Functional Programming

BY LLUKASZ STAFINIAK

Email: 1lukstafi@gmail.com, lukstafi@ii.uni.wroc.pl
Web: www.ii.uni.wroc.pl/“lukstafi

Lecture 7: Laziness

Lazy evaluation. Stream processing.

M. Douglas Mcllroy “Power Series, Power Serious”

Oleg Kiselyov, Simon Peyton-Jones, Amr Sabry
“Lazy v. Yield: Incremental, Linear Pretty-Printing”

If you see any error on the slides, let me know!

Laziness

e Today's lecture is about lazy evaluation.
e Thank you for coming, goodbye!

e But perhaps, do you have any questions?

Evaluation strategies and parameter passing

e Evaluation strategy is the order in which expressions are computed.
o For the most part: when are arguments computed.

e Recall our problems with wusing flow control expressions like
if_then_else in examples from A-calculus lecture.

e There are many technical terms describing various strategies. Wikipedia:

Strict evaluation. Arguments are always evaluated completely before
function is applied.

Non-strict evaluation. Arguments are not evaluated unless they are
actually used in the evaluation of the function body.

Eager evaluation. An expression is evaluated as soon as it gets bound
to a variable.

Lazy evaluation. Non-strict evaluation which avoids repeating computa-
tion.

Call-by-value. The argument expression is evaluated, and the resulting
value is bound to the corresponding variable in the function (fre-
quently by copying the value into a new memory region).

Call-by-reference. A function receives an implicit reference to a variable
used as argument, rather than a copy of its value.

o In purely functional languages there is no difference between the
two strategies, so they are typically described as call-by-value even
though implementations use call-by-reference internally for effi-
ciency.

o Call-by-value languages like C and OCaml support explicit refer-
ences (objects that refer to other objects), and these can be used
to simulate call-by-reference.

Normal order. Start computing function bodies before evaluating their
arguments. Do not even wait for arguments if they are not needed.

Call-by-name. Arguments are substituted directly into the function body
and then left to be evaluated whenever they appear in the function.

Call-by-need. If the function argument is evaluated, that value is stored
for subsequent uses.

Almost all languages do not compute inside the body of un-applied
function, but with curried functions you can pre-compute data before all
arguments are provided.

o Recall the search_bible example.

In eager / call-by-value languages we can simulate call-by-name by taking
a function to compute the value as an argument instead of the value directly.

o "Our” languages have a unit type with a single value () specifically
for use as throw-away arguments.

o Scala has a built-in support for call-by-name (i.e. direct, without the
need to build argument functions).

ML languages have built-in support for lazy evaluation.

Haskell has built-in support for eager evaluation.

5

Call-by-name: streams

Call-by-name is useful not only for implementing flow control

o let if _then_else cond el e2 =
match cond with true -> el () | false -> e2 ()

but also for arguments of value constructors, i.e. for data structures.
Streams are lists with call-by-name tails.

type ’a stream = SNil | SCons of ’a * (unit -> ’a stream)
Reading from a stream into a list.

let rec stake n = function
| SCons (a, s) when n > 0 -> a::(stake (n-1) (s ()))
| _ -> []

Streams can easily be infinite.

let rec s_ones = SCons (1, fun () -> s_ones)
let rec s_from n =
SCons (n, fun () ->s_from (n+1))

6

e Streams admit list-like operations.

let rec smap £ = function

| SNil -> SNil

| SCons (a, s) -> SCons (f a, fun () -> smap £ (s ()))
let rec szip = function

| SNil, SNil -> SNil

| SCons (al, s1), SCons (a2, s2) ->

SCons ((al, a2), fun () -> szip (s1 O, s2 0)))
| _ -> raise (Invalid_argument)

e Streams can provide scaffolding for recursive algorithms:

let rec sfib =
SCons (1, fun () -> smap (fun (a,b)-> at+b)
(szip (sfib, SCons (1, fun () -> sfib))))

1.25345(8[13]...
1235813

e

1M [P213(5] 813

Streams are less functional than could be expected in context of input-
output effects.

let file_stream name =
let ch = open_in name in
let rec ch_read_line () =
try SCons (input_line ch, ch_read_line)
with End_of_file -> SNil in
ch_read_line ()

OCaml Batteries use a stream type enum for interfacing between various
sequence-like data types.

o The safest way to use streams in a linear /| ephemeral manner: every
value used only once.

o Streams minimize space consumption at the expense of time for
recomputation.

