
Invariant Inference via GADTs

by Łukasz Stafiniak

Institute of Computer Science, University of Wrocław

Abstract

GADTs can express data invariants and program cor-
rectness in functional languages. Previous approaches to
type inference and type checking for GADTs focus on
efficient decidability and predictability. We present a
framework and algorithms for a programmer assistant
that automatically generates types and invariants based
on the GADTs system HMG(X) but without mandatory
type annotations, with some completeness guarantees. It
is inspired by prior work on polymorphic recursion, type
inference via constraint abduction, and automatic gener-
ation of loop invariants. We extend the inference to dis-
cover existentially quantified descriptions of results of
functions (i.e. postconditions, while the remaining part
of function invariants are preconditions).

Keywords: invariant inference, type inference, GADTs,
constraint abduction

1 Introduction to Generalized Algebraic Data

Types

Type systems are established natural deduction-style
means to reason about programs. Dependent types can
represent arbitrarily complex properties as they use the

same language for both types and programs (the type of
value returned by a function can itself be a function of
the argument). GADTs bring some of that expressivity
to type systems that deal with data-types, but with limi-
tations: the semantic of types becomes simpler than that
of programs (for example, deciding type equality can be
very simple). GADTs introduce the ability of reasoning
about return type by case analysis of the input value,
while keeping the benefits of separate semantics. Our
type system for GADTs differs from others in that we do
not require any type (or invariant) annotations, even on
recursive functions.

Consider a function eval defined by cases over a
datatype Term(α) with constructors Lit: Int →
Term(Int), IsZero: Term(Int) → Term(Bool), If:
∀α.Term(Bool) → Term(α) → Term(α) → Term(α). In a
type system with Generalized Algebraic Data Types, the
result of reduction of the typing problem for eval to
constraint solving resembles the following constraint
problem (side by side with the corresponding parts of
the program): table 1 – from which we would like to find
the solution α = Term(β), τ = Term(β) → β, leading to
the inferred type eval: ∀β.Term(β)→ β. For more infor-
mation about constraint-based type inference for
GADTs, consult [12].

∃τ , α, β∀γ.τ=̇α→ β ∧ eval x = case x of
(α=̇Term(Int)⇒ β=̇Int) ∧ Lit y -> y

(α=̇Term(Bool)⇒ β=̇Bool) ∧ IsZero y -> (eval y)=0
(α=̇Term(γ)⇒ β=̇γ) If y1 y2 y3 ->

if eval y1 then eval y2
else eval y3

Table 1. Simplified constraint for typing eval

Now we face an example the type system with
GADTs needs further extension to handle. We will col-
lect elements of a list with length that meet a given
predicate. We expect the system to know that the
resulting list will be no longer than the input list. In
OCaml syntax:

type (’a, _) list =

| LNil : (’a, 0) list

| LCons : (’a, ’n) list -> (’a, ’n+1) list

let rec filter f =

function LNil -> LNil

| LCons (x, l) when f x ->

let l’ = filter l in LCons (x, l’)

| LCons (_, l) ->

let l’ = filter l in l’

The real type of the filter function is:

∀αn.(α→ bool)→List(α, n)→∃k[k6n].List(α, k)

This type motivates extensions to the type system,
developed in this work, which allows for existential
quantification over return values of pattern matching.

1.1 Related work

In the tradition of the Milner-Mycroft type system (see
[2]), we modify the HMG(X) type system from [12] by

1

dropping the type specifications on recursive definitions
from program terms. We also naturally restrict it by
limiting the user-specified and inferred invariant con-
straints to use conjunction as the only logical connective.
As these specifications express recursion invariants, we
use the traditional framework for invariant generation of
[1]. We feel that the application to recursive definitions
in functional languages of the technique traditionally
applied to programs with loops in imperative languages
is under-used. Initially we were only aware of the work
[3], which applies Dijkstra’s weakest precondition cal-
culus to refinement types. A work similar to ours could
be done by application of the weakest precondition cal-
culus to the Hoare logic of [10], with the conditions
inserted by type inference.

The work in [14], although it is advertised as focused
on dependent types, can be seen as extending [3] with
reasoning by Boolean cases. Their programming lan-
guage and type system is in several ways less expressive
than the ML language with polymorphic recursion and
the full GADTs type system: no inductive types (and
therefore no pattern matching), refinement predicates
over integers only instead of over arbitrary domains
including types. Still, the inclusion of reasoning by cases
and development of methods to actually find the refine-
ment predicates, make [14] closer to our results.

Our algorithm eliminates implications in a way sim-
ilar to [13], but using a slightly different definition of
abduction. Use of abduction in [13] is related to the
work in [6] and [7], where a more complete abduction
algorithm is provided. Our algorithm is extensible to
any constraint domain, by providing an abduction algo-
rithm and a quantified conjunctive constraints solution
algorithm. It necessarily includes the domain of equa-
tions over (free) algebraic terms. The full exposition of
our use of abduction is in [15] and its accompanying
technical report [16].

There is a surge of recent work on type inference for
GADTs, not contributing to our approach. Works such
as [9] (older), [11], [5] and [4] modify the GADTs type
system to make it more amenable to type inference
(rejecting some reasonable programs as untypable), and
develop less declarative inference algorithms. These
works also do not allow other domains (than the free
term algebra) to express invariants. [4] stands out from
our point of view as it handles type inference for poly-
morphic recursion (in the same way as we do, by itera-
tion).

Due to space constraints and technical character of
proofs for presented propositions, the proofs are dele-
gated to accompanying technical reports [17] and [18].

1.2 Notation

By the bar ē we denote a sequence (or a set, depending
on context) of elements e, by # we denote disjointness.
With a free index i, eī denotes (e1, 	 , en) for some n

associated with the index i; similarly, ∧iΦi denotes
Φ1∧	 ∧Φn. For convenience, we identify syntactically a
conjunction of atoms ∧ici with a set of atoms {c1, 	 ,

cn}.

In some contexts, for a quantifier prefix Q we write
Q to denote the set of variables quantified by Q. Let FV
be a generic function returning the free variables of any
expression. For a set of variables V , let ∃(V c).Φ denote
∃FV(Φ) \ V .Φ, i.e. existential closure of Φ except for
variables from V , which are kept free. For a quantifier
prefix Q and variables x, y in Q, by x <Q y we denote
that x is to the left of y in Q and they are separated by
a quantifier alternation, by x6Q y that it is not the case
that y <Q x. By Q[Qαα 6 Qββ] we denote replacement
of Qα quantification over α with Qβ quantification over
β in Q (Qα , Qβ ⊂{∀,∃}).

Let T (F) be the set of ground terms (i.e. finite trees)
for signature F , and T (F , X) the set of (possibly multi-
sorted) terms for signature F and variables X.

By Φ[ᾱ6 t̄], Φ[α6 t], or Φ[α16 t1;	 ; αn6 tn], we
denote a substitution of terms t̄ for corresponding vari-
ables ᾱ in the formula Φ (where ᾱ and t̄ are finite
sequences of the same length). By s̄=̇t̄ we denote
∧isi=̇ti, where s̄ = (s1, 	 , sn) and t̄ = (t1,	 , tn) for some
n. When a substitution has a name, for example S =
[ᾱ 6 t̄], we write substitution application as S(Φ) =
Φ[ᾱ 6 t̄]; we write Ṡ = ᾱ=̇t̄ ; and we denote the substi-
tution S corresponding to a formula A= Ṡ = ᾱ=̇t̄ by Ã.
We say that a substitution [ᾱ6 t̄] agrees with a quanti-
fier prefix Q, when �Q.ᾱ=̇t̄ and in case of α1=̇α2 ∈ ᾱ=̇t̄

for variables α1, α2, we have α26Qα1.

2 The Language of Constraints

We are interested in a multisorted first-order language
with equality L, interpreted in a given model M. The
sort of “proper types”, denoted sty, plays a special role.
In the current presentation, we will abstract from details
of the language, posing the necessary properties as
assumptions.

Proposition 1. If �D ⇒ C or �∀β̄ .D ⇒ C, and
�∃ᾱ.D, then �∃ᾱ.C. More generally, if �A ⇒ Φ and
�Q.A, then �Q.Φ, where Q is a quantifier prefix.

We define solved form formulas F to be existentially
quantified conjunctions of atoms ∃ᾱ.A. We extend the
language and its interpretation in a way reminiscent of
existential monadic second order logic, but purely syn-
tactically. It is because we are interested in invariants
that are solved form formulas that can share variables
with the context of recursive definitions they specify.

