
GADTs for Invariants and Postconditions

InvarGenT: GADTs -based alternative to
refinement types provides a constraint-based
formulation of type inference and reconstruction of
invariants and postconditions.

� Strongest GADTs inference yet.

� Outside GADTs, less expressive than re�nement
types, but many techniques should apply there.

� The same inference process for types and
re�nements, with unique strengths.



GADTs for Invariants and Postconditions

InvarGenT: GADTs -based alternative to
refinement types provides a constraint-based
formulation of type inference and reconstruction of
invariants and postconditions.

� Instead of SMT solvers, uses:

� abduction to infer maximally general types
and maximally weak preconditions,

� generalization to infer strongest postcondi-
tions (most speci�c existential types).



Why focus on full inference?

� Programmers waste time on simple mistakes
during rapid prototyping.

� Fully automated specification generation for
functions will help them overcome the quick-and-
dirty mindset during rapid prototyping.

� Full automation speeds up the evolution of a
speci�cation.

� An IDE can paste a generated signature in the
source code, perhaps to be further re�ned by the
programmer.



Locating InvarGenT on the map

Expressivity

Liquid Types
DSolve

InvarGenTCore ML

Re�nement Types

Dependent Types
Coq
Idris

GADTs
Haskell
OCaml

re�nement formulas

higher-order functions

F* (MSR & INRIA)
HSolve



Generalized Algebraic Data Types

datatype Term : type
datacons Lit : Int ¡! Term Int
datacons Pair :
8a, b. Term a * Term b ¡! Term (a, b)

let rec eval = function

| Lit i -> i

| Pair (x, y) -> eval x, eval y



Generalized Algebraic Data Types

J¡`x: �K= 9���:D^ �=_ � � modulo variable
where ¡(x)= 8�[9��:D]:� renaming

J¡` let recx= e: �K=
(8�(�(�)) J¡fx 7! 8�[�(�)]:�g ` e: �K))^ �(�)
J¡`�pi:ei: �K=

9�1�2:�1!�2=_ � ^i J¡` pi:ei:�1!�2K
J¡` p:e: �1! �2K= Jp#�1K^8��:D) J¡¡0` e: �2K

where 9��[D]¡0 is Jp"�1K
J`Kx"�K= 9���� � the speci�c case p=Kx

["(��)=_ � ^D]fx 7! �1g � modulo variable
where K ::8����[D]:�1! "(��) renaming



Generalized Algebraic Data Types

8�:�(�))9�1; �2:�1!�2=_ � ^ let rec:::function

9�3:Term(�3)=_ �1^ | Lit i -> i

(8�1:Term(�1)=_ �1^ Int=_ �1) Int=_ �2)^
9�4:Term(�4)=_ �1^ | Pair (x, y) ->

8�2�3�4:Term(�4)=_ �1^ (�2; �3)=_ �4)
9�5�6:�2=_ (�5; �6)^ eval x, eval y

9�79�8:�8=_ �7!�5^ �(�8)^Term(�2)=_ �7^
9�99�0:�0=_ �9!�6^ �(�0)^Term(�3)=_ �9^

9�:�(�) � Except for �, same as Pottier & Simonet .



Generalized Algebraic Data Types

We normalize, remember quanti�ers separately,
and simplify a bit:

(>) �(�))^

(�(�))�1=_ Term(�4)^ �=_ Term(�4)!�2)^

(�(�)^Term(�1)=_ �1^ Int=_ �1)�2=_ Int)^

(�(�)^Term(�4)=_ �1^ (�2; �3)=_ �4)

�(�8)^ �(�0)^�0=_ Term(�3)!�6^

�8=_ Term(�2)!�5^�2=_ (�5; �6))



InvarGenT's approach to Typeability

� The formulas are interpreted in a fixed
model M, in particular for any ��; ��0 and
"1 =/ "2, M � "1(��)=_ "2(��0) ) ? and
M� "1(��)=_ "1(��0)) ��=_ ��0.

� A solved form formula 9��:F , is ���FV(F ), and
a conjunction of atoms F , where equations are a
substitution: x=_ tx^ y=_ ty^ :::^n6m^ :::

� An interpretation of predicate variables is,
roughly speaking, I = � :=9���:F� for solved
form formulas 9���:F�. I ; M � � if and only
if M� I(�).



InvarGenT's approach to Typeability

� Let J¡ ` e: � K , Q:�N where �N =
^i(Di ) Ci). Solved form formulas 9��res:Fres;
I are a solution to the type inference problem
J¡ ` e: � K when: I ; M � Fres ) �N ,
M � Q:Fres[��res := t�] for some t�, and for every
implication in �N, if M; I � 9FV(Di):Di then
M; I � 9FV(Di; Fres):Di^Fres.

� The last condition excludes bogus solutions
like �2=_ Int in the earlier example, which a
satis�ability solver could return for J¡` e: �K!



Joint Constraint Abduction

� Not incidentally, the inference technique we need
has been introduced independently: abduction!

