles, the general form of solutions for a given problem can
be decomposed into a fixed number of variables.

◦ A domain of a variable is a set of possible values the variable can
have in any solution.

◦ In the Honey Islands puzzle, the variables correspond to cells and the
domains are {Honey, Empty} (either a cell has honey, or is empty –
without distinguishing “initially empty” and “eaten”).

◦ In the Honey Islands puzzle, the constraints are: a selection of cells
that have to be empty, the number and size of connected compo-
nents of cells that are not empty. The neighborhood graph – which
cell-variable is connected with which – is part of the constraints.

66

• There is a general and often efficient scheme of solving constraint-based
problems. Finite Domain Constraint Programming algorithm:

1. With each variable, associate a set of values, initially equal to the
domain of the variable. The singleton containing the association is
the initial set of partial solutions.

2. While there is a solution with more than one value associated to
some variable in the set of partial solutions, select it and:

a. If there is a possible value for some variable, such that for all pos-
sible assignments of values to other variables, the requirements
fail, remove this value from the set associated with this variable.

b. If there is a variable with empty set of possible values associated
to it, remove the solution from the set of partial solutions.

c. Select the variable with the smallest non-singleton set associated
with it (i.e. the smallest greater than 2 size). Split that set into
similarly-sized parts. Replace the solution with two solutions
where the variable is associated with either of the two parts.

3. The final solutions are built from partial solutions by assigning to a
variable the single possible value associated with it.

67

• This general algorithm can be simplified. For example, in step (2.c),
instead of splitting into two equal-sized parts, we can partition into a sin-
gleton and remainder, or partition “all the way” into several singletons.

• The above definition of finite domain constraint solving algorithm is
sketchy. Questions?

• We will not discuss a complete implementation example, but you can
exploit ideas from the algorithm in your homework.

68