Definition 2. Fix a language L with a model M. Let ρ
be an interpretation of types, that is an assignment of
elements of M to variables in the corresponding sort,
extended homomorphically to terms in the standard way.
For Φ ∈ L, let M, ρ � Φ denote the interpretation of a
formula Φ in the model M under the interpretation ρ, in
the standard way, for example M, ρ � π(t) if and only if
π(ρ(t)) holds in M, where predicate symbol π in L corre-

2

sponds to predicate π in M, etc.

Extend L into L(δ), resp. L(χ), by adding a distin-
guished variables δ, δ ′ to sort sty, resp. a family of unary

and binary predicates χi(·) or χi(·, ·) over terms of sort
sty (call them predicate variables). Let PV1(·), resp.

PV2(·) be the set of unary, resp. binary predicate vari-

ables in any expression. For a formula Φ in L(χ), let
χī = PV1(Φ), resp. χj = PV2(Φ), and let χi(τi,k) , resp.

χj(τj,k, τj,k
′) be all occurrences of χi, resp. χj in Φ. I is

an interpretation of predicate variables for Φ when it is
an assignment I = χī 6 ∃ᾱi.Fi ; χj 6 ∃ᾱj.Fj such that

ᾱi#FV(∧kτi,k) or ᾱj#FV(∧kτj,k ∧k τj,k
′) and

∃ᾱi.Fi ∃ᾱj.Fj ⊂ L(δ) are solved form formulas. Given

Φ ∈ L(χ), define a statement M, I , ρ � Φ by: I is an
interpretation of predicate variables for Φ, ρ is an inter-

pretation of types, and M, ρ � Φ[χi(τi,k) 6

∃ᾱi.Fi[δ6 τi,k]; χj(τj,k, τj,k
′) 6

∃ᾱj.Fj[δ6 τj,k; δ
′
6 τj,k

′]], where I = χī6 ∃ᾱi.Fi ; χj 6

∃ᾱj.Fj.

Define M, I � Φ as: for all interpretations of types ρ,
M, I , ρ � Φ. Define M � Φ as: for all interpretations of
predicate variables I for Φ, M, I � Φ. Often we write
I �Φ, resp. �Φ, instead of M, I �Φ, resp. M �Φ, since
the model is fixed. We write I , C � Φ, resp. C � Φ, for
I �C⇒Φ, resp. �C⇒Φ.

We say that a formula Φ is satisfiable , if and only if
there exists an interpretation of predicate variables I for
Φ, such that I � ∃FV(Φ).Φ. As seen above, we extend
the notion of substitution to handle predicate variable
atoms, where the replacement of each occurrence of a
variable depends on the argument of that variable. For
interpretations of predicate variables I1 = χi

1
6 ∃ᾱi

1.Fi
1,

I2 = χi
2
6 ∃ᾱi

2.Fi
2 with disjoint domains, we put I1I2 =

χi
1χi

2
6 ∃ᾱi

1.Fi
1 ∃ᾱi

2.Fi
2.

As seen above, we extend the notion of substitution
to handle predicate variable atoms, where the replace-
ment of each occurrence of a variable depends on the
argument of that variable. When a variable occurs on
the left-hand side of a substitution pair with a + sign
(resp. − sign) in the upper index, when the substitution
is applied, this pair contributes only to substituting a
positive (resp. negative) occurrence of this variable. For
example,

(x(t1) ⇒ x(t2) ∧ x(t3))[x
+(t) 6 a(t); x−(t) 6 b(t)] =

(b(t1)⇒ a(t2)∧ a(t3)).

3 The GADT Type System

τ will denote terms of sort sty in L below. Define the

type schemes σ as ∀β[∃ᾱ.D].β, where D is a conjunction
of atoms in L. Define the pseudo type schemes as either
type schemes or ∀β[χ(β)].β, where χ is a predicate vari-
able and β is a variable of sort sty. A simple environ-
ment (or monomorphic environment) maps variables x

to types τ . An environment (or polymorphic environ-

ment) maps variables x to type schemes σ, and a pseudo
environment maps variables to pseudo type schemes.
When a simple environment is appended to an environ-
ment, we identify τ and ∀β[β=̇τ].β for β � FV(τ). When
operations pertaining to formulas are applied to a
(pseudo) type scheme ∀β[∃ᾱ.D].β or ∀β[χ(β)].β, they
are performed on the formula ∃ᾱ.D or χ(β). When
operations pertaining to (pseudo) type schemes (types)
are applied to (pseudo, resp. simple) environments Γ,
they are performed on the image of Γ. Define environ-
ment fragments ∆ to be triples ∃ᾱ[D].Γ of variables ᾱ,
atomic conjunctions D in L and simple environment Γ.

Let C � D be a notational variant of �C ⇒ D. Set
∆6 ∃β̄ [D].Γ and ∆′

6 ∃β̄ ′[D ′].Γ′ such that β̄#FV(Γ′),
β̄ ′#FV(∆) and β̄ ′#C. Let C � ∆′ 6 ∆ denote C ∧

D ′ � ∃β̄ .(D ∧x∈Dom(Γ) Γ(x)=̇Γ′(x)) when Dom(Γ) =
Dom(Γ′), and otherwise a falsehood (compare lemma 3.5

of [12]). Let ∆ × ∆′ denote ∃β̄β ′¯ [D ∧ D ′].Γ∪̇Γ′, and

∃β̄ ′[D ′]∆ denote ∃β̄β ′¯ [D∧D ′].Γ.

Proposition 3. Properties of environment fragments
(see [12] lemma 3.15).

f-Hide. �∆6 ∃ᾱ.∆.

f-Imply. C1⇒C2� [C1]∆6 [C2]∆.

f-Enrich. C⇒∆16∆2� [C]∆16 [C]∆2.

f-Ex. ∀ᾱ.∆16∆2� (∃ᾱ.∆1)6 (∃ᾱ.∆2).

f-And. ∆16∆2�∆×∆16∆×∆2.

Unfortunately, our type inference algorithm does not
handle disjunctive patterns. We therefore do not intro-
duce them in our type system, but because they are very
convenient, we remove them from pattern matching
clauses by source code transformation in our implemen-
tation.

First, we present the type system in the standard,
natural deduction style. The type judgement C, Γ, Σ ⊢ e:
τ or C, Γ, Σ ⊢ e: σ is composed of a formula C in L, an
environment Γ, a set of data constructors Σ, an expres-
sion e and a type τ or type scheme σ. A pseudo type

judgement is composed of a formula C in L(χ), a pseudo
environment Γ, a set of data constructors Σ, an expres-
sion e and a type τ or pseudo type scheme σ. The
intended meaning of the type judgement C, Γ,Σ ⊢ e: τ is:
for every interpretation I , ρ, if I , ρ �C, then the expres-
sion e has a ground type ρ(τ) in a ground environment
ρ(I(Γ)). We define validity of type judgements in table
2: •, where D is a conjunction of atoms in L.

Note that the lack of the standard type schemes
∀ᾱ[D].τ is only for the simplicity of presentation, as they
are equivalent to ∀β[∃ᾱ.D ∧ β=̇τ].β.

A data constructor K for a datatype ε (recall that the
sort sty holds two categories of elements: datatypes and
function types) has definition K; ∀ᾱβ̄ [D].τ1 × 	 × τn →

ε(ᾱ) where FV(D, τ1, 	 , τn) ⊆ ᾱβ̄ . D is a solved form
formula ∃β̄ ′.A. Denote the set of data constructors by
Σ.

3

• Patterns (syntax-directed)

p-Empty p-Wild

C,Σ⊢ 0: τ� ∃∅[F]{} C,Σ⊢ 1: τ� ∃∅[T]{}

p-And p-Var
∀i C,Σ⊢ pi: τ� ∆i

C,Σ⊢ p1 ∧ p2: τ� ∆1 ×∆2

C,Σ⊢ x: τ� ∃∅[T]{x� τ }

p-Cstr
∀i C ∧D,Σ⊢ pi: τi� ∆i Σ∋K; ∀ᾱβ̄[D].τ1 ×	 × τn→ ε(ᾱ) β̄#FV(C)

C,Σ⊢Kp1	 pn: ε(ᾱ)� ∃β̄[D](∆1 ×	 ×∆n)

• Patterns (non-syntax-directed)

p-EqIn p-SubOut p-Hide
C,Σ⊢ p: τ ′

� ∆
C � τ=̇τ ′

C,Σ⊢ p: τ� ∆

C,Σ⊢ p: τ� ∆′

C �∆′ 6∆

C,Σ⊢ p: τ� ∆

C,Σ⊢ p: τ� ∆
ᾱ#FV(τ ,∆)

∃ᾱ.C,Σ⊢ p: τ� ∆

• Expressions (syntax-directed)

