
Functional Programming �ukasz Stafiniak

The Expression Problem

Exercise 1. Implement the string_of_ functions or methods, covering all data cases, corresponding to the
eval_ functions in at least two examples from the lecture, including both an object-based example and a
variant-based example (either standard, or polymorphic, or extensible variants).

Exercise 2. Split at least one of the examples from the previous exercise into multiple �les and demonstrate
separate compilation.

Exercise 3. Can we drop the tags Lambda_t, Expr_t and LExpr_t used in the examples based on standard
variants (�le FP_ADT.ml)? When using polymorphic variants, such tags are not needed.

Exercise 4. Factor-out the sub-language consisting only of variables, thus eliminating the duplication of
tags VarL, VarE in the examples based on standard variants (�le FP_ADT.ml).

Exercise 5. Come up with a scenario where the extensible variant types-based solution leads to a non-
obvious or hard to locate bug.

Exercise 6. * Re-implement the direct object-based solution to the expression problem (�le Objects.ml)
to make it more satisfying. For example, eliminate the need for some of the rename, apply, computemethods.

Exercise 7. Re-implement the visitor pattern-based solution to the expression problem (�le Visitor.ml)
in a functional way, i.e. replace the mutable �elds subst and beta_redex in the eval_lambda class with a
di�erent solution to the problem of treating abs and non-abs expressions di�erently.

* See if you can replace the reference cells result in evalN and freevarsN functions (for N = 1,2,3)
with a di�erent solution to the problem of polymorphism wrt. the type of the computed values.

Exercise 8. Extend the sub-language expr_visit with variables, and add to arguments of the evaluation
constructor eval_expr the substitution. Handle the problem of potentially duplicate �elds subst. (One
approach might be to use ideas from exercise 6.)

Exercise 9. Impement the following modi�cations to the example from the �le PolyV.ml:

1. Factor-out the sub-language of variables, around the already present var type.

2. Open the types of functions eval3, freevars3 and other functions as required, so that explicit
subtyping, e.g. in eval3 [] (test2 :> lexpr_t), is not necessary.

3. Remove the double-dispatch currently in eval_lexpr and freevars_lexpr, by implementing a cas-
cading design rather than a �divide-and-conquer� design.

Exercise 10. Streamline the solution PolyRecM.ml by extending the language of �-expressions with arith-
metic expressions, rather than de�ning the sub-languages separately and then merging them. See slide on
page 15 of Jacques Garrigue Structural Types, Recursive Modules, and the Expression Problem .

Exercise 11. Transform a parser monad, or rewrite the parser monad transformer, by adding state for the
line and column numbers.

* How to implement a monad transformer transformer in OCaml?

Exercise 12. Implement _of_string functions as parser combinators on top of the example PolyRecM.ml.
Sections 4.3 and 6.2 of Monadic Parser Combinators by Graham Hutton and Erik Meijer might be helpful.
Split the result into multiple �les as in Exercise 2 and demonstrate dynamic loading of code.

Exercise 13. What are the bene�ts and drawbacks of our lazy-monad-plus (built on top of odd lazy lists)
approach, as compared to regular monad-plus built on top of even lazy lists? To additionally illustrate your
answer:

1. Rewrite the parser combinators example to use regular monad-plus and even lazy lists.

2. Select one example from Lecture 8 and rewrite it using lazy-monad-plus and odd lazy lists.

1