� Abduction is inference to the best explanation:
for a problem Q: ^i (Di ) Ci) over M, the
abduction answer A de�ned by the following con-
ditions explains the observation Ci given the con-
text Di (and background knowledge M):

� relevance: M�A^Di)Ci for all i,

� consistency:M�9FV(A;Di):A^Di for all i,

� validity: M�Q:A[�� := t�] for some t�.



Joint Constraint Abduction

Continuing the example, we start with �(�)=>:

(>)�1=_ Term(�4)^ �=_ Term(�4)!�2)^

(Term(�1)=_ �1^ Int=_ �1)�2=_ Int)^

(Term(�4)=_ �1^ (�2; �3)=_ �4)

�0=_ Term(�3)!�6^

�8=_ Term(�2)!�5^�2=_ (�5; �6))

�1=_ Term(�4) �=_ Term(�4)!�2

�2=_ �4

�0=_ Term(�6)

�8=_ Term(�5) �2=_ �4



Joint Constraint Abduction

Finally: �(�)= 9�0:�=_ Term(�0)! �0

and Fres=�1=_ Term(�0)^�2=_ �0^ :::



Polymorphic Recursion

� We solve for the types and invariants (i.e. type
schemes) of recursive functions � and ensure the
correctness of solutions � by iteration.

� On the last iteration, the whole abduction answer
is contained in Fres � no update to the invariants
�(�) and thus a �xpoint to the iteration.



Existential Types and Postconditions

� Lists with length:

datatype List : type * num
datacons LNil : 8a. List(a, 0)
datacons LCons : 8n, a [0�n].

a * List(a, n) ¡! List(a, n+1)



Existential Types and Postconditions

� Often exact types are too tight:

let rec filter f =
function LNil -> LNil
| LCons (x, xs) ->

if f x then
LCons (x, filter f xs)

else filter f xs

�No answer in num: numerical abduction failed�



Existential Types and Postconditions

� Explicitly introducing existential types to capture
postconditions:

let rec filter f =
efunction LNil -> LNil
| LCons (x, xs) ->

eif f x then
let ys = filter f xs in
LCons (x, ys)

else filter f xs



Existential Types and Postconditions

� We get:

val filter :
8n, a.
(a ! Bool) ! List (a, n) !
9k[k � n ^ 0 � k].List (a, k)

� We do not allow existential types for function
arguments � the values need to be let-bound
before use.



Abduction for Linear Inequalities

To �nd the abduction answers to d) c for two linear
inequalities d; c, pick a common variable �2FV(d)\
FV(c) or the constant �=1. Four possibilities:

1. d,�6d� and c,�6c�: the abduction answers
are c and d�6 c�,

2. d,�6d� and c, c�6�: the abduction answer
is only c,

3. d,d�6� and c,�6 c�: the abduction answer
is only c,

4. d,d�6� and c,c�6�: the abduction answers
are c and c�6 d�.



Constraint Generalization

� Our postconditions are the strongest conditions
Gdef that can be derived from the contexts of all
cases of a de�nition of an existential type "def
introduced by efunction, ematch, eif.

M� Ik(Di))Gdef for all i de�ning "def

where Ik is the solution of both invariants-pre-
conditions and postconditions from the previous
iteration.



Constraint Generalization

� We call this algorithmic task, symbolically
_i2defIk(Di), constraint generalization. It is sim-
pler than abduction.

� We use modi�ed anti-uni�cation algorithm to
�nd existential type shapes (i.e. for general-
ization in the term domain),

� and simpli�ed generalized convex hull algo-
rithm to �nd numerical postconditions (i.e.
for generalization in the numerical domain).



Finding Invariants and Postconditions

1. Start with trivial preconditions (no properties).

� Too weak, will get strengthened.

2. Use constraint generalization to �nd strongest
postconditions � on initial iterations, from base
cases only.

� May get weakened once all cases considered.

3. Use joint constraint abduction to update
maximally weak preconditions.

4. Go to (2) if either invariants or postconditions
change.



InvarGenT vs. Pointwise GADTs

� Examples from Chuan-kai Lin's PhD thesis within
the scope of his algorithm:

rotate: 8a.Dir!Int!RoB (Black, a)!
Dir!Int! RoB (Black, a)!RoB (Red,a)
!RoB (Black, S a)

0.02s

zip2: 8a, b.Zip2 (B, a)!b!a 0.16s
rotl: 8a.AVL a!Int!AVL (S (S a))!
Choice (AVL (S (S a)), AVL (S(S(S a))))

0.03s

ins: 8a.Int!AVL a!
Choice (AVL a, AVL (S a))

0.41s

extract: 8a, b.Path b!Tree (b, a)!a 0.06s
run_state: 8a, b.b!State (b, a)!(b, a) 0.01s
head: 8a, b.List (a, S b)!a 1



InvarGenT vs. Pointwise GADTs

� and outside the scope of Chuan-kai Lin algorithm:

joint: 8a.Split (a, a)!a <0.01s
rotr: 8a.Int!AVL a!AVL (S (S a))!
Choice (AVL (S (S a)), AVL (S(S(S a))))