Var Cstr

Γ(x) =∀β[∃ᾱ.D].β C �D

C,Γ,Σ⊢x: β

∀iC,Γ,Σ⊢ ei: τi C �D

Σ∋K; ∀ᾱβ̄[D].τ1	 τn→ ε(ᾱ)

C,Γ,Σ⊢Ke1	 en: ε(ᾱ)

App LetRec Abs
C,Γ,Σ⊢ e1: τ ′ → τ

C,Γ,Σ⊢ e2: τ ′

C,Γ,Σ⊢ e1 e2: τ

C,Γ ′,Σ⊢ e1:σ C,Γ ′,Σ⊢ e2: τ
σ=∀β[∃ᾱ.D].β Γ′ =Γ{x� σ}

C,Γ,Σ⊢ letrec x= e1 in e2: τ

∀iC,Γ,Σ⊢ ci: τ1 → τ2

C,Γ,Σ⊢λ(c1	 cn): τ1 → τ2

• Expressions (non-syntax-directed)

Gen Inst DisjElim
C ∧D,Γ,Σ⊢ e: β
βᾱ#FV(Γ, C)

C ∧∃βᾱ.D,Γ,Σ⊢ e: ∀β[∃ᾱ.D].β

C,Γ,Σ⊢ e: ∀ᾱ[D].τ ′

C �D[ᾱ6 τ̄]

C,Γ,Σ⊢ e: τ ′[ᾱ6 τ̄]

C,Γ,Σ⊢ e: τ D,Γ,Σ⊢ e: τ

C ∨D,Γ,Σ⊢ e: τ

Hide Equ FElim
C,Γ,Σ⊢ e: τ
ᾱ#FV(Γ, τ)

∃ᾱ.C,Γ,Σ⊢ e: τ

C,Γ,Σ⊢ e: τ
C � τ=̇τ ′

C,Γ,Σ⊢ e: τ ′ F ,Γ,Σ⊢ e: τ

• Clauses
Clause
C,Σ⊢ p: τ1� ∃β̄[D]Γ ′ C ∧D,ΓΓ′,Σ⊢ e: τ2 β̄#FV(C,Γ, τ2)

C,Γ,Σ⊢ p.e: τ1 → τ2

Table 2. Typing rules

A closed expression e is well typed when C, ǫ,Σ ⊢ e: σ
holds for some satisfiable constraint C.

Proposition 4. Constructor K; ∀ᾱβ̄ [D].τ1 × 	 × τn →
ε(ᾱ) where D = ∃β̄ ′

.A, is equivalent to
K; ∀ᾱγī[∃β̄β̄

′
.γī=̇τī ∧A].γ1×	 × γn→ ε(ᾱ).

Proposition 5. Constructors of the form

K; ∀αīβ̄ [D].τ1 × 	 × τn → ε(αī) where D = ∃β̄ ′
.A, are

equivalent to constructors of the form

K; ∀αβ̄ [∃αīβ̄
′
.α=̇α1 → 	 → αm ∧A].γ1 × 	 × γn→ ε(α)

when all uses of ε(τ1, 	 , τm) are translated to
ε(τ1→	 → τm).

Lemma 6. Weakening (patterns and expressions).
Assume C1�C2. If C2,Σ⊢ p: τ� ∆ (resp. C2,Γ,Σ⊢ ce:
τ, C2,Γ,Σ⊢ ce: σ) is derivable, then there exists a deriva-

tion of C1, Σ ⊢ p: τ� ∆ (resp. C1, Γ, Σ ⊢ ce: τ, C1, Γ,
Σ⊢ ce:σ) of the same structure.

The lemma follows from transitivity of � (A � B and
B � C imply A � C) by induction on the structure of the
derivation.

Lemma 7. If Σ⊂Σ′ and C,Σ ⊢ p: τ� ∆ (resp. C, Γ,
Σ ⊢ ce: τ, C, Γ, Σ ⊢ ce: σ) is derivable, then there exists a
derivation of C,Σ′ ⊢ p: τ� ∆ (resp. C, Γ,Σ′ ⊢ ce: τ, C,

Γ,Σ′⊢ ce: σ) of the same structure.

Now, we present pseudo type judgements declara-
tively by reducing them to constraints. For c̄ = pi.ei , JΓ,
Σ ⊢ c̄: τ1 → τ2K6 ∧iJΓ, Σ ⊢ pi.ei: τ1 → τ2K. (The presenta-
tion is a little bit heavy due to explicit capture-avoid-
ance conditions.)

4

• Patterns (constraint generation)
JΣ⊢ 0↓τK = T

JΣ⊢ 1↓τK = T

JΣ⊢ x↓τK = T

JΣ⊢ p1∧ p2↓τK = JΣ⊢ p1↓τK∧JΣ⊢ p2↓τK

JΣ⊢Kp1	 pn↓τK = ∃ᾱ ′.(ε(ᾱ ′)=̇τ ∧∀β̄ ′
.D[ᾱβ̄6 ᾱ ′β̄

′]⇒∧iJpi↓τi[ᾱβ̄6 ᾱ ′β̄
′]K)

where Σ∋K; ∀ᾱβ̄ [D].τ1×	 × τn→ ε(ᾱ), ᾱ ′β̄
′#FV(Σ, τ)

• Patterns (environment fragment generation)
JΣ⊢ 0↑τK = ∃∅[F]{}

JΣ⊢ 1↑τK = ∃∅[T]{}

JΣ⊢x↑τK = ∃∅[T]{x� τ }

JΣ⊢ p1∧ p2↑τK = JΣ⊢ p1↑τK×JΣ⊢ p2↑τK

JΣ⊢Kp1	 pn↑τK = ∃ᾱ ′β̄
′[ε(ᾱ ′)=̇τ ∧D[ᾱβ̄6 ᾱ ′β̄

′]](×iJpi↑τi[ᾱβ̄6 ᾱ ′β̄
′]K)

where Σ∋K; ∀ᾱβ̄ [D].τ1×	 × τn→ ε(ᾱ), ᾱ ′β̄ ′#FV(Σ, τ)

JΣ⊢Kp1	 pn↑τK = ∃∅[F]{} when K � Dom(Σ)

Table 3. Type inference for patterns

JΓ,Σ⊢ x: τK = F when x � Dom(Γ)

JΓ,Σ⊢ x: τK = ∃β ′ᾱ ′.(D[βᾱ6 β ′ᾱ ′]∧ β ′=̇τ)

where Γ(x)= ∀β[∃ᾱ.D].β, β ′ᾱ ′#FV(Γ,Σ, τ)

JΓ,Σ⊢λc̄: τK = ∃α1α2.(JΓ,Σ⊢ c̄:α1→α2K∧α1→α2=̇τ), α1α2#FV(Γ,Σ, τ)

JΓ,Σ⊢ e1 e2: τK = ∃α.(JΓ,Σ⊢ e1:α→ τK∧ JΓ,Σ⊢ e2:αK), α#FV(Γ,Σ, τ)

JΓ,Σ⊢Ke1	 en: τK = F when K � Dom(Σ)

JΓ,Σ⊢Ke1	 en: τK = ∃ᾱ ′β̄
′
.(∧iJΓ,Σ⊢ ei: τi[ᾱβ̄6 ᾱ ′β̄

′]K∧D[ᾱβ̄6 ᾱ ′β̄
′]∧ ε(ᾱ ′)=̇τ)

where Σ∋K; ∀ᾱβ̄ [D].τ1×	 × τn→ ε(ᾱ), ᾱ ′β̄
′#FV(Γ,Σ, τ)

JΓ,Σ⊢ letrec x= e1 in e2: τK = (∀β(χ(β)⇒ JΓ{x� ∀β[χ(β)].β},Σ⊢ e1: βK))∧
(∃α.χ(α))∧ JΓ{x� ∀β[χ(β)].β},Σ⊢ e2: τK

where β#FV(Γ,Σ, τ), χ#PV(Γ,Σ)

JΓ,Σ⊢ p.e: τ1→ τ2K = JΣ⊢ p↓τ1K∧∀β̄ .D⇒ JΓΓ′,Σ⊢ e: τ2K

where ∃β̄ [D]Γ′ is JΣ⊢ p↑τ1K, β̄#FV(Γ,Σ, τ2)

JΓ,Σ⊢ ce: ∀ᾱ[D].τK = ∀ᾱ ′.D[ᾱ6 ᾱ ′]⇒ JΓ,Σ⊢ ce: τ [ᾱ6 ᾱ ′]K, ᾱ ′#FV(Γ,Σ)

Table 4. Type inference for expressions and clauses

The two presentations are equivalent, in the sense of
theorems correctness and completeness below.

Lemma 8. Correctness (patterns). JΣ ⊢ p↓τK ⊢ p: τ�
JΣ⊢ p↑τK.

