
Functional Programming

by Łukasz Stafiniak

Email: lukstafi@gmail.com, lukstafi@ii.uni.wroc.pl

Web: www.ii.uni.wroc.pl/~lukstafi

Lecture 8: Monads

List comprehensions. Basic monads; transformers.

Probabilistic Programming.

Lightweight cooperative threads.

Some examples from Tomasz Wierzbicki. Jeff Newbern “All About Monads” .

M. Erwig, S. Kollmansberger “Probabilistic Functional Programming in Haskell” .

Jerome Vouillon “Lwt: a Cooperative Thread Library” .

If you see any error on the slides, let me know!

1

List comprehensions

• Recall the awkward syntax we used in the Countdown Problem example:

◦ Brute-force generation:

let combine l r =

List.map (fun o->App (o,l,r)) [Add; Sub; Mul; Div]

let rec exprs = function

| [] -> []

| [n] -> [Val n]

| ns ->

split ns |-> (fun (ls,rs) ->

exprs ls |-> (fun l ->

exprs rs |-> (fun r ->

combine l r)))

◦ Genarate-and-test scheme:

let guard p e = if p e then [e] else []

let solutions ns n =

choices ns |-> (fun ns’ ->

exprs ns’ |->

guard (fun e -> eval e = Some n))

2

• Recall that we introduced the operator

let (|->) x f = concat_map f x

• We can do better with list comprehensions syntax extension.

#load "dynlink.cma";;

#load "camlp4o.cma";;

#load "Camlp4Parsers/Camlp4ListComprehension.cmo";;

let test = [i * 2 | i <- from_to 2 22; i mod 3 = 0]

• What it means:

◦ [expr |] can be translated as [expr]

◦ [expr | v <- generator; more] can be translated as

generator |-> (fun v -> translation of [expr | more])

◦ [expr | condition; more] can be translated as

if condition then translation of [expr | more] else []

3

• Revisiting the Countdown Problem code snippets:

◦ Brute-force generation:

let rec exprs = function

| [] -> []

| [n] -> [Val n]

| ns ->

[App (o,l,r) | (ls,rs) <- split ns;

l <- exprs ls; r <- exprs rs;

o <- [Add; Sub; Mul; Div]]

◦ Genarate-and-test scheme:

let solutions ns n =

[e | ns’ <- choices ns;

e <- exprs ns’; eval e = Some n]

• Subsequences using list comprehensions (with garbage):

let rec subseqs l =

match l with

| [] -> [[]]

| x::xs -> [ys | px <- subseqs xs; ys <- [px; x::px]]

4

• Computing permutations using list comprehensions:

◦ via insertion

let rec insert x = function

| [] -> [[x]]

| y::ys’ as ys ->

(x::ys) :: [y::zs | zs <- insert x ys’]

let rec ins_perms = function

| [] -> [[]]

| x::xs -> [zs | ys <- ins_perms xs; zs <- insert ys]

◦ via selection

let rec select = function

| [x] -> [x,[]]

| x::xs -> (x,xs) :: [y, x::ys | y,ys <- select xs]

let rec sel_perms = function

| [] -> [[]]

| xs ->

[x::ys | x,xs’ <- select xs; ys <- sel_perms xs’]

5

Generalized comprehensions aka. do-notation

• We need to install the syntax extension pa_monad

◦ by copying the pa_monad.cmo or pa_monad400.cmo (for OCaml
4.0) file from the course page,

◦ or if it does not work, by compiling from sources at
http://www.cas.mcmaster.ca/~carette/pa_monad/
and installing under a Unix-like shell (Windows: the Cygwin shell).

− Under Debian/Ubuntu, you may need to install camlp4-extras

• let rec exprs = function

| [] -> []

| [n] -> [Val n]

| ns ->

perform with (|->) in

(ls,rs) <-- split ns;

l <-- exprs ls; r <-- exprs rs;

o <-- [Add; Sub; Mul; Div];

[App (o,l,r)]

6

• The perform syntax does not seem to support guards...

let solutions ns n =

perform with (|->) in

ns’ <-- choices ns;

e <-- exprs ns’;

eval e = Some n;

e

eval e = Some n;

^^^^^^^^^^^^^^^

Error: This expression has type bool but an expression was

expected of type

’a list

• So it wants a list... What can we do?

7

• We can decide whether to return anything

let solutions ns n =

perform with (|->) in

ns’ <-- choices ns;

e <-- exprs ns’;

if eval e = Some n then [e] else []

• But what if we want to check earlier...

General “guard check” function

let guard p = if p then [()] else []

• let solutions ns n =

perform with (|->) in

ns’ <-- choices ns;

e <-- exprs ns’;

guard (eval e = Some n);

[e]

8

Monads

• A polymorphic type ’a monad (or ’a Monad.t, etc.) that supports at
least two operations:

◦ bind : ’a monad -> (’a -> ’b monad) -> ’b monad

◦ return : ’a -> ’a monad

◦ >>= is infix syntax for bind: let (>>=) a b = bind a b

• With bind in scope, we do not need the with clause in perform

let bind a b = concat_map b a

let return x = [x]

let solutions ns n =

perform

ns’ <-- choices ns;

e <-- exprs ns’;

guard (eval e = Some n);

return e

9

• Why guard looks this way?

let fail = []

let guard p = if p then return () else fail

◦ Steps in monadic computation are composed with >>=, e.g. |->

− as if ; was replaced by >>=

◦ [] |-> ... does not produce anything – as needed by guarding

◦ [()] |-> ... (fun _ -> ...) () ... i.e. keep without change

• Throwing away the binding argument is a common practice, with infix
syntax >> in Haskell, and supported in do-notation and perform.

• Everything is a monad?

• Different flavors of monads?

• Can guard be defined for any monad?

10

• perform syntax in depth:

perform exp � exp

perform pat <-- exp; � bind exp

rest (fun pat -> perform rest)

perform exp; rest � bind exp

(fun _ -> perform rest)

perform let ... in rest � let ... in perform rest

perform rpt <-- exp; � bind exp

rest (function

| rpt -> perform rest

| _ -> failwith

"pattern match")

perform with b [and f] in � perform body

body but uses b instead of bind
and f instead of failwith
during translation

• It can be useful to redefine: let failwith _ = fail (why?)

11

Monad laws

• A parametric data type is a monad only if its bind and return opera-
tions meet axioms:

bind (return a) f ≈ fa

bind a (λx.returnx) ≈ a

bind (bind a (λx.b)) (λy.c) ≈ bind a (λx.bind b (λy.c))

• Check that the laws hold for our example monad

let bind a b = concat_map b a

let return x = [x]

12

Monoid laws and monad-plus

• A monoid is a type with, at least, two operations

◦ mzero : ’a monoid

◦ mplus : ’a monoid -> ’a monoid -> ’a monoid

that meet the laws:

mplusmzero a ≈ a

mplus amzero ≈ a

mplus a (mplus bc) ≈ mplus (mplus ab) c

• We will define fail as synonym for mzero and infix ++ for mplus.

• Fusing monads and monoids gives the most popular general flavor of
monads which we call monad-plus after Haskell.

