
GADTs for Reconstruction
of Invariants and
Postconditions

Doctoral Dissertation Defense

�ukasz Stafiniak
Advisor: Leszek Pacholski

October 2, 2015



Types in Programming are Helpful

� Type systems � detailed grammars

� Static checking ) no more program crashes!

� Help
structure
programs.

� Help
evolve
programs.



Functional Programming



Thesis: Why

� Fully automated speci�cation generation:

� Overcome the quick-and-dirty mindset.

� Fast evolution of speci�cations.

� Comparative advantage wrt. other projects.

Core ML InvarGenT Coq



Generalized Algebraic Data Types

Example: encoding computation
datacons Lit : Int ¡! Term Int
datacons Pair : 8a, b. Term a * Term b

¡! Term (a, b)speci�c types
for speci�c cases

let rec eval = function
| Lit i -> i

Term Int ! Int

Term (a, b) ! (a, b)

8a. Term a ! a

| Pair (x, y) -> eval x, eval y

computing / reasoning by cases



Examples of Numerical Properties

� Binary representation of natural numbers:
datacons POne : 8n [0�n].
Binary n ¡! Binary(2 n + 1)

� Lists with length:
datacons LCons : 8n, a [0�n].
a * List(a, n) ¡! List(a, n+1)



Examples of Numerical Properties

� AVL trees with imbalance of at most 2:

datacons Node :
8a,k,m,n [k=max(m,n) ^ 0�m ^ 0�n ^

n�m+2 ^ m�n+2].
Avl (a, m) * a * Avl (a, n) * Num (k+1)

¡! Avl (a, k+1)

nmk+1



Existential Types

Without existential types,
every case has the same type
(as function of input type).
''We only accept standard
size boxes!�

With inferred existential
types, a range of parameters
is automatically generated.
''Let me package this for
you!�



Invariants, Preconditions, Postconditions

Invariants: types and properties
of arguments (i.e. preconditions)
and of results required to call a
function.
head : 8n, a[1 � n].

List (a, n) ! a
Postconditions: existential
types for results of functions,
capturing properties of results.
filter: 8n, a.(a ! Bool)
! List (a, n)! 9k[k � n

^ 0 � k].List (a, k)

90� k �n



Thesis: What

Fully automated reconstruction of
invariants and postconditions for recur-
sive functions can be formulated and
achieved as type inference for type sys-
tems with GADTs.



Abduction

� Abduction = reasoning to
the best explanation.

� Constraint Abduction: given
conjunctions of atoms D; C
solve D)C by �nding good
A such thatM�A^D)C.

� Joint Constraint Abduction:
multiple Di)Ci, single A.



Constraint Abduction Ideas

� For type shapes, guess equality between compat-
ible variables.

� For linear inequalities, take each d2D;c2C, and
solve d) c exactly. In particular:

� d, � 6 d� and c, � 6 c�: the abduction
answers are c and d�6 c�,

� d, d� 6 � and c, c� 6 �: the abduction
answers are c and c�6 d�.



Generalization

� Constraint Generalization:
given conjunctions of atoms
Di, solve D1 _ ::: _ Dn by
�nding a conjunction G such
that M�Di)G for all i.

� = anti-unification for type
shapes.

� = convex hull for numerical
properties.



Finding Invariants and Postconditions

1. Start with trivial preconditions (no properties).

2. Use constraint generalization
to �nd strongest postcon-
ditions � on initial iterations,
from base cases only.

3. Use joint constraint abduc-
tion to update maximally
weak preconditions.

4. Go to (2) if either invariants
or postconditions change.



Thesis: How

Fully automated reconstruction of
invariants and postconditions for recur-
sive functions can be achieved by joint
constraint abduction and constraint
generalization.



Example: Binary Addition

let rec plus =
function CZero ->
(function
| Zero ->
(function Zero -> Zero
| PZero _ as b -> b
| POne _ as b -> b)

| PZero a1 as a ->
(function Zero -> a
| PZero b1 -> PZero (plus CZero a1 b1)
| POne b1 -> POne (plus CZero a1 b1))

...

plus : 8i, k, n.Carry i ! Binary k ! Binary n !
Binary (n + k + i)



Example: AVL Trees merge

let merge = efunction
| Empty, Empty -> Empty
| Empty, (Node (_,_,_,_) as t) -> t
| (Node (_,_,_,_) as t), Empty -> t
| (Node(_,_,_,_) as t1),(Node(_,_,_,_) as t2) ->
let x = min_binding t2 in
let t2' = remove_min_binding t2 in
eif height t1 <= height t2' + 2
then create t1 x t2'
else rotr t1 x t2'

merge : 8k, n, a[k � n + 2 ^ n � k + 2].
(Avl (a, n), Avl (a, k)) !
9i[n � i ^ k � i ^ i � n + k ^

i�max (k + 1, n + 1)].Avl (a, i)



Contributions

� Formalized �nding invariants and postconditions
as �single-stage� constraint-based type inference.

� Alternative to re�nement types.

� Weakly multi-sorted joint constraint abduction
and constraint generalization algorithms.

� Best GADTs inference (vs. Chuan-kai Lin).

� Competitive, faster reconstruction.

� Complementary to learning approaches
coming from Suresh Jagannathan's group.

� github.com/lukstafi/invargent