Theorem 9. Correctness (expressions). JΓ,Σ⊢ ce: τK,Γ,
Σ⊢ ce: τ.

Γ′=̇Γ′′ stands for ∀x ∈ Dom(Γ′) ∪
Dom(Γ′′).Γ′(x)=̇Γ′′(x) and is false when Dom(Γ′) �

Dom(Γ′′). Recall that for ∆ 6 ∃β̄ [D].Γ and ∆′
6

∃β̄ ′[D ′].Γ′ such that β̄#FV(Γ′), β̄ ′#FV(∆) and β̄ ′#C,

C �∆′6∆ denotes C ∧D ′� ∃β̄ .D ∧Γ=̇Γ′. Observe, that
C �∆′6∆ iff C � ∀β̄ ′

.D ′⇒∃β̄ .D ∧Γ=̇Γ′.

Lemma 10. Completeness (patterns). Let ∆ =

∃β̄ ′[D ′]Γ′ and JΣ ⊢ p↑τK = ∃β̄ ′′[D ′′]Γ′′ = ∆′. C, Σ ⊢ p:

τ � ∆ implies C � JΣ ⊢ p↓τK and C � ∀β̄ ′′
.D ′′ ⇒

∃β̄ ′
.(D ′∧Γ′′=̇Γ′), i.e. C �∆′6∆.

Lemma 11. Let Γ be an environment and Γ′, Γ′′ be
simple (i.e. monomorphic) environments. For any e, τ,
C ∧Γ′=̇Γ′′,ΓΓ′,Σ⊢ e: τ iff C ∧Γ′=̇Γ′′,ΓΓ′′,Σ⊢ e: τ.

Theorem 12. Completeness (expressions). If PV(C, Γ,
Σ) = ∅ and C, Γ, Σ ⊢ ce: τ, then there exists an interpre-
tation of predicate variables I such that I , C � JΓ,Σ ⊢ ce:
τK.

5

Corollary 13. If C,Γ,Σ⊢ ce: ∀ᾱ[D].τ and ᾱ#FV(Γ,Σ),
then there is an interpretation I such that I ,
C � ∀ᾱ.D⇒ JΓ,Σ⊢ ce: τK.

3.1 Example

Consider a function eval defined by cases over a
datatype Term(α) with constructors
Lit; ∀α[α=̇Int].Int → Term(α), IsZero:
∀α[α=̇Bool].Term(Int) → Term(α), If: ∀α.Term(Bool) →
Term(α) → Term(α) → Term(α), and functions Γ =
{eq � ∀α.α → α → Bool; ite � ∀α.Bool → α → α → α;
zero� Int}, defined by an expression e:

letrec eval=

λ(Litx.x, IsZero y.eq (eval y) zero,

If y1 y2 y3.ite (eval y1) (eval y2) (eval y3))
in eval

Let Γ′=Γ{x� ∀β[χ(β)].β}. The constraint derived is:

JΓ⊢ e:αresK = (∀β(χ(β) ⇒ ∃α1α2.(JΓ
′ ⊢ c̄: α1 → α2K ∧

α1→α2=̇β)))∧

(∃α.χ(α))∧∃β ′′.χ(β ′′)∧ β ′′=̇αres

After normalization to alternation-minimizing prenex
normal form:

∃α4β
′′∀β∃α1α2∃α1

′α2
′α3

′∀β1β2∃αα
′α′′α′′′β ′

	 .

χ(α)∧ χ(β ′′)∧ β ′′=̇αres ∧

(χ(β) ⇒ Term(α1
′)=̇α1 ∧ Term(α2

′)=̇α1 ∧

Term(α3
′)=̇α1∧α1→α2=̇β)∧

(χ(β)∧Term(β1)=̇α1∧ β1=̇Int⇒ Int=̇α2)∧

(χ(β)∧Term(β2)=̇α1∧ β2=̇Bool⇒

α′′ → α′′ → Bool=̇α′ → α→ α2 ∧ χ(β ′) ∧ β ′=̇α′′′ →

α′∧Term(Int)=̇α′′′∧ Int=̇α)∧
(χ(β)∧	 ⇒)

4 Existential Types

We add existentially quantified types to our type
system, in a nominal (i.e. “identified by name”) way.
Instead of extending the language of types, we extend
the language of expressions to provide place for auto-
matic definition of GADTs that encapsulate the existen-

tially quantified types. When K; ∀ᾱβ̄γ[E].γ→ εK(ᾱ)∈Σ
is the only data constructor for type εK(ᾱ), the pretty-

printer for types prints εK(τ̄) as (∃β̄γ[E[ᾱ 6 τ̄]].γ) (or
(∃β̄ [E[ᾱ 6 τ̄]].τe) when γ=̇τe ∈ E). We add several
syntax-directed rules: “type-level existential quantifier”
introduction ExCases and elimination ExLetIn, the
scoping rule CstrIntro, and their corresponding
abstract syntax expressions: λ[K]c̄, let p = e1 in e2 and
extype K.e for a constructor K, pattern matching
clauses c̄ and expressions e, e1, e2. The constructor K in
λ[K].c̄ and extype K.e will not appear in concrete
syntax, instead a unique identifier will be provided by
the parser for a coupling of extype K.e and λ[K].c̄
resulting from various forms of “syntactic sugar”.

By Dom(Σ) we denote the set of identifiers of the
constructor definitions in Σ.

CstrIntro
C,Γ,Σ∪{K; ∀αγ[E].γ → εK(α)}⊢ e: τ K � Dom(Σ)

C,Γ,Σ⊢ extype K.e: τ

ExCases
K; ∀αγ[E].γ → εK(α)∈Σ β̄i#FV(C,Γ, τi

′) FV(E)⊆αγ

(∀i) C,Σ⊢ pi: τ� ∃β̄i[Di]Γi
′ C ∧Di,ΓΓi

′,Σ⊢ ei: τi
′ C ∧Di�E[γ6 τi

′]

C,Γ,Σ⊢λ[K](p1.e1	 pn.en): τ → εK(α)

ExLetIn
K; ∀αγ[E].γ → εK(α)∈Σ β̄ ′#FV(C,Γ, τ)

C ∧E,Σ⊢ p: γ� ∃β̄
′[D]Γ ′ C,Γ,Σ⊢ e1: εK(α) C ∧D∧E,ΓΓ ′,Σ⊢ e2: τ

C,Γ,Σ⊢ let p= e1 in e2: τ

Table 5. Added typing rules

Note that by proposition 5, we do not lose generality
(expressivity) by using single-argument datatypes εK(α)
rather than the general form εK(ᾱ). We will denote the
encoding α1→	 →αm of αī as αiQ .

Proposition 14. Interpretation of extension. Let C, Γ,
Σ, ce, τ be such that C, Γ, Σ ⊢ ce: τ holds in the type
system extended with CstrIntro, ExCases and ExLetIn,
and let ce′ be ce with subexpressions extype K.e

replaced by e, subexpressions λ[K](p1.e1	 pn.en) replaced
by λ(p1.K e1

′
	 pn.K en

′), and subexpressions let p =
e1 in e2 replaced by λ(Kp.e2

′) e1
′ , where C ′, Γ′, Σ′ ⊢ e1:

εK(τ) is the corresponding subtree for e1 in the deriva-
tion of C, Γ, Σ ⊢ ce: τ; ei

′ are ei with the replacement
applied recursively. Then C, Γ, Σo ⊢ ce′: τ holds in the
original type system where Σo is Σ with additional data
constructors K, introduced by CstrIntro in C, Γ, Σ ⊢ ce:
τ.

The extended type system is a conservative extension
of the base type system since all added rules are driven
by new syntactic constructs. But we would like a form of
conservativity expressed by a reverse claim to proposi-
tion 14: can we use existential abstraction (ExCases
instead of Cases) without fear of losing expressivity?

Take an expression ce in the type system extended
with CstrIntro, ExCases and ExLetIn, such that for
every λ[K] in ce there is an extype K in ce and there
are no more occurrences of K in ce (there is at most one
occurrence of λ[K] for any K, and extype-bound K is
not used otherwise), and to keep things simple, all
occurrences of extype K in ce form a prefix (i.e. are at
the root). Form expresions ce′ and ce′′ as follows.