13

• Monad-plus requires additional axioms that relate its “addition” and
its “multiplication”.

bindmzero f ≈ mzero

bindm (λx.mzero) ≈ mzero

• Using infix notation with ⊕ as mplus, 0 as mzero, ⊲ as bind and 1 as
return, we get monad-plus axioms

0⊕ a ≈ a

a⊕ 0 ≈ a

a⊕ (b⊕ c) ≈ (a⊕ b)⊕ c

1x⊲ f ≈ fx

a⊲λx.1x ≈ a

(a⊲λx.b)⊲λy.c ≈ a⊲ (λx.b⊲λy.c)

0⊲ f ≈ 0

a⊲ (λx.0) ≈ 0

14

• The list type has a natural monad and monoid structure

let mzero = []

let mplus = (@)

let bind a b = concat_map b a

let return a = [a]

• We can define in any monad-plus

let fail = mzero

let failwith _ = fail

let (++) = mplus

let (>>=) a b = bind a b

let guard p = if p then return () else fail

15

Backtracking: computation with choice

We have seen mzero, i.e. fail in the countdown problem. What about
mplus?

let find_to_eat n island_size num_islands empty_cells =

let honey = honey_cells n empty_cells in

let rec find_board s =

(* Printf.printf "find_board: %sn" (state_str s); *)

match visit_cell s with

| None ->

perform

guard (s.been_islands = num_islands);

return s.eaten

| Some (cell, s) ->

perform

s <-- find_island cell (fresh_island s);

guard (s.been_size = island_size);

find_board s

16

and find_island current s =

let s = keep_cell current s in

neighbors n empty_cells current

|> foldM

(fun neighbor s ->

if CellSet.mem neighbor s.visited then return s

else

let choose_eat =

if s.more_to_eat <= 0 then fail

else return (eat_cell neighbor s)

and choose_keep =

if s.been_size >= island_size then fail

else find_island neighbor s in

mplus choose_eat choose_keep)

s in

let cells_to_eat =

List.length honey - island_size * num_islands in

find_board (init_state honey cells_to_eat)

17

Monad “flavors”

• Monads “wrap around” a type, but some monads need an additional type
parameter.

◦ Usually the additional type does not change while within a monad –
we will therefore stick to ’a monad rather than parameterize with an
additional type (’s, ’a) monad.

• As monad-plus shows, things get interesting when we add more opera-
tions to a basic monad (with bind and return).

◦ Monads with access:

access : ’a monad -> ’a

Example: the lazy monad.

◦ Monad-plus, non-deterministic computation:

mzero : ’a monad

mplus : ’a monad -> ’a monad -> ’a monad

18

◦ Monads with environment or state – parameterized by type store:

get : store monad

put : store -> unit monad

There is a “canonical” state monad. Similar monads: the writer
monad (with get called listen and put called tell); the reader
monad, without put, but with get (called ask) and local:

local : (store -> store) -> ’a monad -> ’a monad

◦ The exception / error monads – parameterized by type excn:

throw : excn -> ’a monad

catch : ’a monad -> (excn -> ’a monad) -> ’a monad

◦ The continuation monad:

callCC : ((’a -> ’b monad) -> ’a monad) -> ’a monad

We will not cover it.

19

◦ Probabilistic computation:

choose : float -> ’a monad -> ’a monad -> ’a monad

satisfying the laws with a ⊕p b for choose p a b and p q for p*.q,
06 p, q6 1:

a⊕0 b ≈ b

a⊕p b ≈ b⊕1−p a

a⊕p (b⊕q c) ≈
(

a⊕ p

p+q−pq

b
)

⊕p+q−pq c

a⊕p a ≈ a

◦ Parallel computation as monad with access and parallel bind:

parallel :

’a monad-> ’b monad-> (’a -> ’b -> ’c monad) -> ’c monad

Example: lightweight threads.

20

Interlude: the module system

• I provide below much more information about the module system than
we need, just for completeness. You can use it as reference.

◦ Module system details will not be on the exam – only the structure /
signature definitions as discussed in lecture 5.

• Modules collect related type definitions and operations together.

• Module “values” are introduced with struct ... end – structures.

• Module types are introduced with sig ... end – signatures.

◦ A structure is a package of definitions, a signature is an interface for
packages.

• A source file source.ml or Source.ml defines a module Source.

A source file source.mli or Source.mli defines its type.

• We can create the initial interface by entering the module in the interac-
tive toplevel or by command ocamlc -i source.ml

21

• In the “toplevel” – accurately, module level – modules are defined with
module ModuleName = ... or module ModuleName : MODULE_TYPE

= ... syntax, and module types with module type MODULE_TYPE = ...
syntax.

◦ Corresponds to let v_name = ... resp. let v_name : v_type = ...
syntax for values and type v_type = ... syntax for types.

• Locally in expressions, modules are defined with let module M = ...
in ... syntax.

◦ Corresponds to let v_name = ... in ... syntax for values.

• The content of a module is made visible in the remainder of another
module by open Module

◦ Module Pervasives is initially visible, as if each file started with
open Pervasives.

• The content of a module is made visible locally in an expression with
let open Module in ... syntax.

22

• Content of a module is included into another module – i.e. made part of
it – by include Module.

◦ Just having open Module inside Parent does not affect how Parent

looks from outside.

• Module functions – functions from modules to modules – are called
functors (not the Haskell ones!). The type of the parameter has to be given.

module Funct = functor (Arg : sig ... end) -> struct ... end

module Funct (Arg : sig ... end) = struct ... end

◦ Functors can return functors, i.e. modules can be parameterized by
multiple modules.

◦ Modules are either structures or functors.

◦ Different kind of thing than Haskell functors.

• Functor application always uses parentheses: Funct (struct ... end)

• We can use named module type instead of signature and named module
instead of structure above.

• Argument structures can contain more definitions than required.

23

• A signature MODULE_TYPE with type t_name = ... is like
MODULE_TYPE but with t_name made more specific.

• We can also include signatures into other signatures, by include

MODULE_TYPE.

◦ include MODULE_TYPE with type t_name := ... will substitute
type t_name with provided type.

• Modules, just as expressions, are not recursive or mutually recursive by
default. Syntax for recursive modules:
module rec ModuleName : MODULE_TYPE = ... and ...

• We can recover the type – i.e. signature – of a module by
module type of Module

24

• Finally, we can pass around modules in normal functions.

◦ (module Module) is an expression

◦ (val module_v) is a module

◦ # module type T = sig val g : int -> int end

let f mod_v x =

let module M = (val mod_v : T) in

M.g x;;

val f : (module T) -> int -> int = <fun>

let test = f (module struct let g i = i*i end : T);;

val test : int -> int = <fun>

25

The two metaphors

• Monads can be seen as containers: ’a monad contains stuff of type ’a

• and as computation: ’a monad is a special way to compute ’a.

◦ A monad fixes the sequence of computing steps – unless it is a fancy
monad like parallel computation monad.

26

Monads as containers

• A monad is a quarantine container :

◦ we can put something into the container with return

◦ we can operate on it, but the result needs to stay in the container

let lift f m = perform x <-- m; return (f x)

val lift : (’a -> ’b) -> ’a monad -> ’b monad

◦ We can deactivate-unwrap the quarantine container but only when it
is in another container so the quarantine is not broken

let join m = perform x <-- m; x

val join : (’a monad) monad -> ’a monad

• The quarantine container for a monad-plus is more like other containers:
it can be empty, or contain multiple elements.

• Monads with access allow us to extract the resulting element from the
container, other monads provide a run operation that exposes “what
really happened behind the quarantine”.