Lazy values

Lazy evaluation is more general than call-by-need as any value can be
lazy, not only a function parameter.

A lazy value is a value that “holds” an expression until its result is
needed, and from then on it “holds” the result.

o Also called: a suspension. If it holds the expression, called a thunk.

In OCaml, we build lazy values explicitly. In Haskell, all values are lazy
but functions can have call-by-value parameters which “need” the argu-
ment.

To create a lazy value: 1lazy expr — where expr is the suspended com-
putation.

Two ways to use a lazy value, be careful when the result is computed!
o In expressions: Lazy.force 1_expr
o In patterns: match 1_expr with lazy v -> ...

— Syntactically 1azy behaves like a data constructor.

9

Lazy lists:
type ’a llist = LNil | LCons of ’a * ’a llist Lazy.t
Reading from a lazy list into a list:

let rec ltake n = function
| LCons (a, lazy 1) when n > 0 -> a::(ltake (n-1) 1)
| _ -> []

Lazy lists can easily be infinite:

let rec 1_ones = LCons (1, lazy 1l_ones)
let rec 1_from n = LCons (n, lazy (1_from (n+1)))

Read once, access multiple times:

let file_1list name =
let ch = open_in name in
let rec ch_read_line () =
try LCons (input_line ch, lazy (ch_read_line ()))
with End_of_file -> LNil in
ch_read_line ()

10

let rec lzip = function
| LNil, LNil -> LNil
| LCons (al, 111), LComns (a2, 112) ->
LCons ((al, a2), lazy (

1zip (Lazy.force 111, Lazy.force 112)))
| _ -> raise (Invalid_argument)

let rec 1lmap f = function
| LNil -> LNil
| LCons (a, 11) ->
LCons (f a, lazy (lmap f (Lazy.force 11)))

let posnums = lfrom 1
let rec lfact =

LCons (1, lazy (lmap (fun (a,b)-> ax*b)
(1zip (1fact, posnums))))

1510256 F24 h120 | ...
12T, 6\24] 120
1023 4| 5| 6

11

Power series and differential equations

e Differential equations idea due to Henning Thielemann. Just an example.

e Expression P(z) = > 7

', a;z" defines a polynomial for n < co and a
power series for n = oo.
e If we define

let rec lfold_right f 1 base =
match 1 with
| LNil -> base
| LCons (a, lazy 1) -> f a (1fold_right f 1 base)

then we can compute polynomials

let hormer x 1 =
1fold_right (fun ¢ sum -> ¢ +. x *. sum) 1 O.

e But it will not work for infinite power series!
o Does it make sense to compute the value at = of a power series?

o Does it make sense to fold an infinite list?

12

If the power series converges for x > 1, then when the elements a,, get
small, the remaining sum > °° q,;x" is also small.
="

1fold_right falls into an infinite loop on infinite lists. We need call-by-
name / call-by-need semantics for the argument function £.

let rec lazy_foldr f 1 base =
match 1 with
| LNil -> base
| LCons (a, 11) ->
f a (lazy (lazy_foldr f (Lazy.force 11) base))

We need a stopping condition in the Horner algorithm step:

let lhorner x 1 = This is a bit of a hack,
let upd ¢ sum = we hope to “hit” the interval (0,¢].
if ¢ = 0. || abs_float ¢ > epsilon_float

then ¢ +. x *. Lazy.force sum

else 0. in
lazy_foldr upd 1 O.

let inv_fact = lmap (fun n -> 1. /. float_of_int n) 1lfact
let e = lhorner 1. inv_fact

13

Power series / polynomial operations

@ let rec add xs ys =
match xs, ys with
| LNil, _ -> ys
| _, LNil -> xs
| LCons (x,xs), LCons (y,ys) ->
LCons (x +. y, lazy (add (Lazy.force xs) (Lazy.force ys)))