Let let ce′ be as in proposition 14: ce with subexpres-
sions extype K.e replaced by e, subexpressions
λ[K](p1.e1	 pn.en) replaced by λ(p1.Ke1

′
	 pn.Ken

′), and
subexpressions let p = e1 in e2 replaced by λ(?K p.e2

′) e1
′ ,

6

where ?K will be determined later; ei
′ are ei with the

replacement applied recursively. Let Σu, given Σ and
τK , be Σ with additional constructors

K; ∀αγ[∃FV(τK).α=̇FV(τK) ∧ γ=̇τK].γ → εK(α), for all
K occurring in extype K in ce. Let ?K be one of
extype-bound constructors such that C, Γ, Σu ⊢ ce′: τ ′

holds for some type τ ′, or arbitrary constructors other-
wise. Note that ?K is well defined in that if the choice of
constructors is not arbitrary, then it does not depend on
the type τ ′ and derivation of C,Γ,Σu⊢ ce′: τ ′.

Let ce ′′ be ce with subexpressions extype K.e

replaced by e, subexpressions λ[K](p1.e1	 pn.en)
replaced by λ(p1.e1

′′
	 pn.en

′′), and subexpressions let p =
e1 in e2 replaced by λ(p.e2

′′) e1
′′, where ei

′′ are ei with the
replacement applied recursively. Let u(τ) be a function
that replaces subterms εK(.) by τK, for τK the same as
in Σu.

Proposition 15. Conservative Translation. Let ce, C ,Γ,
Σ, τ , τK be such that C, Γ,Σu ⊢ ce′: τ holds in the original
type system. Then there is u such that C,Γ,Σ ⊢ ce′′: u(τ)
holds in the original type system, and C,Γ,Σ⊢ ce: τ holds
in the type system extended with CstrIntro, ExCases

and ExLetIn, with applications of CstrIntro introducing

constructors K; ∀αγ[∃FV(τK).α=̇FV(τK) ∧ γ=̇τK].γ →
εK(α) for K̄#Dom(Σ), as in Σu.

4.1 Type Inference Constraints for Existential

Types

The type inference uses predicate variables to determine
the existential guard in ExCases. We introduce a syn-
tactic marker ()K

i to point to constraint for branch i of
introducing the existential type εK.

JΓ,Σ⊢ extypeK.e: τK = JΓ,Σ∪ {K; ∀αγ[χK(α, γ)].γ→ εK(α)}⊢ e: τK

where χK � PV(Γ,Σ),K � Dom(Σ)

JΓ,Σ⊢λ[K]pi.ei : τK = F when K � Dom(Σ)

JΓ,Σ⊢λ[K]pi.ei : τK = ∃α1α2.(α1→ εK(α2)=̇τ)∧
∧i(JΣ⊢ pi↓α1K∧

∀β̄i
′
.Di⇒ (∃α3

i .JΓΓi
′,Σ⊢ ei:α3

iK∧ χK(α2, α3
i))K

i)

where ∃β̄i
′[Di]Γi

′ is JΣ⊢ pi↑α1K,
α1α3

i β̄i
′#FV(Γ,Σ, τ , Di),K; ∀αγ[χK(α, γ)].γ→ εK(α)∈Σ

JΓ,Σ⊢ let p= e1 in e2: τK = ∃α0α2.(∨(εK,χK)∈EεK(α2)=̇α0)∧ JΓ,Σ⊢ e1:α0K∧
∀α3.((∨(εK,χK)∈E(εK(α2)=̇α0∧ χK(α2, α3)))⇒

(JΣ⊢ p↓α3K∧ (∀β̄ ′
.D⇒ JΓΓ′,Σ⊢ e2: τK)))

where ∃β̄ ′[D]Γ′ is JΣ⊢ p↑α3K, α0α2α3β̄
′#FV(Γ,Σ, τ),

E = {εK , χK |K; ∀αγ[χK(α, γ)].γ→ εK(α)∈Σ}

Table 6. Type inference for the added expressions

Theorem 16. Theorems 9 (Correctness) and 12 (Com-
pleteness) hold for the type system extended with
CstrIntro, ExCases and ExLetIn.

5 Deriving the Invariants

We assume that we have a complete abduction algorithm
Abd(Q, Di, Ci) for JCAQPM at our disposal (where Di

and Ci are conjunctions of atoms in L), that generates a
sequence of quantified conjunctions of atoms ∃ᾱj.Aj ⊂F

(that is, each Aj meets the solved form property). Each
answer ∃ᾱ.A ∈ Abd(Q, Di, Ci) meets the relevance con-
dition: M � ∧i(Di ∧ A ⇒ Ci), validity condition:
M � ∀ᾱQ.A, and consistency condition:
M � ∧i∀ᾱ∃(ᾱc).Di ∧ A. Completeness is understood as:
for every JCAQPM answer ∃ᾱs.As, there is ∃ᾱ.A ∈
Abd(Q, Di, Ci) and some t̄ such that M � As ⇒ A[ᾱ 6

t̄] (with variables renamed so that ᾱs#FV(A)). In prac-
tice the algorithm will fall short of completeness; for
more information consult [16].

Faced with an inference problem Φ, we solve it using
iterated abduction. Let

∃δΦ≡∃δQ.∧i (Di⇒Ci)= ∃δNF(Φ)

where Di, Ci are conjunctions of atoms, be quantifier
alternation-minimizing normalization of Φ (the variable
δ is used just to bring existentially quantified variables
to the front, if possible).

We will say that a quantifier prefix and a conjunction
of atoms Q.A are in atomized form , when there are no
properties expressed in A using universal quantification
that can also be expressed without it: if there are vari-
ables ∃ᾱ to the left of ∀β̄ in Q and atoms B ⊂ A such
that �(∃ᾱ∀β̄ .B) ≡ (∃ᾱ.C) ∧ (∀β̄ .D) for some conjunc-

tions of atoms C, D with FV(C)#β̄ , then B = B1 ∪ B2

with �(∃ᾱ∀β̄ .B) ≡ (∃ᾱ.B1) ∧ (∀β̄ .B2) and FV(B1)#β̄ .
We assume there is an algorithm AF(Q.A) that for a
conjunction of atoms returns an equivalent conjunction
of atoms but in atomized form.

For a conjunction of atoms A ∈ L, a quantifier prefix

Q, and variables ᾱ, β̄
χ
, where χ varies over X(Q), let

Split
(

Q, ᾱ, A, β̄
χ)

6 Split
(

Q, ᾱ , AF
(

Q
[

∀β̄
χ

6

∃β̄
χ]

.A
)

, β̄
χ
, ⊤̄
)

and let Split
(

Q, ᾱ , A, β̄
χ
, Aχ

0
)

be a
set generated by the following algorithm: table 7 – where
Strat(A, β̄

χ
) is computed as follows: for every c ∈A, and

for every β2∈FV(c) such that β1<Q β2 for β1∈ β̄
χ
, if β2

is universally quantified in Q, then return ⊥; otherwise,
introduce a fresh variable αf, replace c 6 c[β2 6 αf],
add β2=̇αf to Aχ

R and αf to ᾱLR
χ , after replacing all such

β2 add the resulting c to Aχ
L.

7

α≺ β ≡ α<Qβ ∨
(

α6Qβ ∧α∈ β̄
χ
∧ β � β̄

χ)

Aχ
1 =

{

c∈A
∣

∣

∣
β̄

χ
∩max

≺
(FV(c))� ∅

}

Aχ
+max =

{

c∈A
∣

∣

∣
∃β1β2⊂FV(c).c� β2=̇β1∧ β1≺ β2∧

β1∈max
≺

(β̄
χ
∩FV(c))

}

Aχ
+min = {c∈A|c∈Aχ

+max∧2Q.c}

for all Aχ
+ such that ∧χ(Aχ

+min⊂Aχ
+⊂Aχ

+max∧Aχ
+ minimal w.r.t. ⊂)∧

�Q.A \∪χ(Aχ
1 ∪Aχ

+):
if Strat(Aχ

+, β̄
χ
) returns ⊥ for some χ

then return ⊥
else ᾱ+

χ, Aχ
L, Aχ

R = Strat(Aχ
+, β̄

χ
)

Aχ = Aχ
0 ∪Aχ

1 ∪Aχ
L

A+ = ∪χAχ
R

Ares = A+∪A+(A \∪χ(Aχ
1 ∪Aχ

+))
ᾱ0

χ = ᾱ ∩FV(Aχ) \FV({c∈A|∃β ∈FV(c).β <Qβχ}) where βχ∈ β̄
χ

ᾱχ =

(

ᾱ0
χ \

⋃

χ ′<Qχ

ᾱ0
χ′

)

ᾱ+
χ

if ∪χ(ᾱχ \ β̄
χ
)� ∅

then Q′, ᾱ
+
χ ′, Ares

′ ,∃ᾱ ′χ.Aχ
′ = Split

(

Q
[

∀β̄
χ
6 ∀(β̄

χ
∪ ᾱχ)

]

, ᾱ \∪χᾱ
χ, Ares, β̄

χ
∪ ᾱχ , Aχ

)

return Q′, ᾱ+
χᾱ

+
χ ′, Ares

′ ,∃ᾱχᾱ ′χ.Aχ
′

else return ∀(ᾱ \FV(∧χAχ))Q, ᾱ
+
χ, Ares,∃ᾱ+

χ.Aχ

Table 7. Splitting abductive answer into invariants

Proposition 17. Let (Q′, ᾱ+
χ, Ares, ∃ᾱχ.Aχ) ∈ Split

(

Q,

ᾱ , A, β̄
χ)

. Then:

1. �Ares∧χAχ⇒A.