27

Monads as computation

• To compute the result, perform instructions, naming partial results.

• Physical metaphor: assembly line

Combiner
bind

Worker
makeChopsticks

Worker
polishChopsticks

Combiner
bind

Combiner
bind

Loader
return

Worker
wrapChopsticks

w c

c’

c”

let assemblyLine w =

perform

c <-- makeChopsticks w

c’ <-- polishChopsticks c

c” <-- wrapChopsticks c’

return c”

28

• Any expression can be spread over a monad, e.g. for λ-terms:

JNK= returnN (constant)

JxK= returnx (variable)

Jλx.aK= return(λx.JaK) (function)

Jletx= a in bK= bind JaK (λx.JbK) (local definition)

JabK= bind JaK (λva.bind JbK (λvb.va vb)) (application)

• When an expression is spread over a monad, its computation can be
monitored or affected without modifying the expression.

29

Monad classes

• To implement a monad we need to provide the implementation type,
return and bind operations.

module type MONAD = sig

type ’a t

val return : ’a -> ’a t

val bind : ’a t -> (’a -> ’b t) -> ’b t

end

◦ Alternatively we could start from return, lift and join operations.

◦ For monads that change their additional type parameter we could define:

module type MONAD = sig

type (’s, ’a) t

val return : ’a -> (’s, ’a) t

val bind :

(’s, ’a) t -> (’a -> (’s, ’b) t) -> (’s, ’b) t

end

30

• Based on just these two operations, we can define a whole suite of gen-
eral-purpose functions. We look at just a tiny selection.

module type MONAD_OPS = sig

type ’a monad

include MONAD with type ’a t := ’a monad

val (>>=) :’a monad -> (’a -> ’b monad) -> ’b monad

val foldM :

(’a -> ’b -> ’a monad) -> ’a -> ’b list -> ’a monad

val whenM : bool -> unit monad -> unit monad

val lift : (’a -> ’b) -> ’a monad -> ’b monad

val (>>|) : ’a monad -> (’a -> ’b) -> ’b monad

val join : ’a monad monad -> ’a monad

val (>=>) :

(’a ->’b monad) -> (’b ->’c monad) -> ’a -> ’c monad

end

31

• Given a particular implementation, we define these functions.

module MonadOps (M : MONAD) = struct

open M

type ’a monad = ’a t

let run x = x

let (>>=) a b = bind a b

let rec foldM f a = function

| [] -> return a

| x::xs -> f a x >>= fun a’ -> foldM f a’ xs

let whenM p s = if p then s else return ()

let lift f m = perform x <-- m; return (f x)

let (>>|) a b = lift b a

let join m = perform x <-- m; x

let (>=>) f g = fun x -> f x >>= g

end

32

• We make the monad “safe” by keeping its type abstract. But run

exposes “what really happened”.

module Monad (M : MONAD) :

sig

include MONAD_OPS

val run : ’a monad -> ’a M.t

end = struct

include M

include MonadOps(M)

end

◦ Our run function does not do anything at all. Often more useful
functions are called run but then they need to be defined for each
implementation separately. Our access operation (see section on
monad flavors) is often called run.

33

• The monad-plus class of monads has a lot of implementations. They
need to provide mzero and mplus.

module type MONAD_PLUS = sig

include MONAD

val mzero : ’a t

val mplus : ’a t -> ’a t -> ’a t

end

• Monad-plus class also has its general-purpose functions:

module type MONAD_PLUS_OPS = sig

include MONAD_OPS

val mzero : ’a monad

val mplus : ’a monad -> ’a monad -> ’a monad

val fail : ’a monad

val (++) : ’a monad -> ’a monad -> ’a monad

val guard : bool -> unit monad

val msum_map : (’a -> ’b monad) -> ’a list -> ’b monad

end

34

• We again separate the “implementation” and the “interface”.

module MonadPlusOps (M : MONAD_PLUS) = struct

open M

include MonadOps(M)

let fail = mzero

let (++) a b = mplus a b

let guard p = if p then return () else fail

let msum_map f l = List.fold_right

(fun a acc -> mplus (f a) acc) l mzero

end

module MonadPlus (M : MONAD_PLUS) :

sig

include MONAD_PLUS_OPS

val run : ’a monad -> ’a M.t

end = struct

include M

include MonadPlusOps(M)

end

35

• We also need a class for computations with state.

module type STATE = sig

type store

type ’a t

val get : store t

val put : store -> unit t

end

The purpose of this signature is inclusion in other signatures.

36

Monad instances

• We do not define a class for monads with access since accessing means
running the monad, not useful while in the monad.

• Notation for laziness heavy? Try a monad! (Monads with access.)

module LazyM = Monad (struct

type ’a t = ’a Lazy.t

let bind a b = lazy (Lazy.force (b (Lazy.force a)))

let return a = lazy a

end)

let laccess m = Lazy.force (LazyM.run m)

37

• Our resident list monad. (Monad-plus.)

module ListM = MonadPlus (struct

type ’a t = ’a list

let bind a b = concat_map b a

let return a = [a]

let mzero = []

let mplus = List.append

end)

38

Backtracking parameterized by monad-plus

module Countdown (M : MONAD_PLUS_OPS) = struct

open M Open the module to make monad operations visible.

let rec insert x = function All choice-introducing operations

| [] -> return [x] need to happen in the monad.

| y::ys as xs ->

return (x::xs) ++

perform xys <-- insert x ys; return (y::xys)

let rec choices = function

| [] -> return []

| x::xs -> perform

cxs <-- choices xs; Choosing which numbers in what order

return cxs ++ insert x cxs and now whether with or without x.

39

type op = Add | Sub | Mul | Div

let apply op x y =

match op with

| Add -> x + y

| Sub -> x - y

| Mul -> x * y

| Div -> x / y

let valid op x y =

match op with

| Add -> x <= y

| Sub -> x > y

| Mul -> x <= y && x <> 1 && y <> 1

| Div -> x mod y = 0 && y <> 1

40

type expr = Val of int | App of op * expr * expr

let op2str = function

| Add -> "+" | Sub -> "-" | Mul -> "*" | Div -> "/"

let rec expr2str = function We will provide solutions as strings.

| Val n -> string_of_int n

| App (op,l,r) ->"("^expr2str l^op2str op^expr2str r^")"

let combine (l,x) (r,y) o = perform Try out an operator.

guard (valid o x y);

return (App (o,l,r), apply o x y)

let split l = Another choice: which numbers go into which argument.

let rec aux lhs = function

| [] | [_] -> fail Both arguments need numbers.

| [y; z] -> return (List.rev (y::lhs), [z])

| hd::rhs ->

let lhs = hd::lhs in

return (List.rev lhs, rhs)

++ aux lhs rhs in

aux [] l

41

let rec results = function Build possible expressions once numbers

| [] -> fail have been picked.

| [n] -> perform

guard (n > 0); return (Val n, n)

| ns -> perform

(ls, rs) <-- split ns;

lx <-- results ls;

ly <-- results rs; Collect solutions using each operator.

msum_map (combine lx ly) [Add; Sub; Mul; Div]

let solutions ns n = perform Solve the problem:

ns’ <-- choices ns; pick numbers and their order,

(e,m) <-- results ns’; build possible expressions,

guard (m=n); check if the expression gives target value,

return (expr2str e) “print” the solution.

end

42

Understanding laziness

• We will measure execution times:

#load "unix.cma";;

let time f =

let tbeg = Unix.gettimeofday () in

let res = f () in

let tend = Unix.gettimeofday () in

tend -. tbeg, res

• Let’s check our generalized Countdown solver using original operations.

module ListCountdown = Countdown (ListM)

let test1 () = ListM.run (ListCountdown.solutions

[1;3;7;10;25;50] 765)

let t1, sol1 = time test1

• val t1 : float = 2.2856600284576416

val sol1 : string list =

["((25-(3+7))*(1+50))"; "(((25-3)-7)*(1+50))"; ...