@ let rec sub xs ys =
match xs, ys with
| LNil, _ -> lmap (fun x-> ~-.X) ys
| _, LNil -> xs
| LCons (x,xs), LCons (y,ys) ->
LCons (x-.y, lazy (add (Lazy.force xs) (Lazy.force ys)))

e let scale s = lmap (fun x->s*.x)

e let rec shift n xs =
if n = 0 then xs
else if n > O then LCons (0. , lazy (shift (n-1) xs))
else match xs with
| LNil -> LNil
| LCons (0., lazy xs) -> shift (n+1) xs
| _ -> failwith

14

let rec mul xs = function
| LNil -> LNil
| LCons (y, ys) ->
add (scale y xs) (LCons (0., lazy (mul xs (Lazy.force ys))))

let rec div xs ys =

match xs, ys with
| LNil, _ -> LNil
| LCons (0., xs’), LCons (0., ys?’) ->

div (Lazy.force xs’) (Lazy.force ys?’)
| LCons (x, xs’), LCons (y, ys’) ->

let g =x /. y in

LCons (q, lazy (divSeries (sub (Lazy.force xs?)

(scale q (Lazy.force ys?))) ys))

| LCons _, LNil -> failwith

let integrate c xs =
LCons (c, lazy (lmap (uncurry (/.)) (lzip (xs, posnums))))

let 1tail = function
| LNil -> invalid_arg
| LCons (_, lazy tl) -> tl

let differentiate xs =
lmap (uncurry (*.)) (lzip (1ltail xs, posnums))

15

Differential equations

dsinx oy dcos x
de ’ dx

= —sinx,sin0=0,cos0=1.
e We will solve the corresponding integral equations. Why?

e We cannot define the integral by direct recursion like this:

let rec sin = integrate (of_int 0) cos Unary op. 1et (~-:) =
and cos = integrate (of_int 1) ~-:sin lmap (fun x-> ~-.%)

unfortunately fails:

Error: This kind of expression is not allowed as right-
hand side of ‘let rec’

o Even changing the second argument of integrate to call-by-need
does not help, because OCaml cannot represent the values that x and
y refer to.

16

We need to inline a bit of integrate so that OCaml knows how to start
building the recursive structure.

let integ xs = lmap (uncurry (/.)) (lzip (xs, posnums))
let rec sin = LCons (of_int O, lazy (integ cos))
and cos = LCons (of_int 1, lazy (integ ~-:sin))

The complete example would look much more elegant in Haskell.

Although this approach is not limited to linear equations, equations like
Lotka-Volterra or Lorentz are not “solvable” — computed coefficients
quickly grow instead of quickly falling...

17

e Drawing functions are like in previous lecture, but with open curves.

e let plot_1D f ~w ~scale ~t_beg ~t_end =
let dt = (t_end -. t_beg) /. of_int w in
Array.init w (fun i ->

let y = lhorner (dt *. of_int i) f in
i, to_int (scale *. y))

18

Arbitrary precision computation

e Putting it all together reveals drastic numerical errors for large .

let graph =
let scale = of_int h /. of_int 8 in
[plot_1D sin ~w ~hO:(h/2) ~scale
~t_beg: (of_int 0) ~t_end: (of_int 15),
(250,250,0) ;
plot_1D cos ~w ~h0:(h/2) ~scale
~t_beg: (of_int 0) ~t_end: (of_int 15),
(250,0,250)]
let () = draw_to_screen ~w ~h graph

o Floating-point numbers have limited precision.

o We break out of Horner method computations too quickly.

19

For infinite precision on rational numbers we use the nums library.

o It does not help — yet.

Generate a sequence of approximations to the power series limit at .

let infhormer x 1 =
let upd ¢ sum =
LCons (c, lazy (lmap (fun apx -> c+.x*.apx)
(Lazy.force sum))) in
lazy_foldr upd 1 (LCons (of_int O, lazy LNil))

Find where the series converges — as far as a given test is concerned.

let rec exact f = function We arbitrarily decide that convergence is
| LNil -> assert false when three consecutive results are the same.
| LCons (x0, lazy (LCons (x1, lazy (LCons (x2, _)))))
when f x0 = f x1 && f x0 = £ x2 -> £ x0
| LCons (_, lazy tl) -> exact f tl

21

Draw the pixels of the graph at exact coordinates.