2. �A⇒∃ᾱ+
χ.Ares∧χAχ.

3. Q′.Ares.

4. If A only restricts β̄
χ
in ways that are expressible

as Q<βχ
∃β̄

χ
β̄1

χ
.ϕ for some β̄1

χ
, and

�∀ᾱQ
[

∀β̄
χ
6 ∃β̄

χ]

.A holds, then Split
(

Q, ᾱ , A,

β̄
χ)

� ∅.

Furthermore, if A=Ares
′ ∧χAχ

′ , FV(Aχ
′)#β̄χ′

for χ� χ′,

and � ∀ᾱQ.Ares
′ , then for some (Q′, ᾱ+

χ, Ares, ∃ᾱχ.Aχ)∈

Split
(

Q, ᾱ , A, β̄
χ)

, Aχ[ᾱ+
χ
6 t̄]⊂Aχ

′ for some t̄.

The potential solutions to Φ will be written as (Fres,

∃ᾱχ.Fχ), where Fres, Fχ are conjunctions of atoms,
ᾱχ #Q and χ̄ range over PV(Φ). (Fres, ∃ᾱχ.Fχ) is a
solution to the inference problem Φ when:

NF(Φ[χ(τ) 6 ∃ᾱχ.Fχ[δ6 τ]]) = Q.ΦPN, ∀α ∈ FV(Fχ):

α∈ δᾱχ∨α<Qβχ, M�Fres⇒ΦPN and M�Q.Fres.

We argue that the above notion of a solution to the
inference problem Φ captures the information that we
want to derive, while just deciding whether thre is an
interpretation I such that I � Φ provides too little infor-
mation.

Proposition 18. If a solution to the inference problem
Φ exists, then there is an interpretation of predicate vari-
ables I such that I �Φ.

Under what conditions the converse statement is true
is a theoretical issue we will not pursue.

Define: Fχ
0= ⊤̄, Ψ0=

{(

⊤, Fχ
0
)}

,

Ψk+1=
⋃

(

Fres
k ,∃ᾱχ,k.Fχ

k
)

∈Ψk

Ψ
(

Φ,∃ᾱχ,k.Fχ
k
)

where the operator Ψ
(

Φ, ∃ᾱχ,k.Fχ
k
)

is defined as fol-
lows.

Let NF
(

Φ
[

χ(τ)6 ∃ᾱχ,k.Fχ
k[β6 τ]

])

≡Qk. ∧i (Di
k ⇒

Ci
k) = Qk.ΦPN

k ∈ L. Let β̄χ,k be the variables in Qk that
correspond to the copy of ᾱχ,k variables from the
χ(βχ) 6 ∃ᾱχ,k.Fχ

k[δ 6 βχ] substitution. Now we define

Ψ: table 8. Note that ᾱj= ᾱj ∪χ ᾱj
χ.

A = Abd
(

Qk
[

∀βχβ̄
χ,k

6 ∃βχβ̄
χ,k

]

, Di
k, Ci

k
)

B =
{(

Ares
j ,∃ᾱj

χ.Aχ
j
)∣

∣

∣

∃ᾱj.Aj ∈A∧ (Q′, ᾱ+
χ, Ares, ∃ᾱχ.Aχ)∈ Split

(

Qk, ᾱj , Aj , βχβ̄
χ,k

)

}

Ψ
(

Φ, ᾱχ,k.Fχ
k
)

=
{(

Ares
j ,∃ᾱχ,kᾱj

χ.Fχ
k∧Aχ

j [βχβ̄
χ,k

6 δᾱχ,k]
)∣

∣

∣

(

Ares
j ,∃ᾱj

χ.Aχ
j
)

∈B
}

.

Table 8. Invariants inference step

5.1 Iterating the Operator

Lemma 19. Let NF(Φ[χ(τ) 6 ∃ᾱχ.Fχ[δ6 τ]]) ≡
Q.∧i (Di⇒Ci)=Q.ΦPN∈L.

Let (Fres
′ ,∃ᾱχ′.Fχ

′)∈Ψ(Φ,∃ᾱχ.Fχ). Let

Q′.ΦPN
′ = NF(Φ[χ−(βχ) 6 ∃ᾱχ′.Fχ

′ [δ6 βχ]; χ+(τ) 6

∃ᾱχ.Fχ[δ6 τ]])

8

Then M�Fres
′ ⇒ΦPN

′

and M�Q′.Fres
′ .

Theorem 20. Correctness. Let (Fres, ∃ᾱχ.Fχ) be a
potential solution to an inference problem Φ. If (Fres,

∃ᾱχ.Fχ) ∈ Ψ(Φ, ∃ᾱχ.Fχ), then M, I � Φ for I = [χ̄ 6

∃ᾱχ.Fχ].

Axiom 21. (Interpolation property for M.) We assume
that for conjunctions of atoms A and any quantifier-free
formula Φ, M � A ⇒ Φ implies that there is a conjunc-
tion of atoms B with FV(B) ⊂ FV(A) ∩ FV(Φ),
M�A⇒B and M�B⇒Φ.

Lemma 22. Let NF(Φ[χ(τ) 6 ∃ᾱχ.Fχ[β6 τ]]) =
Q.ΦPN. Let

Q∆.ΦPN
∆ = NF(Φ[χ−(βχ) 6 ∃ᾱχᾱ∆

χ .(∆χ∧Fχ)[δ6 βχ];

χ+(τ)6 ∃ᾱχ.Fχ[δ6 τ]])

for variables ᾱ∆
χ and conjunctions of atoms Dres,∆χ ∈ L

such that (1) ∀α ∈ FV(∆χ): α ∈ δᾱχᾱ∆
χ ∨ α <Q βχ,

�Dres ⇒ ΦPN
∆ , (2) �Q∆.Dres and (3) �Q

[

∀βχβ̄
χ

6

∃βχβ̄
χ
β̄∆

χ]

.Dres ∧χ ∆χ
β, where ∆χ

β = ∆χ[δᾱ
χ
ᾱ∆

χ
6

βχβ̄
χ
β̄∆

χ
] and β̄

χ
(resp. β̄

χ
β̄∆

χ
) is the renaming in Q

(resp. Q∆) of the negative occurrence of ∃ᾱχ (resp.

∃ᾱ
χ
ᾱ∆

χ). Then there is (Fres
′ , ∃ᾱχ′.Fχ

′) ∈ Ψ(Φ, ∃ᾱχ.Fχ)
such that

�Dres∧χ∆χ
β⇒S(Fres

′ ∧χ (Fχ
′ \Fχ)[δ6 βχ])

for all χ, where S is a substitution for variables ᾱχ′ .

Define
(

Fres
1 , ∃ᾱ1

χ.Fχ
1
)

6βχ

(

Fres
2 , ∃ᾱ2

χ.Fχ
2
)

as

M � Fres
1 ∧χ R(Fχ

1[δ 6 βχ]) ⇒ S(Fres
2 ∧χ Fχ

2[δ 6 βχ]), for

some substitution S of variables ᾱ2
χ and renaming R of

variables ᾱ1
χ , assuming ᾱ1

χ#ᾱ1
χ′

and ᾱ2
χ#ᾱ2

χ′

for χ� χ′.

Theorem 23. Let (Fres
s , ∃ᾱs

χ.Fχ
s) be any solution to the

inference problem Φ. There is a chain
(

Fres
k ,

∃ᾱχ,k.Fχ
k
)

∈ Ψk, with
(

Fres
k+1, ∃ᾱχ,k+1.Fχ

k+1
)

∈ Ψ(Φ,

∃ᾱχ,k.Fχ
k), such that for all k > 0, (Fres

s ,

∃ᾱs
χ.Fχ

s) 6βχ

(

Fres
k , ∃ᾱχ,k.Fχ

k
)

where βχ are the univer-

sally quantified variables in NF(Φ) occurring in negative
atoms χ(βχ).