43

• What if we want only one solution? Laziness to the rescue!

type ’a llist = LNil | LCons of ’a * ’a llist Lazy.t

let rec ltake n = function

| LCons (a, lazy l) when n > 0 -> a::(ltake (n-1) l)

| _ -> []

let rec lappend l1 l2 =

match l1 with LNil -> l2

| LCons (hd, tl) ->

LCons (hd, lazy (lappend (Lazy.force tl) l2))

let rec lconcat_map f = function

| LNil -> LNil

| LCons (a, lazy l) ->

lappend (f a) (lconcat_map f l)

44

• That is, another monad-plus.

module LListM = MonadPlus (struct

type ’a t = ’a llist

let bind a b = lconcat_map b a

let return a = LCons (a, lazy LNil)

let mzero = LNil

let mplus = lappend

end)

• module LListCountdown = Countdown (LListM)

let test2 () = LListM.run (LListCountdown.solutions

[1;3;7;10;25;50] 765)

• # let t2a, sol2 = time test2;;

val t2a : float = 2.51197600364685059

val sol2 : string llist = LCons ("((25-(3+7))*(1+50))",

<lazy>)

Not good, almost the same time to even get the lazy list!

45

• # let t2b, sol2_1 = time (fun () -> ltake 1 sol2);;

val t2b : float = 2.86102294921875e-06

val sol2_1 : string list = ["((25-(3+7))*(1+50))"]

let t2c, sol2_9 = time (fun () -> ltake 10 sol2);;

val t2c : float = 9.059906005859375e-06

val sol2_9 : string list =

["((25-(3+7))*(1+50))"; "(((25-3)-7)*(1+50))"; ...

let t2d, sol2_39 = time (fun () -> ltake 49 sol2);;

val t2d : float = 4.00543212890625e-05

val sol2_39 : string list =

["((25-(3+7))*(1+50))"; "(((25-3)-7)*(1+50))"; ...

Getting elements from the list shows they are almost already computed.

46

• Wait! Perhaps we should not store all candidates when we are only inter-
ested in one.

module OptionM = MonadPlus (struct

type ’a t = ’a option

let bind a b =

match a with None -> None | Some x -> b x

let return a = Some a

let mzero = None

let mplus a b = match a with None -> b | Some _ -> a

end)

• module OptCountdown = Countdown (OptionM)

let test3 () = OptionM.run (OptCountdown.solutions

[1;3;7;10;25;50] 765)

• # let t3, sol3 = time test3;;

val t3 : float = 5.0067901611328125e-06

val sol3 : string option = None

It very quickly computes... nothing. Why?

◦ What is the OptionM monad (Maybe monad in Haskell) good for?

47

• Our lazy list type is not lazy enough.

◦ Whenever we “make” a choice: a ++ b or msum_map ..., it computes
the first candidate for each choice path.

◦ When we bind consecutive steps, it computes the second candidate of
the first step even when the first candidate would suffice.

48

• We want the whole monad to be lazy: it’s called even lazy lists.

◦ Our llist are called odd lazy lists.

type ’a lazy_list = ’a lazy_list_ Lazy.t

and ’a lazy_list_ = LazNil | LazCons of ’a * ’a lazy_list

let rec laztake n = function

| lazy (LazCons (a, l)) when n > 0 ->

a::(laztake (n-1) l)

| _ -> []

let rec append_aux l1 l2 =

match l1 with lazy LazNil -> Lazy.force l2

| lazy (LazCons (hd, tl)) ->

LazCons (hd, lazy (append_aux tl l2))

let lazappend l1 l2 = lazy (append_aux l1 l2)

let rec concat_map_aux f = function

| lazy LazNil -> LazNil

| lazy (LazCons (a, l)) ->

append_aux (f a) (lazy (concat_map_aux f l))

let lazconcat_map f l = lazy (concat_map_aux f l)

49

• module LazyListM = MonadPlus (struct

type ’a t = ’a lazy_list

let bind a b = lazconcat_map b a

let return a = lazy (LazCons (a, lazy LazNil))

let mzero = lazy LazNil

let mplus = lazappend

end)

• module LazyCountdown = Countdown (LazyListM)

let test4 () = LazyListM.run (LazyCountdown.solutions

[1;3;7;10;25;50] 765)

50

• # let t4a, sol4 = time test4;;

val t4a : float = 2.86102294921875e-06

val sol4 : string lazy_list = <lazy>

let t4b, sol4_1 = time (fun () -> laztake 1 sol4);;

val t4b : float = 0.367874860763549805

val sol4_1 : string list = ["((25-(3+7))*(1+50))"]

let t4c, sol4_9 = time (fun () -> laztake 10 sol4);;

val t4c : float = 0.234670877456665039

val sol4_9 : string list =

["((25-(3+7))*(1+50))"; "(((25-3)-7)*(1+50))"; ...

let t4d, sol4_39 = time (fun () -> laztake 49 sol4);;

val t4d : float = 4.0594940185546875

val sol4_39 : string list =

["((25-(3+7))*(1+50))"; "(((25-3)-7)*(1+50))"; ...

◦ Finally, the first solution in considerably less time than all solutions.

◦ The next 9 solutions are almost computed once the first one is.

◦ But computing all solutions takes nearly twice as long as without the
overhead of lazy computation.

51

The exception monad

• Built-in non-functional exceptions in OCaml are more efficient (and more
flexible).

• Instead of specifying a type of exceptional values, we could use OCaml
open type exn, restoring some flexibility.

• Monadic exceptions are safer than standard exceptions in situations like
multi-threading. Monadic lightweight-thread library Lwt has throw

(called fail there) and catch operations in its monad.

module ExceptionM(Excn : sig type t end) : sig

type excn = Excn.t

type ’a t = OK of ’a | Bad of excn

include MONAD_OPS

val run : ’a monad -> ’a t

val throw : excn -> ’a monad

val catch : ’a monad -> (excn -> ’a monad) -> ’a monad

end = struct

type excn = Excn.t

52

module M = struct

type ’a t = OK of ’a | Bad of excn

let return a = OK a

let bind m b = match m with

| OK a -> b a

| Bad e -> Bad e

end

include M

include MonadOps(M)

let throw e = Bad e

let catch m handler = match m with

| OK _ -> m

| Bad e -> handler e

end

53

The state monad

module StateM(Store : sig type t end) : sig

type store = Store.t Pass the current store value to get the next value.

type ’a t = store -> ’a * store

include MONAD_OPS

include STATE with type ’a t := ’a monad

and type store := store

val run : ’a monad -> ’a t

end = struct

type store = Store.t

module M = struct

type ’a t = store -> ’a * store

let return a = fun s -> a, s Keep the current value unchanged.

let bind m b = fun s -> let a, s’ = m s in b a s’

end To bind two steps, pass the value after first step to the second step.

include M include MonadOps(M)

let get = fun s -> s, s Keep the value unchanged but put it in monad.

let put s’ = fun _ -> (), s’ Change the value; a throwaway in monad.

end

54

• The state monad is useful to hide passing-around of a “current” value.