let plot_1D f ~w ~hO ~scale ~t_beg ~t_end =
let dt = (t_end -. t_beg) /. of_int w in
let eval = exact (fun y-> to_int (scale *. y)) in
Array.init w (fun i ->
let y = infhorner (t_beg +. dt *. of_int i) f in
i, hO + eval y)

Success! If a power series had every third term contributing we would
have to check three terms in the function exact...

o We could like in 1horner test for f x0 = f x1 && not x0 =. x1
Example n_chain: nuclear chain reaction—A decays into B decays into C
O http://en.wikipedia.org/wiki/Radioactive decay#Chain-decay processes

let n_chain ~nAO ~nBO ~1A ~1B =
let rec nA =
LCons (nAO, lazy (integ (~-.1A *:. mnA)))
and nB =
LCons (nBO, lazy (integ (~-.1B *:. nB +: 1A *:. nA))) in
nA, nB

22

Circular data structures: double-linked list

e Without delayed computation, the ability to define data structures with
referential cycles is very limited.

e Double-linked lists contain such cycles between any two nodes even if
they are not cyclic when following only forward or backward links.

DLNil|al|{# |a2| |1 |a3| |4 |a4| || |ab|DLNil

e We need to “break” the cycles by making some links lazy.

e type ’a dllist =
DLNil | DLCons of ’a dllist Lazy.t * ’a * ’a dllist

e let rec dldrop n 1 =
match 1 with
| DLCons (_, x, xs) when n>0 ->
dldrop (n-1) xs
| _ > 1

24

e let dllist_of_list 1 =
let rec dllist prev 1 =
match 1 with
| [-> DLNil
| x::x8 ->
let rec cell =
lazy (DLCons (prev, x, dllist cell xs)) in
Lazy.force cell in
dllist (lazy DLNil) 1

e let rec dltake n 1 =
match 1 with
| DLCons (_, x, xs) when n>0 ->
x::dltake (n-1) xs
| _ -> []

e let rec dlbackwards n 1 =
match 1 with
| DLCons (lazy xs, x, _) when n>0 ->
x::dlbackwards (n-1) xs

|~ > [

25

Input-Output streams

The stream type used a throwaway argument to make a suspension
type ’a stream = SNil | SCons of ’a * (unit -> ’a stream)
What if we take a real argument?

type (’a, ’b) iostream =
EOS | More of ’b * (’a -> (’a, ’b) iostream)

A stream that for a single input value produces an output value.

type ’a istream = (unit, ’a) iostream
Input stream produces output when “asked”.

type ’a ostream = (’a, unit) iostream
Output stream consumes provided input.

o Sorry, the confusion arises from adapting the input file / output file
terminology, also used for streams.

26

We can compose streams: directing output of one to input of another.

let rec compose sf sg =
match sg with

| EOS -> EOS No more output.
| More (z, g) ->
match sf with No more
| EOS -> More (z, fun _ -> EOS) input “processing power’.

| More (y, f) ->
let update x = compose (f x) (g y) in
More (z, update)

f
o Every box has one incoming and one outgoing wire: JL
g

!

o Notice how the output stream is ahead of the input stream.

27

Pipes

We need a more flexible input-output stream definition.

o Consume several inputs to produce a single output.

o Produce several outputs after a single input (or even without input).
o No need for a dummy when producing output requires input.

After Haskell, we call the data structure pipe.

type (’a, ’b) pipe =
EOP
| Yield of ’b * (’a, ’b) pipe For incremental streams change to lazy.

| Await of ’a -> (’a, ’b) pipe

Again, we can have producing output only input pipes and consuming
input only output pipes.

type ’a ipipe = (unit, ’a) pipe
type void
type ’a opipe = (’a, void) pipe

o Why void rather than unit, and why only for opipe?

