GADTs for Reconstruction
of Invariants and
Postconditions

Doctoral Dissertation Defense

FLLUKASZ STAFINIAK
Advisor: LESZEK PACHOLSKI

October 2, 2015

Types in Programming are Helpful

e Type systems ~ detailed grammars

e Static checking = no more program crashes!

Help R i
structure :i _
programs. !
e Help L
evolve %!
programs. —_—

Functional Programming

x=0,1,2,3 [IurUT ‘

-

Function:
y=x

QUTPUT > 3 = 0,1,8,27

Thesis: Why

e Fully automated specification generation:
o Overcome the quick-and-dirty mindset.
o Fast evolution of specifications.

o Comparative advantage wrt. other projects.

Core ML | INVARGENT

Generalized Algebraic Data Types

Example: encoding computation
datacons Lit : Int — Term_Int
datacons Paif<;£§3;/p,/Téfaaa * Term b
specific types — Term .(a, b)

for specific cases
let rec eval = function

L . Va. Term a — a
| Lit 1 -> 1

Term Int — Int-/”/////%
| Pair (x, y) -> eval x, eval y

Term (a, b) — (a, b)
computing / reasoning by cases

Examples of Numerical Properties

e Binary representation of natural numbers:
datacons POne : Vn [0<n].
Binary n — Binary(2 n + 1)

e Lists with length:
datacons LCons : Vn, a [0<n].
a * List(a, n) — List(a, n+1)

tail

Examples of Numerical Properties

e AVL trees with imbalance of at most 2:

datacons Node :
Va,k,m,n [k=max(m,n) A 0<m A 0<n A
n<m+2 A m<n+2].
Avl (a, m) * a *x Avl (a, n) * Num (k+1)
— Avl (a, k+1)

Existential Types

Without existential types,

(as function of input type).
"We only accept standard
size boxes!”

With inferred existential
types, a range of parameters
Is automatically generated.
"'Let me package this for
you!”

Invariants, Preconditions, Postconditions

Invariants: types and properties
of arguments (i.e. preconditions)
and of results required to call a
function.

head : Vn, all < n].

List (a, n) — a
Postconditions: existential
types for results of functions,
capturing properties of results.
filter: Vn, a.(a — Bool)
— List (a, n)— dkl[k < n

A 0 < k].List (a, k)

Thesis: What

Fully automated reconstruction of
invariants and postconditions for recur-
sive functions can be formulated and
achieved as type inference for type sys-
tems with GADTs.

e Abduction = reasoning to
the best explanation.

e Constraint Abduction: given WHEN

conjunctions of atoms D, C EHhGIN A TEE TiE
solve D = C' by finding good IMPOSSIBLE

A SUCh that M |: A/\ D:> C HOWE\.‘E.R IMPROB ABLE

TRUTI—I
e Joint Constraint Abduction:
multiple D; = C}, single A.

Constraint Abduction ldeas

For type shapes, guess equality between compat-
ible variables.

For linear inequalities, take each de D,ce C, and
solve d=- c exactly. In particular:

o d< a<d, and c < o < ¢, the abduction
answers are ¢ and d, < c,,

o d< d, <o and c< c, < a: the abduction
answers are ¢ and ¢, <d,.

Generalization

e C(Constraint Generalization:
given conjunctions of atoms

D;, solve Dy V ... V D,, by &
finding a conjunction GG such ’
that M E D, = G for all .

e = anti-unification for type
shapes.
e = convex hull for numerical

properties.

Finding Invariants and Postconditions

1. Start with trivial preconditions (no properties).

2. Use constraint generalization
to find strongest postcon-
ditions — on initial iterations,
from base cases only.

3. Use joint constraint abduc-
tion to update maximally
weak preconditions.

4. Go to (2) if either invariants
or postconditions change.

FIKPOINTICAT \

s T
¢ g 1 .
! e

g . -."H
(ROINT
1 i \

1
_ N
b ¥

\

§
:

Wi
.

-

ON FIXPOINT/.CATZ®

Fully automated reconstruction of
invariants and postconditions for recur-
sive functions can be achieved by joint
constraint abduction and constraint

generalization.

Example: Binary Addition

let rec plus =
function CZero ->
(function
| Zero ->
(function Zero -> Zero
| PZero _ as b -> b

| POne _ as b -> b)
| PZero al as a ->
(function Zero -> a
| PZero bl -> PZero (plus CZero al bil)

| POne bl -> POne (plus CZero al bl))

plus : Vi, k, n.Carry i — Binary k — Binary n —
Binary (n + k + i)

Example: AVL Trees merge

let merge = efunction

Empty, Empty -> Empty

Empty, (Node (_,_,_,_) as t) -> t

(Node (_,_,_,_) as t), Empty -> t
(Node(_,_,_,_) as t1),(Node(_,_,_,_) as t2) ->
let x = min_binding t2 in

let t2’ = remove_min_binding t2 in
eif height tl1 <= height t2’ + 2
then create t1 x t2?
else rotr t1 x t2?
merge : Vk, n, alk < n+ 2 A n < k + 2].
(Avl (a, n), Avl (a, k)) —
diln < i ANk < iAi<n+kA
i<max (k + 1, n + 1)].Avl (a, 1)

Contributions
e Formalized finding invariants and postconditions

as ‘single-stage” constraint-based type inference.

o Alternative to refinement types.

e Weakly multi-sorted joint constraint abduction
and constraint generalization algorithms.

e Best GADTs inference (vs. Chuan-kai Lin).

e Competitive, faster reconstruction.

o Complementary to learning approaches
coming from Suresh Jagannathan's group.

e github.com/lukstafi/invargent