• We will rename variables in λ-terms to get rid of possible name clashes.

◦ This does not make a λ-term safe for multiple steps of β-reduction.
Find a counter-example.

• type term =

| Var of string

| Lam of string * term

| App of term * term

• let (!) x = Var x

let (|->) x t = Lam (x, t)

let (@) t1 t2 = App (t1, t2)

let test = "x" |-> ("x" |-> !"y" @ !"x") @ !"x"

• module S =

StateM(struct type t = int * (string * string) list end)

open S

Without opening the module, we would write S.get, S.put and
perform with S in...

55

• let rec alpha_conv = function

| Var x as v -> perform Function from terms to StateM monad.

(_, env) <-- get; Seeing a variable does not change state

let v = try Var (List.assoc x env) but we need its new name.

with Not_found -> v in Free variables don’t change name.

return v

| Lam (x, t) -> perform We rename each bound variable.

(fresh, env) <-- get; We need a fresh number.

let x’ = x ^ string_of_int fresh in

put (fresh+1, (x, x’)::env); Remember new name, update number.

t’ <-- alpha_conv t;

(fresh’, _) <-- get; We need to restore names,

put (fresh’, env); but keep the number fresh.

return (Lam (x’, t’))

| App (t1, t2) -> perform

t1 <-- alpha_conv t1; Passing around of names

t2 <-- alpha_conv t2; and the currently fresh number

return (App (t1, t2)) is done by the monad.

56

• val test : term = Lam ("x", App (Lam ("x", App (Var "y",

Var "x")), Var "x"))

let _ = StateM.run (alpha_conv test) (5, []);;

- : term * (int * (string * string) list) =

(Lam ("x5", App (Lam ("x6", App (Var "y", Var "x6")), Var

"x5")), (7, []))

• If we separated the reader monad and the state monad, we would avoid
the lines:

(fresh’, _) <-- get; Restoring the “reader” part env

put (fresh’, env); but preserving the “state” part fresh.

• The elegant way is to define the monad locally:

let alpha_conv t =

let module S = StateM

(struct type t = int * (string * string) list end) in

let open S in

57

let rec aux = function

| Var x as v -> perform

(fresh, env) <-- get;

let v = try Var (List.assoc x env)

with Not_found -> v in

return v

| Lam (x, t) -> perform

(fresh, env) <-- get;

let x’ = x ^ string_of_int fresh in

put (fresh+1, (x, x’)::env);

t’ <-- aux t;

(fresh’, _) <-- get;

put (fresh’, env);

return (Lam (x’, t’))

| App (t1, t2) -> perform

t1 <-- aux t1; t2 <-- aux t2;

return (App (t1, t2)) in

run (aux t) (0, [])

58

Monad transformers

• Based on: http://lambda.jimpryor.net/monad_transformers/

• Sometimes we need merits of multiple monads at the same time, e.g.
monads AM and BM.

• Straightforwad idea is to nest one monad within another:

◦ either ’a AM.monad BM.monad

◦ or ’a BM.monad AM.monad.

• But we want a monad that has operations of both AM and BM.

• It turns out that the straightforward approach does not lead to opera-
tions with the meaning we want.

• A monad transformer AT takes a monad BM and turns it into a monad
AT(BM) which actually wraps around BM on both sides. AT(BM) has oper-
ations of both monads.

59

• We will develop a monad transformer StateT which adds state to a
monad-plus. The resulting monad has all: return, bind, mzero, mplus,
put, get and their supporting general-purpose functions.

◦ There is no reason for StateT not to provide state to any flavor of
monads. Our restriction to monad-plus is because the type/module
system makes more general solutions harder.

• We need monad transformers in OCaml because “monads are
contagious”: although we have built-in state and exceptions, we need to
use monadic state and exceptions when we are inside a monad.

◦ The reason Lwt is both a concurrency and an exception monad.

• Things get interesting when we have several monad transformers, e.g.
AT, BT, ... We can compose them in various orders: AT(BT(CM)),
BT(AT(CM)), ... achieving different results.

◦ With a single trasformer, we will not get into issues with multiple-
layer monads...

◦ They are worth exploring – especially if you plan a career around pro-
gramming in Haskell.

60

• The state monad, using (fun x -> ...) a instead of let x = a in ...

type ’a state =

store -> (’a * store)

let return (a : ’a) : ’a state =

fun s -> (a, s)

let bind (u : ’a state) (f : ’a -> ’b state) : ’b state =

fun s -> (fun (a, s’) -> f a s’) (u s)

• Monad M transformed to add state, in pseudo-code:

type ’a stateT(M) =

store -> (’a * store) M

(* notice this is not an (’a M) state *)

let return (a : ’a) : ’a stateT(M) =

fun s -> M.return (a, s) Rather than returning, M.return

let bind(u:’a stateT(M))(f:’a->’b stateT(M)):’b stateT(M)=

fun s -> M.bind (u s) (fun (a, s’) -> f a s’)

Rather than let-binding, M.bind

61

State transformer

module StateT (MP : MONAD_PLUS_OPS) (Store : sig type t end)

: sig Functor takes two modules – the second one

type store = Store.t provides only the storage type.

type ’a t = store -> (’a * store) MP.monad

include MONAD_PLUS_OPS Exporting all the monad-plus operations

include STATE with type ’a t := ’a monad and state operations.

and type store := store

val run : ’a monad -> ’a t Expose “what happened” – resulting states.

val runT : ’a monad -> store -> ’a MP.monad

end = struct Run the state transformer – get the resulting values.

type store = Store.t

62

module M = struct

type ’a t = store -> (’a * store) MP.monad

let return a = fun s -> MP.return (a, s)

let bind m b = fun s ->

MP.bind (m s) (fun (a, s’) -> b a s’)

let mzero = fun _ -> MP.mzero Lift the monad-plus operations.

let mplus ma mb = fun s -> MP.mplus (ma s) (mb s)

end

include M

include MonadPlusOps(M)

let get = fun s -> MP.return (s, s) Instead of just returning,

let put s’ = fun _ -> MP.return ((), s’) MP.return.

let runT m s = MP.lift fst (m s)

end

63

Backtracking with state

module HoneyIslands (M : MONAD_PLUS_OPS) = struct

type state = { For use with list monad or lazy list monad.

been_size: int;

been_islands: int;

unvisited: cell list;

visited: CellSet.t;

eaten: cell list;

more_to_eat: int;

}

let init_state unvisited more_to_eat = {

been_size = 0;

been_islands = 0;

unvisited;

visited = CellSet.empty;

eaten = [];

more_to_eat;

}

64

module BacktrackingM =

StateT (M) (struct type t = state end)

open BacktrackingM

let rec visit_cell () = perform State update actions.

s <-- get;

match s.unvisited with

| [] -> return None

| c::remaining when CellSet.mem c s.visited -> perform

put {s with unvisited=remaining};

visit_cell () Throwaway argument because of recursion. See (*)

| c::remaining (* when c not visited *) -> perform

put {s with

unvisited=remaining;

visited = CellSet.add c s.visited};

return (Some c) This action returns a value.

