
Functional Programming

Monads

Exercise 1. Puzzle via Oleg Kiselyov.

"U2" has a concert that starts in 17 minutes and they must all cross a bridge to get there. All
four men begin on the same side of the bridge. It is night. There is one flashlight. A maximum
of two people can cross at one time. Any party who crosses, either 1 or 2 people, must have
the flashlight with them. The flashlight must be walked back and forth, it cannot be thrown,
etc.. Each band member walks at a different speed. A pair must walk together at the rate of
the slower man’s pace:

• Bono: 1 minute to cross

• Edge: 2 minutes to cross

• Adam: 5 minutes to cross

• Larry: 10 minutes to cross

For example: if Bono and Larry walk across first, 10 minutes have elapsed when they get to the
other side of the bridge. If Larry then returns with the flashlight, a total of 20 minutes have
passed and you have failed the mission.

Find all answers to the puzzle using a list comprehension. The comprehension will be a bit long but
recursion is not needed.

Exercise 2. Assume concat_map as defined in lecture 6. What will the following expresions return? Why?

1. perform with (|->) in

return 5;

return 7

2. let guard p = if p then [()] else [];;

perform with (|->) in

guard false;

return 7;;

3. perform with (|->) in

return 5;

guard false;

return 7;;

Exercise 3. Define bind in terms of lift and join.

Exercise 4. Define a monad-plus implementation based on binary trees, with constant-time mzero and
mplus. Starter code:
type ’a tree = Empty | Leaf of ’a | T of ’a t * ’a t

module TreeM = MonadPlus (struct

type ’a t = ’a tree

let bind a b = TODO
let return a = TODO
let mzero = TODO
let mplus a b = TODO

end)

1

Exercise 5. Show the monad-plus laws for one of:

1. TreeM from your solution of exercise 4;

2. ListM from lecture.

Exercise 6. Why the following monad-plus is not lazy enough?

• let rec badappend l1 l2 =

match l1 with lazy LazNil -> l2

| lazy (LazCons (hd, tl)) ->

lazy (LazCons (hd, badappend tl l2))

let rec badconcat_map f = function

| lazy LazNil -> lazy LazNil

| lazy (LazCons (a, l)) ->

badappend (f a) (badconcat_map f l)

• module BadyListM = MonadPlus (struct

type ’a t = ’a lazy_list

let bind a b = badconcat_map b a

let return a = lazy (LazCons (a, lazy LazNil))

let mzero = lazy LazNil

let mplus = badappend

end)

• module BadyCountdown = Countdown (BadyListM)

let test5 () = BadyListM.run (BadyCountdown.solutions [1;3;7;10;25;50] 765)

• # let t5a, sol5 = time test5;;

val t5a : float = 3.3954310417175293

val sol5 : string lazy_list = <lazy>

let t5b, sol5_1 = time (fun () -> laztake 1 sol5);;

val t5b : float = 3.0994415283203125e-06

val sol5_1 : string list = ["((25-(3+7))*(1+50))"]

let t5c, sol5_9 = time (fun () -> laztake 10 sol5);;

val t5c : float = 7.8678131103515625e-06

val sol5_9 : string list =

["((25-(3+7))*(1+50))"; "(((25-3)-7)*(1+50))"; ...

let t5d, sol5_39 = time (fun () -> laztake 49 sol5);;

val t5d : float = 2.59876251220703125e-05

val sol5_39 : string list =

["((25-(3+7))*(1+50))"; "(((25-3)-7)*(1+50))"; ...

Exercise 7. Convert a “rectangular” list of lists of strings, representing a matrix with inner lists being rows,
into a string, where elements are column-aligned. (Exercise not related to recent material.)

Exercise 8. Recall the overly rich way to introduce monads – providing the freedom of additional parameter
module type MONAD = sig

type (’s, ’a) t

val return : ’a -> (’s, ’a) t

val bind :

(’s, ’a) t -> (’a -> (’s, ’b) t) -> (’s, ’b) t

end

Recall the operations for the exception monad:
val throw : excn -> ’a monad

val catch : ’a monad -> (excn -> ’a monad) -> ’a monad

1. Design the signatures for the exception monad operations to use the enriched monads with (’s, ’a)

monad type, so that they provide more flexibility than our exception monad.

2

2. Does the implementation of the exception monad need to change? The same implementation can work
with both sets of signatures, but the implementation given in lecture needs a very slight change. Can
you find it without implementing? If not, the lecture script provides RMONAD, RMONAD_OPS, RMonadOps
and RMonad, so you can implement and see for yourself – copy ExceptionM and modify:
module ExceptionRM : sig

type (’e, ’a) t = KEEP/TODO
include RMONAD_OPS

val run : (’e, ’a) monad -> (’e, ’a) t

val throw : TODO
val catch : TODO

end = struct

module M = struct

type (’e, ’a) t = KEEP/TODO
let return a = OK a

let bind m b = KEEP/TODO
end

include M

include RMonadOps(M)

let throw e = KEEP/TODO
let catch m handler = KEEP/TODO

end

Exercise 9. Implement the following constructs for all monads:

1. for...to...

2. for...downto...

3. while...do...

4. do...while...

5. repeat...until...

Explain how, when your implementation is instantiated with the StateM monad, we get the solution to
exercise 2 from lecture 4.

Exercise 10. A canonical example of a probabilistic model is that of a lawn whose grass may be wet because
it rained, because the sprinkler was on, or for some other reason. Oleg Kiselyov builds on this example with
variables rain, sprinkler, and wet_grass, by adding variables cloudy and wet_roof. The probability
tables are:

P (cloudy) = 0.5

P (rain|cloudy) = 0.8

P (rain|not cloudy) = 0.2

P (sprinkler|cloudy) = 0.1

P (sprinkler|not cloudy) = 0.5

P (wet roof|not rain) = 0

P (wet roof|rain) = 0.7

P (wet grass|rain∧not sprinkler) = 0.9

P (wet grass|sprinkler∧ not rain) = 0.9

We observe whether the grass is wet and whether the roof is wet. What is the probability that it rained?

Exercise 11. Implement the coarse-grained concurrency model.

• Modify bind to compute the resulting monad straight away if the input monad has returned.

3

• Introduce suspend to do what in the fine-grained model was the effect of bind (return a) b, i.e.
suspend the work although it could already be started.

• One possibility is to introduce suspend of type unit monad, introduce a “dummy” monadic value
Suspend (besides Return and Sleep), and define bind suspend b to do what bind (return ()) b

would formerly do.

4