6 Deriving the Postconditions

The typing problem for the language extended with exis-
tential-types constructs reduces to constraints similar to
those for the original type system. The additional con-
structs introduce into the constraint predicate variables
applied to existentially quantified variables in positive
occurrences, and universally quantified variables in nega-
tive occurrences, just as the predicate variables intro-
duced for recursive definitions. The difference is that for
recursive definitions, uses are associated with positive
occurrences, and introduction is associated with a nega-
tive occurrence, where for existential type, uses are asso-
ciated with negative occurrences of the predicate vari-
able, while introduction with positive occurrences.
Therefore, while for recursive definitions we employed
weakest stronger formulas, or greatest lower bounds (via
abduction), for existential types we will find strongest
weaker formulas, or least upper bounds, via disjunction
elimination . Because the weaker formulas might be too
weak, to gain completeness we will include the use sites
of existential types in the abductive process. The com-

bined solution will be computed using a two-phase
scheme: at each iteration of the operator Ψ, first existen-
tial-type predicate variables will be “bootstrapped” by
disjunction elimination, then the solution to all predicate
variables will be updated via abduction.

Solutions to the existential-type predicate variables
are found independently at each step. The intuition
behind soundness is that when the fixpoint of Ψ is
found, the lowest-upper-bound and greatest-lower-bound
conditions on respective predicate variables mean that
the resulting constraint holds. Unfortunately, with the
simplest, two-phase scheme, we potentially lose semi-
completeness: as more premises become available, solu-
tions to the existential-type predicate variables monoton-
ically increase – as they increase, parts of solutions to
recursive-definition predicate variables may become
obsolete. The loss of completeness might not matter in
practice.

6.1 Disjunction Elimination

We assume that we have a complete disjunction elimina-
tion algorithm DisjElim(Di) at our disposal (where Di

are conjunctions of atoms in L), that generates a quanti-
fied conjunction of atoms ∃ᾱ.A ∈F (that is, A meets the
solved form property), such that FV(A) ⊂ ᾱ ∪ FV(Di).
The answer ∃ᾱ.A=DisjElim(Q, Di) meets the condition
M � ∧i(Di⇒∃ᾱ.A). Completeness is understood as: For
every solution ∃ᾱr.Ar with M � ∧i(Di ⇒ ∃ᾱr.Ar),
M �A⇒∃ᾱr.Ar, where ∃ᾱ.A=DisjElim(Di), with vari-
ables renamed so that ᾱ#FV(Ar).

6.2 Solving for Predicate Variables Introduced

by Existential Types

An unpleasant thing to deal with in the constraints gen-
erated for type and invariant inference with “nominal”
existential types are disjunctions used to select the exis-
tential type for elimination (i.e. use of the existential
type): (∨(εK,χK)∈EεK(α2)=̇α0) where α0 is the type of
the expression being unpacked, and E are the existential
types available. Because the type system statically
determines which existential type is used, we assume
that the disjunction can be solved by simplification of
the constraints, and let the type inference fail with “exis-
tential type cannot be determined” otherwise.

With such disjunctions solved the constraints obtain
the normalized form NF(Φ) =Q.∧i (Di⇒Ci)∈L(χ). Let
us recall and update the definition of the operator Ψ to
handle constraints generated for type and invariant
inference with existential types:

The potential solutions to Φ will be written as (Fres,

∃ᾱχ.Fχ , ∃ᾱχK.FχK
), where Fres, Fχ , FχK

are conjunc-
tions of atoms, ᾱχᾱχK #Q and PV(Φ) = χ̄ ∪ χK , χ̄ are
recursive-definition introduced predicate variables, χK

are existential-type introduced predicate variables. (Fres,

∃ᾱχ.Fχ , ∃ᾱχK.FχK
) is a solution to the inference

problem Φ when:

NF(Φ[χ(τ) 6 ∃ᾱχ.Fχ[δ6 τ]; χK(τ , τ ′) 6

∃ᾱχK.FχK
[δ6 τ ; δ ′6 τ ′]]) =Q.ΦPN,

∀α ∈ FV(Fχ): α ∈ δᾱχ ∨ α <Q βχ, FV(FχK
) ⊂ ᾱχKδδ ′,

M�Fres⇒ΦPN and M�Q.Fres.

We will define an operator Ξ(Φ′) = ∃ᾱχK.FχK
for

PV(Φ′)⊂ χK later.

9

We define:

Fχ
0 = ⊤̄,

(

Fres
k+1, ∃ᾱχ,k+1.Fχ

k+1, ∃ᾱχK,k+1.FχK

k+1
)

∈

Ψk+1
∃ =

⋃

(

_,∃ᾱχ,k.Fχ
k ,_

)

∈Ψk
∃

Ψ∃
(

Φ,∃ᾱχ,k.Fχ
k
)

Let Φ′ = Φ
[

χ(τ)6 ∃ᾱχ,k.Fχ
k[β6 τ]

]

(so PV(Φ′) ⊂ χK)

and NF(Φ′) ≡ Qk. ∧i (Di
k ⇒ Ci

k). Let ∃ᾱχK.FχK
∈ Ξ(Φ′)

and Di
k,e, Ci

k,e = Di
k, Ci

k [χK(τ , τ ′) 6

∃ᾱχK.FχK
[δ6 τ ; δ ′6 τ ′]] where e indexes elements of

Ξ(Φ′). Let β̄χ,k be the variables in Qk that correspond
to the copy of ᾱχ,k variables from the χ(βχ) 6

∃ᾱχ,k.Fχ
k[δ 6 βχ] substitution. We define the updated

invariants inference step in table 9 – where Φ′ contains

subformulas (CK
i)K

i – the branches that introduce the
existential type K – and a subformula (CK

i)K
i is in scope

of premises whose conjunction, ignoring quantifiers,
forms DK

i .

We define Ψ∃ nearly as Ψ before:

A = Abd
(

Qk
[

∀βχβ̄
χ,k

6 ∃βχβ̄
χ,k

]

, Di
k,e, Ci

k,e
)

B =
{(

Ares
j , ∃ᾱj

χ.Aχ
j
)∣

∣

∣

∃ᾱj.Aj ∈A∧ (Q′, ᾱ+
χ, Ares,∃ᾱχ.Aχ)∈ Split

(

Qk, ᾱj , Aj , βχβ̄
χ,k

)

}

Ψk+1,e
∃ =

{(

Ares
j , ∃ᾱχ,kᾱj

χ.Fχ
k∧Aχ

j [βχβ̄
χ,k

6 δᾱχ,k]
)∣

∣

∣

(

Ares
j ,∃ᾱj

χ.Aχ
j
)

∈B
}

.

Ψ∃
(

Φ, ᾱχ,k.Fχ
k
)

=
⋃

e

{(

Ares
j , ᾱχ,k+1.Fχ

k+1, ∃ᾱχK.FχK

)∣

∣

∣

(

Ares
j , ᾱχ,k+1.Fχ

k+1
)

∈Ψk+1,e
∃

}

Now we define
Ξ(Φ′) = Ξ′(Qk, ᾱχK, FχK

)χK∈PV2(Φ′) for ∃ᾱχK.FχK
=DisjElim

(

DK
i ∧CK

i ∧ δ ′=̇α3
i
)

Ξ′(Qk, ᾱχK, FχK
) = ∃ᾱχKFV(FχK

)\{δ, δ ′}.δ=̇{α∈FV(FχK
)|α<Qkα2} ∧FχK

[α26 δ]
where α2, α3

i are as in the subformula (∃α3
i .	 ∧ χK(α2, α3

i))K
i

Table 9. Invariants and postconditions inference step

Proposition 24. Correctness. Let (Fres, ∃ᾱχ.Fχ ,

∃ᾱχK.FχK
) be a potential solution to an inference

problem Φ for the language extended with existential

types. Let Φ′ = Φ[χ(τ) 6 ∃ᾱχ.Fχ[δ6 τ]] and

∃ᾱχK.FχK
∈Ξ(Φ′). If (Fres, ∃ᾱχ.Fχ , ∃ᾱχK.FχK

)∈Ψ∃(Φ,

∃ᾱχ.Fχ), then M, I � Φ for I = [χ̄ 6 ∃ᾱχ.Fχ ; χK 6

∃ᾱχK.FχK
].

Remark 25. We do not have even the following conser-
vation of completeness-like result. Consider proposition
Conservative Translation from [17]. Let ce, ce′′, C , Γ, Σ,
τ , τK , u be as in proposition Conservative Translation ,

and let (Fres, ∃ᾱχ′.Fχ
′) ∈ Ψ(Φ, ∃ᾱχ.Fχ) for constraint Φ

generated for C, Γ, Σ ⊢ ce′′: u(τ). Then we would like

Ψ∃(Φ∃, ∃ᾱχ.Fχ) � ∅ for constraint Φ∃ generated for C,

Γ,Σ⊢ ce: τ .