65

let eat_cell c = perform

s <-- get;

put {s with eaten = c::s.eaten;

visited = CellSet.add c s.visited;

more_to_eat = s.more_to_eat - 1};

return () Remaining state update actions just affect the state.

let keep_cell c = perform

s <-- get;

put {s with

visited = CellSet.add c s.visited;

been_size = s.been_size + 1};

return ()

let fresh_island = perform

s <-- get;

put {s with been_size = 0;

been_islands = s.been_islands + 1};

return ()

66

let find_to_eat n island_size num_islands empty_cells =

let honey = honey_cells n empty_cells in

OCaml does not realize that ’a monad with state is actually a function –

let rec find_board () = perform it’s an abstract type.(*)

cell <-- visit_cell ();

match cell with

| None -> perform

s <-- get;

guard (s.been_islands = num_islands);

return s.eaten

| Some cell -> perform

fresh_island;

find_island cell;

s <-- get;

guard (s.been_size = island_size);

find_board ()

67

and find_island current = perform

keep_cell current;

neighbors n empty_cells current

|> foldM The partial answer sits in the state – throwaway result.

(fun () neighbor -> perform

s <-- get;

whenM (not (CellSet.mem neighbor s.visited))

(let choose_eat = perform

guard (s.more_to_eat > 0);

eat_cell neighbor

and choose_keep = perform

guard (s.been_size < island_size);

find_island neighbor in

choose_eat ++ choose_keep)) () in

68

let cells_to_eat =

List.length honey - island_size * num_islands in

init_state honey cells_to_eat

|> runT (find_board ())

end

module HoneyL = HoneyIslands (ListM)

let find_to_eat a b c d =

ListM.run (HoneyL.find_to_eat a b c d)

69

Probabilistic Programming

• Using a random number generator, we can define procedures that pro-
duce various output. This is not functional – mathematical functions
have a deterministic result for fixed arguments.

• Similarly to how we can “simulate” (mutable) variables with state monad
and non-determinism (i.e. making choices) with list monad, we can “sim-
ulate” random computation with probability monad.

• The probability monad class means much more than having randomized
computation. We can ask questions about probabilities of results. Monad
instances can make tradeoffs of efficiency vs. accuracy (exact vs. approx-
imate probabilities).

• Probability monad imposes limitations on what approximation algorithms
can be implemented.

◦ Efficient probabilistic programming library for OCaml, based on con-
tinuations, memoisation and reified search trees:
http://okmij.org/ftp/kakuritu/index.html

70

The probability monad

• The essential functions for the probability monad class are choose and
distrib – remaining functions could be defined in terms of these but are
provided by each instance for efficiency.

• Inside-monad operations:

◦ choose : float -> ’a monad -> ’a monad -> ’a monad

choose p a b represents an event or distribution which is a with
probability p and is b with probability 1− p.

◦ val pick : (’a * float) list -> ’a t

A result from the provided distribution over values. The argument
must be a probability distribution: positive values summing to 1.

◦ val uniform : ’a list -> ’a monad

Uniform distribution over given values.

◦ val flip : float -> bool monad

Equal to choose 0.5 (return true) (return false).

◦ val coin : bool monad Equal to flip 0.5.

71

• And some operations for getting out of the monad:

◦ val prob : (’a -> bool) -> ’a monad -> float

Returns the probability that the predicate holds.

◦ val distrib : ’a monad -> (’a * float) list

Returns the distribution of probabilities over the resulting values.

◦ val access : ’a monad -> ’a

Samples a random result from the distribution – non-functional

behavior.

• We give two instances of the probability monad: exact distribution
monad, and sampling monad, which can approximate distributions.

◦ The sampling monad is entirely non-functional: in Haskell, it lives in
the IO monad.

• The monad instances indeed represent probability distributions: collec-
tions of positive numbers that add up to 1 – although often merge rather
than normalize is used. If pick and choose are used correctly.

72

• module type PROBABILITY = sig Probability monad class.

include MONAD_OPS

val choose : float -> ’a monad -> ’a monad -> ’a monad

val pick : (’a * float) list -> ’a monad

val uniform : ’a list -> ’a monad

val coin : bool monad

val flip : float -> bool monad

val prob : (’a -> bool) -> ’a monad -> float

val distrib : ’a monad -> (’a * float) list

val access : ’a monad -> ’a

end

73

• let total dist = Helper functions.

List.fold_left (fun a (_,b)->a+.b) 0. dist

let merge dist = Merge repeating elements.

map_reduce (fun x->x) (+.) 0. dist

let normalize dist = Normalize a measure into a distribution.

let tot = total dist in

if tot = 0. then dist

else List.map (fun (e,w)->e,w/.tot) dist

let roulette dist = Roulette wheel from a distribution/measure.

let tot = total dist in

let rec aux r = function [] -> assert false

| (e,w)::_ when w <= r -> e

| (_,w)::tl -> aux (r-.w) tl in

aux (Random.float tot) dist

74

• module DistribM : PROBABILITY = struct

module M = struct Exact probability distribution – naive implementation.

type ’a t = (’a * float) list

let bind a b = merge x w.p. p and then y w.p. q happens =

[y, q*.p | (x,p) <- a; (y,q) <- b x] y results w.p. pq.

let return a = [a, 1.] Certainly a.

end

include M include MonadOps (M)

let choose p a b =

List.map (fun (e,w) -> e, p*.w) a @

List.map (fun (e,w) -> e, (1. -.p)*.w) b

let pick dist = dist

let uniform elems = normalize

(List.map (fun e->e,1.) elems)

let coin = [true, 0.5; false, 0.5]

let flip p = [true, p; false, 1. -. p]

75

let prob p m = m

|> List.filter (fun (e,_) -> p e) All cases where p holds,

|> List.map snd |> List.fold_left (+.) 0. add up.

let distrib m = m

let access m = roulette m

end

76

• module SamplingM (S : sig val samples : int end)

: PROBABILITY = struct Parameterized by how many samples

module M = struct used to approximate prob or distrib.

type ’a t = unit -> ’a Randomized computation – each call a()

let bind a b () = b (a ()) () is an independent sample.

let return a = fun () -> a Always a.

end

include M include MonadOps (M)

let choose p a b () =

if Random.float 1. <= p then a () else b ()

let pick dist = fun () -> roulette dist

let uniform elems =

let n = List.length elems in

fun () -> List.nth (Random.int n) elems

let coin = Random.bool

let flip p = choose p (return true) (return false)

77

let prob p m =

let count = ref 0 in

for i = 1 to S.samples do

if p (m ()) then incr count

done;

float_of_int !count /. float_of_int S.samples

let distrib m =

let dist = ref [] in

for i = 1 to S.samples do

dist := (m (), 1.) :: !dist done;

normalize (merge !dist)

let access m = m ()

end

78

Example: The Monty Hall problem

• http://en.wikipedia.org/wiki/Monty_Hall_problem:

In search of a new car, the player picks a door, say 1. The
game host then opens one of the other doors, say 3, to
reveal a goat and offers to let the player pick door 2
instead of door 1.