0.09s

delmin: 8a.AVL (S a)!
(Int, Choice (AVL a, AVL (S a)))

0.31s

fd_comp: 8a, b, c.FunDesc (c, b)!
FunDesc (b, a)! FunDesc (c, a)

0.2s*,
0.1s*

zip1: 8a, b.Zip1 (List b, a)!b!a 0.08s
leq: 8a.Nat a!NatLeq (a, a) <0.01s**
run_state: 8a, b.b!State (b, a)!(b, a) 0.03s
* Slight meaning-preserving modi�cation
** Needs a non-default option -prefer_guess



InvarGenT vs. DSolve (Liquid Types)

Program InvarGenT DSolve
dotprod 0.05s 0.31s
bcopy 0.03s 0.15s
bsearch 0.07s 0.46s
queen 0.42s 0.7s
isort 0.3s, 0.37s 0.88s
tower no assertions 0.84s 1
tower with assertion 3.93s 3.33s
matmult 0.34s 1.79s
heapsort 2.34s 0.53s
fft no assertions 36.4s* ?
fft with assertion 37.5s*,** 9.13s
simplex 8.1s*, 31.4s 7.73s
gauss no assertions 2.66s*, 1.02s*,*** ?
gauss with assertion 2.72s 3.17s

Options: ** -same_with_assertions *** -prefer_bound_to_local



InvarGenT Original Examples

� Lists with length:

head: 8n,a[16n].List (a, n)!a <0.01s
append: 8a,n,k.List (a, n)!List (a, k)!
List(a, n + k)

0.02s

flatten_pairs: 8n, a. List ((a, a), n) !
List (a, 2 n)

0.01s

flatten_quadrs: 8n, a. List ((a,a,a,a), n)
! List (a, 4 n)

0.06s

filter: 8n, a. (a!Bool) ! List (a, n) !
9k[0 6 k ^ k 6 n].List (a, k)

0.18s

zip: 8a,b,n,k.(List (a,n), List (b,k))!
9i[i=min(n, k)].List ((a,b),i)

0.38s



InvarGenT Original Examples

� Binary numbers:

plus: 8n,k,i.Carry i!Binary k!Binary

n!Binary (n+k+i)

0.66s

increment: 8n.Binary n!Binary (n + 1) 0.01s
bitwise_or: 8k, n.Binary k!Binary n !
9i[k 6 i ^ n 6 i ^ i 6 n + k].Binary i

1.21s

� AVL trees with imbalance of 2: [next slide]



create: 8k, n, a[06n ^ 06k ^ n6k+2 ^
k6n+2]. Avl (a, k) ! a ! Avl (a, n) !
9i[i=max (k + 1, n + 1)].Avl (a, i)

0.09s

rotr: 8k, n, a[06n ^ n+26k ^ k6n+3].
Avl (a, k) ! a ! Avl (a, n) !
9n[k 6 n ^ n 6 k + 1].Avl (a, n)

1.07s

add: 8n, a. a ! Avl (a, n) !
9k[16k ^ n6k ^ k6n+1].Avl (a, k)

0.69s

remove_min_binding: 8n, a[16n].Avl (a, n)
! 9k[n6k+1 ^ k6n ^ k+262 n].Avl (a, k)

0.59s

merge: 8k, n, a[n6k+2 ^ k6n+2].
(Avl (a, n), Avl (a, k)) ! 9i[n6i ^ k6i
^ i6n+k ^ i6max (k+1, n+1)].Avl (a, i)

0.93s

remove: 8n, a. a ! Avl (a, n) !
9k[n6k+1 ^ 06k ^ k6n].Avl (a, k)

0.38s

Total time for add, remove and helper functions: 4.92s



Response to prof. Sulzmann

� Connection to earlier work. Use and develop-
ment of abduction in a GADTs framework, is
indeed the main contribution, but also important
is stressing the need for both maximally weak pre-
conditions and strongest postconditions.

� Problem statement. The thesis attempts to
develop fully automated derivation of speci�ca-
tions in the context of functional programming.
The thesis statement is that this goal can be pro-
ductively stated and achieved as type inference
in a GADTs-based type system.



Response to prof. Szubert

� Location of proofs. Both the proofs and exper-
iments with the test cases contributed to the
development of the thesis. The contribution of
the proofs is cashed out in the type system and
the algorithmic components described in the
main text.



Response to prof. Szubert

� Obscure presentation of semantics. The oper-
ational semantics of the mini-language complies
with the standard call-by-value variant of seman-
tics used by statically typed functional program-
ming languages with pattern matching. It is pre-
sented in Section 2.2.1. Section 3.6 merely aims
to demonstrate that the calculus does not deviate
from this intuitive semantics.



Response to prof. Szubert

� The role of specifications. The comparative
advantage of the thesis lies in the ability of
InvarGenT to automatically generate speci�-
cations for cases which are beyond the capability
of other systems. Multiple research groups are
working on facilitating formal veri�cation from
speci�cations provided upfront.