28

Composition of pipes is like “concatenating them in space” or connecting
boxes:

let rec compose pf pg =
match pg with

| EOP -> EOP Done producing results.
| Yield (z, pg?’) -> Yield (z, compose pf pg’) Ready result
| Await g ->

match pf with

| EOP -> EOP End of input.

| Yield (y, pf’) -> compose pf’ (g y) Compute next result.
| Await f ->

let update x = compose (f x) pg in

Await update Wait for more input.

let (>->) pf pg = compose pf pg

29

e Appending pipes means “concatenating them in time" or adding more fuel
to a box:

let rec append pf pg =
match pf with
| EOP -> pg When pf runs out, use pg.
| Yield (z, pf’) -> Yield (z, append pf’ pg)
| Await f -> If pf awaits input, continue when it comes.
let update x = append (f x) pg in
Await update

e Append a list of ready results in front of a pipe.

let rec yield_all 1 tail =
match 1 with
| [0 -> tail
| x::xs -> Yield (x, yield_all xs tail)

e lIterate a pipe (not functional).

let rec iterate f : ’a opipe =
Await (fun x -> let () = f x in iterate f)

30

Example: pretty-printing

e Print hierarchically organized document with a limited line width.

type doc =
Text of string | Line | Cat of doc * doc | Group of doc

e let (++4) d1l d2 = Cat (d1, Cat (Line, d2))
let (!) s = Text s
let test_doc =
Group (! ++
Group (! ++ |))

let () = print_endline (pretty 30 test_doc);;
Document

First part Second part

let () = print_endline (pretty 20 test_doc);;
Document

First part

Second part

let () = print_endline (pretty 60 test_doc);;
Document First part Second part

31

Straightforward solution:

let pretty w d = Allowed width of line w.

let

rec width = function

Text z -> String.length z
Line -> 1

Cat (d1, d2) -> width d1 + width d2
Group d -> width d in

Total length of subdocument.

rec format £ r = function Remaining space r.
Text z -> z, r - String.length z

Line when f -> , r-1 If not f then line breaks.
Line -> , W

Cat (d1, d2) ->
let s1, r = format £ r d1 in
let 82, r = format £ r d2 in

sl =~ s2, r If following group fits, then without line breaks.
Group d -> format (f || width d <= r) r d in

fst (format false w d)

32

Working with a stream of nodes.

type (’a, ’b) doc_e = Annotated nodes, special for group beginning.
TE of ’a * string | LE of ’a | GBeg of ’b | GEnd of ’a

Normalize a subdocument — remove empty groups.

let rec norm = function
| Group d -> norm d

| Text -> None
| Cat (Text , d) -> norm d
| d -> Some d

33

Generate the stream by infix traversal.

let rec gen = function

| Text z -> Yield (TE ((),z), EOP)
| Line -> Yield (LE (), EOP)
| Cat (d1, d2) -> append (gen dl) (gen d2)
| Group d ->

match norm d with

| None -> EOP

| Some d ->

Yield (GBeg (),
append (gen d) (Yield (GEnd (), EOP)))

34

Compute lengths of document prefixes, i.e. the position of each node
counting by characters from the beginning of document.

let rec docpos curpos =
Await (function We input from a doc_e pipe
| TE (_, z) ->
Yield (TE (curpos, z), and output doc_e annotated with position.
docpos (curpos + String.length z))
| LE _ -> Spice and line breaks increase position by 1.
Yield (LE curpos, docpos (curpos + 1))
| GBeg _ -> Groups do not increase position.
Yield (GBeg curpos, docpos curpos)
| GEnd _ ->
Yield (GEnd curpos, docpos curpos))
let docpos = docpos O The whole document starts at 0.

35

Put the end position of the group into the group beginning marker, so
that we can know whether to break it into multiple lines.

let rec grends grstack =
Await (function

| TE _ | LE _ as e ->

(match grstack with

| [J] -> Yield (e, grends []) We can yield only when

| gr::grs -> grends ((e::gr)::grs)) no group is waiting.
| GBeg _ -> grends ([]::grstack) Wait for end of group.
| GEnd endp ->

match grstack with End the group on top of stack.

| [1 -> failwith

| [gr] -> Top group — we can yield now.

yield_all

(GBeg endp::List.rev (GEnd endp::gr))
(grends [])

| gr::.:par::grs -> Remember in parent group instead.
let par = GEnd endp::gr @ [GBeg endp] @ par in
grends (par::grs)) Could use catenable lists above.