79

• module MontyHall (P : PROBABILITY) = struct

open P

type door = A | B | C

let doors = [A; B; C]

let monty_win switch = perform

prize <-- uniform doors;

chosen <-- uniform doors;

opened <-- uniform

(list_diff doors [prize; chosen]);

let final =

if switch then List.hd

(list_diff doors [opened; chosen])

else chosen in

return (final = prize)

end

• module MontyExact = MontyHall (DistribM)

module Sampling1000 =

SamplingM (struct let samples = 1000 end)

module MontySimul = MontyHall (Sampling1000)

80

• # let t1 = DistribM.distrib (MontyExact.monty_win false);;

val t1 : (bool * float) list =

[(true, 0.333333333333333315); (false, 0.66666666666666663)]

let t2 = DistribM.distrib (MontyExact.monty_win true);;

val t2 : (bool * float) list =

[(true, 0.66666666666666663); (false, 0.333333333333333315)]

let t3 = Sampling1000.distrib (MontySimul.monty_win false);;

val t3 : (bool * float) list = [(true, 0.313); (false, 0.687)]

let t4 = Sampling1000.distrib (MontySimul.monty_win true);;

val t4 : (bool * float) list = [(true, 0.655); (false, 0.345)]

81

Conditional probabilities

• Wouldn’t it be nice to have a monad-plus rather than a monad?

• We could use guard – conditional probabilities!

◦ P (A|B)

− Compute what is needed for both A and B.

− Guard B.

− Return A.

• For the exact distribution monad it turns out very easy – we just need to
allow intermediate distributions to be unnormalized (sum to less than 1).

• For the sampling monad we use rejection sampling.

◦ mplus has no straightforward correct implementation.

• We implemented PROBABILITY separately for educational purposes only,
as COND_PROBAB introduced below supersedes it.

82

• module type COND_PROBAB = sig Class for conditional probability monad,

include PROBABILITY where guard cond conditions on cond.

include MONAD_PLUS_OPS with type ’a monad := ’a monad

end

• module DistribMP : COND_PROBAB = struct

module MP = struct The measures no longer restricted to

type ’a t = (’a * float) list probability distributions:

let bind a b = merge

[y, q*.p | (x,p) <- a; (y,q) <- b x]

let return a = [a, 1.]

let mzero = [] Measure equal 0 everywhere is OK.

let mplus = List.append

end

include MP include MonadPlusOps (MP)

let choose p a b = It isn’t a w.p. p & b w.p. (1− p) since a and b

List.map (fun (e,w) -> e, p*.w) a @ are not normalized!

List.map (fun (e,w) -> e, (1. -.p)*.w) b

let pick dist = dist

83

let uniform elems = normalize

(List.map (fun e->e,1.) elems)

let coin = [true, 0.5; false, 0.5]

let flip p = [true, p; false, 1. -. p]

let prob p m = normalize m Final normalization step.

|> List.filter (fun (e,_) -> p e)

|> List.map snd |> List.fold_left (+.) 0.

let distrib m = normalize m

let access m = roulette m

end

84

• We write the rejection sampler in mostly imperative style:

module SamplingMP (S : sig val samples : int end)

: COND_PROBAB = struct

exception Rejected For rejecting current sample.

module MP = struct Monad operations are exactly as for SamplingM

type ’a t = unit -> ’a

let bind a b () = b (a ()) ()

let return a = fun () -> a

let mzero = fun () -> raise Rejected but now we can fail.

let mplus a b = fun () ->

failwith "SamplingMP.mplus not implemented"

end

include MP include MonadPlusOps (MP)

85

let choose p a b () = Inside-monad operations don’t change.

if Random.float 1. <= p then a () else b ()

let pick dist = fun () -> roulette dist

let uniform elems =

let n = List.length elems in

fun () -> List.nth elems (Random.int n)

let coin = Random.bool

let flip p = choose p (return true) (return false)

let prob p m = Getting out of monad: handle rejected samples.

let count = ref 0 and tot = ref 0 in

while !tot < S.samples do Count up to the required

try number of samples.

if p (m ()) then incr count; m() can fail.

incr tot But if we got here it hasn’t.

with Rejected -> () Rejected, keep sampling.

done;

float_of_int !count /. float_of_int S.samples

86

let distrib m =

let dist = ref [] and tot = ref 0 in

while !tot < S.samples do

try

dist := (m (), 1.) :: !dist;

incr tot

with Rejected -> ()

done;

normalize (merge !dist)

let rec access m =

try m () with Rejected -> access m

end

87

Burglary example: encoding a Bayes net

• We’re faced with a problem with the following dependency structure:

P (B)

0.001

P (E)

0.002

Burglary Earthquake

Alarm

B E P (A|B,E)

F F 0.001

F T 0.29

T F 0.94

T T 0.95

A P (J |A)

F 0.05

T 0.9

John calls Mary calls
A P (M |A)

F 0.01

T 0.7

88

◦ Alarm can be due to either a burglary or an earthquake.

◦ I’ve left on vacations.

◦ I’ve asked neighbors John and Mary to call me if the alarm rings.

◦ Mary only calls when she is really sure about the alarm, but John has
better hearing.

◦ Earthquakes are twice as probable as burglaries.

◦ The alarm has about 30% chance of going off during earthquake.

◦ I can check on the radio if there was an earthquake, but I might miss
the news.

89

• module Burglary (P : COND_PROBAB) = struct

open P

type what_happened =

Safe | Burgl | Earthq | Burgl_n_earthq

let check ∼john_called ∼mary_called ∼radio = perform

earthquake <-- flip 0.002;

guard (radio = None || radio = Some earthquake);

burglary <-- flip 0.001;

let alarm_p =

match burglary, earthquake with

| false, false -> 0.001

| false, true -> 0.29

| true, false -> 0.94

| true, true -> 0.95 in

alarm <-- flip alarm_p;

90

let john_p = if alarm then 0.9 else 0.05 in

john_calls <-- flip john_p;

guard (john_calls = john_called);

let mary_p = if alarm then 0.7 else 0.01 in

mary_calls <-- flip mary_p;

guard (mary_calls = mary_called);

match burglary, earthquake with

| false, false -> return Safe

| true, false -> return Burgl

| false, true -> return Earthq

| true, true -> return Burgl_n_earthq

end

• module BurglaryExact = Burglary (DistribMP)

module Sampling2000 =

SamplingMP (struct let samples = 2000 end)

module BurglarySimul = Burglary (Sampling2000)

91

let t1 = DistribMP.distrib

(BurglaryExact.check ∼john_called:true ∼mary_called:false

∼radio:None);;

val t1 : (BurglaryExact.what_happened * float) list =

[(BurglaryExact.Burgl_n_earthq, 1.03476433660005444e-05);

(BurglaryExact.Earthq, 0.00452829235738691407);

(BurglaryExact.Burgl, 0.00511951049003530299);

(BurglaryExact.Safe, 0.99034184950921178)]

let t2 = DistribMP.distrib

(BurglaryExact.check ∼john_called:true ∼mary_called:true

∼radio:None);;

val t2 : (BurglaryExact.what_happened * float) list =

[(BurglaryExact.Burgl_n_earthq, 0.00057437256500405794);

(BurglaryExact.Earthq, 0.175492465840075218);

(BurglaryExact.Burgl, 0.283597462799388911);

(BurglaryExact.Safe, 0.540335698795532)]

let t3 = DistribMP.distrib

(BurglaryExact.check ∼john_called:true ∼mary_called:true

∼radio:(Some true));;

val t3 : (BurglaryExact.what_happened * float) list =

[(BurglaryExact.Burgl_n_earthq, 0.0032622416021499262);

(BurglaryExact.Earthq, 0.99673775839785006)]

92

let t4 = Sampling2000.distrib

(BurglarySimul.check ∼john_called:true ∼mary_called:false

∼radio:None);;

val t4 : (BurglarySimul.what_happened * float) list =

[(BurglarySimul.Earthq, 0.0035); (BurglarySimul.Burgl, 0.0035);

(BurglarySimul.Safe, 0.993)]

let t5 = Sampling2000.distrib

(BurglarySimul.check ∼john_called:true ∼mary_called:true

∼radio:None);;

val t5 : (BurglarySimul.what_happened * float) list =

[(BurglarySimul.Burgl_n_earthq, 0.0005); (BurglarySimul.Earthq, 0.1715);

(BurglarySimul.Burgl, 0.2875); (BurglarySimul.Safe, 0.5405)]

let t6 = Sampling2000.distrib

(BurglarySimul.check ∼john_called:true ∼mary_called:true

∼radio:(Some true));;

val t6 : (BurglarySimul.what_happened * float) list =

[(BurglarySimul.Burgl_n_earthq, 0.0015); (BurglarySimul.Earthq, 0.9985)]

93

Lightweight cooperative threads

• bind is inherently sequential: bind a (fun x -> b) computes a, and
resumes computing b only once the result x is known.

• For concurrency we need to “suppress” this sequentiality. We introduce

parallel :

’a monad-> ’b monad-> (’a -> ’b -> ’c monad) -> ’c monad

where parallel a b (fun x y -> c) does not wait for a to be com-
puted before it can start computing b.

• It can be that only accessing the value in the monad triggers the compu-
tation of the value, as we’ve seen in some monads.

◦ The state monad does not start computing until you “get out of the
monad” and pass the initial value.

◦ The list monad computes right away – the ’a monad value is the
computed results.

In former case, a “built-in” parallel is necessary for concurrency.

94

• If the monad starts computing right away, as in the Lwt library,
parallel ea eb c is equivalent to

perform

let a = ea in

let b = eb in

x <-- a;

y <-- b;

c x y

◦ We will follow this model, with an imperative implementation.

◦ In any case, do not call run or access from within a monad.

95

• We still need to decide on when concurrency happens.

◦ Under fine-grained concurrency, every bind is suspended and com-
putation moves to other threads.

− It comes back to complete the bind before running threads cre-
ated since the bind was suspended.

− We implement this model in our example.

◦ Under coarse-grained concurrency, computation is only suspended
when requested.

− Operation suspend is often called yield but the meaning is
more similar to Await than Yield from lecture 7.

− Library operations that need to wait for an event or completion of
IO (file operations, etc.) should call suspend or its equivalent
internally.

− We leave coarse-grained concurrency as exercise 11.

96

• The basic operations of a multithreading monad class.

module type THREADS = sig

include MONAD

val parallel :

’a t -> ’b t -> (’a -> ’b -> ’c t) -> ’c t

end

• Although in our implementation parallel will be redundant, it is a prin-
cipled way to make sure subthreads of a thread are run concurrently.

97

• All within-monad operations.

module type THREAD_OPS = sig

include MONAD_OPS

include THREADS with type ’a t := ’a monad

val parallel_map :

’a list -> (’a -> ’b monad) -> ’b list monad

val (>||=) :

’a monad -> ’b monad -> (’a -> ’b -> ’c monad) ->

’c monad

val (>||) :

’a monad -> ’b monad -> (unit -> ’c monad) ->

’c monad

end

98

• Outside-monad operations.

module type THREADSYS = sig

include THREADS

val access : ’a t -> ’a

val kill_threads : unit -> unit

end

• Helper functions.

module ThreadOps (M : THREADS) = struct

open M

include MonadOps (M)

let parallel_map l f =

List.fold_right (fun a bs ->

parallel (f a) bs

(fun a bs -> return (a::bs))) l (return [])

let (>||=) = parallel

let (>||) a b c = parallel a b (fun _ _ -> c ())

end

99

• Put an interface around an implementation.

module Threads (M : THREADSYS) :

sig

include THREAD_OPS

val access : ’a monad -> ’a

val kill_threads : unit -> unit

end = struct

include M

include ThreadOps(M)

end

100

• Our implementation, following the Lwt paper.

module Cooperative = Threads(struct

type ’a state =

| Return of ’a The thread has returned.

| Sleep of (’a -> unit) list When thread returns, wake up waiters.

| Link of ’a t A link to the actual thread.

and ’a t = {mutable state : ’a state} State of the thread can change

– it can return, or more waiters can be added.

let rec find t =

match t.state with Union-find style link chasing.

| Link t -> find t

| _ -> t

let jobs = Queue.create () Work queue – will store

unit -> unit procedures.

101

let wakeup m a = Thread m has actually finished –

let m = find m in updating its state.

match m.state with

| Return _ -> assert false

| Sleep waiters ->

m.state <- Return a; Set the state, and only then

List.iter ((|>) a) waiters wake up the waiters.

| Link _ -> assert false

let return a = {state = Return a}

102

let connect t t’ = t was a placeholder for t’.

let t’ = find t’ in

match t’.state with

| Sleep waiters’ ->

let t = find t in

(match t.state with

| Sleep waiters -> If both sleep, collect their waiters

t.state <- Sleep (waiters’ @ waiters);

t’.state <- Link t and link one to the other.

| _ -> assert false)

| Return x -> wakeup t x If t’ returned, wake up the placeholder.

| Link _ -> assert false

103

let rec bind a b =

let a = find a in

let m = {state = Sleep []} in The resulting monad.

(match a.state with

| Return x -> If a returned, we suspend further work.

let job () = connect m (b x) in (In exercise 11, this should

Queue.push job jobs only happen after suspend.)

| Sleep waiters -> If a sleeps, we wait for it to return.

let job x = connect m (b x) in

a.state <- Sleep (job::waiters)

| Link _ -> assert false);

m

let parallel a b c = perform Since in our implementation

x <-- a; the threads run as soon as they are created,

y <-- b; parallel is redundant.

c x y

104

let rec access m = Accessing not only gets the result of m,

let m = find m in but spins the thread loop till m terminates.

match m.state with

| Return x -> x No further work.

| Sleep _ ->

(try Queue.pop jobs () Perform suspended work.

with Queue.Empty ->

failwith "access: result not available");

access m

| Link _ -> assert false

let kill_threads () = Queue.clear jobs Remove pending work.

end)

105

• module TTest (T : THREAD_OPS) = struct

open T

let rec loop s n = perform

return (Printf.printf "-- %s(%d)\n%!" s n);

if n > 0 then loop s (n-1) We cannot use whenM because

else return () the thread would be created regardless of condition.

end

module TT = TTest (Cooperative)

• let test =

Cooperative.kill_threads (); Clean-up after previous tests.

let thread1 = TT.loop "A" 5 in

let thread2 = TT.loop "B" 4 in

Cooperative.access thread1; We ensure threads finish computing

Cooperative.access thread2 before we proceed.

106

let test =

Cooperative.kill_threads ();

let thread1 = TT.loop "A" 5 in

let thread2 = TT.loop "B" 4 in

Cooperative.access thread1;

Cooperative.access thread2;;

-- A(5)

-- B(4)

-- A(4)

-- B(3)

-- A(3)

-- B(2)

-- A(2)

-- B(1)

-- A(1)

-- B(0)

-- A(0)

val test : unit = ()

107