36

That's waiting too long! We can stop waiting when the width of a group
exceeds line limit. GBeg will not store end of group when it is irrelevant.

let rec grends w grstack =
let flush tail = When the stack exceeds width w,
yield_all flush it — yield everything in it.
(rev_concat_map ~prep: (GBeg Too_far) snd grstack)
tail in Above: concatenate in rev. with prep before each part.
Await (function
| TE (curp, _) | LE curp as e ->
(match grstack with Remember beginning of groups in the stack.
| [J] -> Yield (e, grends w [])
| (begp, _)::_ when curp-begp > w ->
flush (Yield (e, grends w []))
| (begp, gr)::grs -> grends w ((begp, e::gr)::grs))
| GBeg begp -> grends w ((begp, [])::grstack)

37

| GEnd endp as e ->
match grstack with No longer fail when the stack is empty —
| [J -> Yield (e, grends w []) could have been flushed.
| (begp, _)::_ when endp-begp > w ->
flush (Yield (e, grends w []))
| [_, gr] -> If width not exceeded,
yield_all work as before optimization.
(GBeg (Pos endp)::List.rev (GEnd endp::gr))
(grends w [])
| (_, gr)::(par_begp, par)::grs ->
let par =
GEnd endp::gr @ [GBeg (Pos endp)] @ par in
grends w ((par_begp, par)::grs))

e Initial stack is empty:

let grends w = grends w []

38

Finally we produce the resulting stream of strings.

let rec format w (inline, endlpos as st) =

Await (function

| TE (_, z) -> Yield (z, format w st)

State: the stack of

“group fits in line”; position where end of line would be.

| LE p when List.hd inline ->

Yield (, format w st)

| LE p -> Yield (
| GBeg Too_far ->

format w (false
| GBeg (Pos p) ->

After return, line has w free space.
, format w (inline, p+w))

Group with end too far is not inline.
::inline, endlpos)

Group is inline if it ends soon enough.
format w ((p<=endlpos)::inline, endlpos)
| GEnd _ -> format w (List.tl inline, endlpos))

let format w = format w ([false], w)

Put the pipes together:

let pretty_print w doc =

Break lines outside of groups.

gen doc P docpos P

grends w

-

format w

-

iterate print_string

39

e Factorize format so that various line breaking styles can be plugged in.

let rec breaks w (inline, endlpos as st) =
Await (function
| TE _ as e -> Yield (e, breaks w st)
| LE p when List.hd inline ->
Yield (TE (p,), breaks w st)
| LE p as e -> Yield (e, breaks w (inline, p+w))
| GBeg Too_far as e ->
Yield (e, breaks w (false::inline, endlpos))
| GBeg (Pos p) as e ->
Yield (e, breaks w ((p<=endlpos)::inline, endlpos))
| GEnd _ as e ->
Yield (e, breaks w (List.tl inline, endlpos)))

let breaks w = breaks w ([false], w)

40

let rec emit =
Await (function
| TE (_, z) -> Yield (z, emit)
| LE _ -> Yield (, emit)
| GBeg _ | GEnd _ -> emit)

let pretty_print w doc =

gen doc >-> docpos >-> grends w >-> breaks w >->
emit >-> iterate print_string

41

Tests.

let (++) d1 d2 = Cat (d1, Cat (Line, d2))
let (!) s = Text s
let test_doc =
Group (! ++
Group (! ++ !

let print_e_doc pr_p pr_ep = function
| TE (p,z) -> pr_p p; print_endline (~z)
| LE p -> pr_p p; print_endline
| GBeg ep -> pr_ep ep; print_endline
| GEnd p -> pr_p p; print_endline
let noop () = ()
let print_pos = function
| Pos p -> print_int p
| Too_far -> print_string

let _ = gen test_doc >->
iterate (print_e_doc noop noop)
let _ = gen test_doc >-> docpos >->
iterate (print_e_doc print_int print_int)
let _ = gen test_doc >-> docpos >-> grends 20
iterate (print_e_doc print_int print_pos)
let _ = gen test_doc >-> docpos >-> grends 30
iterate (print_e_doc print_int print_pos)
let _ = gen test_doc >-> docpos >-> grends 60
iterate (print_e_doc print_int print_pos)
let _ = pretty_print 20 test_doc
let _ = pretty_print 30 test_doc
let _ = pretty_print 60 test_doc

>->
>->

>->

42

)