Let us compare the ExCases and Clause-Abs con-
straints:

JΓ,Σ⊢λ[K]pi.ei : τK

= ∃α1α2.(α1→ εK(α2)=̇τ)∧

∧i(JΣ⊢ pi↓α1K∧

∀β̄i
′
.Di⇒ (∃α3

i .JΓΓi
′,Σ⊢ ei:α3

iK∧ χK(α2, α3
i))K

i)

where ∃β̄i
′[Di]Γi

′ is JΣ⊢ pi↑α1K,

α1α3
i β̄i

′#FV(Γ,Σ, τ ,Di),

K; ∀αγ[χK(α, γ)].γ→ εK(α)∈Σ

JΓ,Σ⊢λpi.ei : τK

= ∃α1α2.(α1→α2=̇τ)∧i

(JΣ⊢ pi↓α1K∧∀β̄i.Di⇒ JΓΓi
′,Σ⊢ ei:α2K)

where ∃β̄i[Di]Γi
′ is JΣ⊢ pi↑α1K, β̄i#FV(Γ,Σ, α2)

Because Ξ computes
DisjElim

(

DK
i ∧ JΓΓi

′,Σ⊢ ei:α3
iK∧ δ ′=̇α3

i
)

which is defined
as a strongest weaker formula, these differences between
constraints do not spoil satisfiability for Φ∃. But now
compare the ExLetIn and Abs-App constraints:

JΓ,Σ⊢ let p= e1 in e2: τK

= ∃α0α2.(∨(εK,χK)∈EεK(α2)=̇α0)∧ JΓ,Σ⊢ e1:α0K∧

∀α3.((∨(εK,χK)∈E(εK(α2)=̇α0∧ χK(α2, α3)))⇒

(JΣ⊢ p↓α3K∧ (∀β̄ ′
.D⇒ JΓΓ′,Σ⊢ e2: τK)))

where ∃β̄ ′[D]Γ′ is JΣ⊢ p↑α3K,

α0α2α3β̄
′#FV(Γ,Σ, τ),

E = {εK , χK |K; ∀αγ[χK(α, γ)].γ→ εK(α)∈Σ}

JΓ,Σ⊢λ(p.e2
′′) e1

′′: τK

= ∃α.JΓ,Σ⊢ e1
′′:αK∧

JΣ⊢ p↓αK∧∀β̄ .D⇒ JΓΓ′,Σ⊢ e2
′′: τK

where ∃β̄ [D]Γ′ is JΣ⊢ p↑τ1K, β̄#FV(Γ,Σ, τ2)

Since χK(α2, α3) stores all the information available to
reason about α3, the constraint Φ∃ can be unsatisfiable,
due to α3

i=̇τK not being implied by some DK
i ∧ JΓΓi

′,

Σ⊢ ei:α3
iK, although clearly not being contradicted by it.

To restore completeness, we need to extend Ψ∃ into
Ψ∀

∃ that infers required facts about α3. We describe Ψ∀
∃

informally. The difference with Ψ∃ is that in negative
positions χK are treated just as recursive definition
predicate variables: each occurrence of
∀α3.((εK(α2)=̇α0 ∧ χK(α2, α3)) ⇒) is translated into

∀βχK

j .
((

εK(α2)=̇α0 ∧
(

∃αχK

k .FχK

k
)

∧ χK
j
(

βχK

j
))

⇒ 	

)

.

After the solution is found, contributions from different
use sites are collapsed: ∃αχK

k+1.FχK

k+1
6

∃αχK

D .FχK

D ∧j ∃αχK
j

k+1
.F

χK
j

k+1 where ∃αχK

D .FχK

D =Ξ(Φ′). The

use of disjunction elimination ensures richer postcondi-
tions.

10

Conjecture 26. Theorem 23 extends to the case of con-
straints derived for the type system extended with
CstrIntro, ExCases and ExLetIn and the operator Ψ∀

∃.

7 Conclusions and Further Work

We have set out to develop an invariant inference frame-
work around constraint based type inference for GADTs,
utilizing a formulation parametric w.r.t. the domain of
constraints leaving open what data properties can be
expressed. For the difficult task of inference, rather than
verification, of arbitrary invariants, we have given up
decidability and principal types. Realizing that flexi-
bility of invariant inference requires abstract postcondi-
tions, we have introduced implicitly generated existential
types into the system. As in traditional invariant infer-
ence, we build the invariants by iteration, its each step
monotonically strengthens the invariants. We are able to
give completeness-like guarantees relating the derived
types and invariants to what can be expressed in the
type system, without limiting the full GADT-with-con-
straints type system in any way – on the contrary,
extending its expressivity with existential types. It has
turned out that the task of dividing the abductive
answer into invariants of arbitrarily nested recursive defi-
nitions (and possibly, requirements on postconditions), is
far from straightforward.

The first domain other than the term algebra that we
will develop for is real linear arithmetic. The remaining
foundational work is to devise disjunction elimination
algorithms, for combining domains, for the term algebra
and for linear arithmetic. Abduction algorithm for the
term algebra is provided in [7], and for the linear arith-
metic in [8], although further work driven by practical
issues might be needed. Next we will implement the
invariant inference system as described. Then, to make
the system work, we will implement heuristics locating
fixpoints regarding linear arithmetic constraints. Other-
wise the iteration of the invariant inference operator
could generate infinite progressions of uninformative
constraints, where only the limit, in a closed form, cap-
tures the semantic content we seek.

Bibliography

[1] P. Cousot and R. Cousot. Automatic synthesis of optimal
invariant assertions: mathematical foundations. SIGPLAN

Notices, 12(8):1–12, aug 1977.

[2] Fritz Henglein. Type inference with polymorphic recursion.

ACM Trans. Program. Lang. Syst., 15(2):253–289, 1993.

[3] Kenneth W. Knowles and Cormac Flanagan. Type recon-
struction for general refinement types. In ESOP , volume

4421 of Lecture Notes in Computer Science, pages 505–

519. Springer, 2007.

[4] Chuan-kai Lin. Practical type inference for the GADT type

system. PhD dissertation, Portland State University,

Department of Computer Science, 2010.

[5] Chuan-kai Lin and Tim Sheard. Pointwise generalized alge-
braic data types. In Proceedings of the 5th ACM SIGPLAN

workshop on Types in language design and implementa-

tion, TLDI ’10, pages 51–62. New York, NY, USA, 2010.
ACM.

[6] Michael Maher. Herbrand constraint abduction. In
LICS ’05: Proceedings of the 20th Annual IEEE Sympo-

sium on Logic in Computer Science, pages 397–406. Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[7] Michael Maher and Ge Huang. On computing constraint
abduction answers. In Iliano Cervesato, Helmut Veith and

Andrei Voronkov, editors, Logic for Programming, Artifi-

cial Intelligence, and Reasoning, volume 5330 of Lecture

Notes in Computer Science, pages 421–435. Springer Berlin

/ Heidelberg, 2008. 10.1007/978-3-540-89439-130.

[8] MichaelJ. Maher. Abduction of linear arithmetic con-

straints. In Maurizio Gabbrielli and Gopal Gupta, editors,
Logic Programming, volume 3668 of Lecture Notes in

Computer Science, pages 174–188. Springer Berlin Heidel-

berg, 2005.

[9] François Pottier and Yann Régis-Gianas. Stratified type
inference for generalized algebraic data types. In Conference

record of the 33rd ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, POPL ’06, pages
232–244. New York, NY, USA, 2006. ACM.

[10] Yann Regis-Gianas and Francois Pottier. A Hoare logic for
call-by-value functional programs. In Proceedings of the

Ninth International Conference on Mathematics of Pro-

gram Construction (MPC’08), volume 5133 of Lecture

Notes in Computer Science, pages 305–335. Springer, JUL

2008.

[11] Tom Schrijvers, Simon Peyton Jones, Martin Sulzmann and

Dimitrios Vytiniotis. Complete and decidable type inference
for gadts. In Proceedings of the 14th ACM SIGPLAN

international conference on Functional programming,
ICFP ’09, pages 341–352. New York, NY, USA, 2009. ACM.

[12] Vincent Simonet and Francois Pottier. A constraint-based
approach to guarded algebraic data types. ACM Transac-

tions on Programming Languages and Systems, 29(1), JAN

2007.

[13] M. Sulzmann, T. Schrijvers and P. J. Stuckey. Type infer-
ence for GADTs via Herbrand constraint abduction.

Manuscript, July 2006.

[14] Hiroshi Unno and Naoki Kobayashi. Dependent type infer-

ence with interpolants. In Proceedings of the 11th ACM

SIGPLAN conference on Principles and practice of declar-

ative programming, PPDP ’09, pages 277–288. New York,

NY, USA, 2009. ACM.

[15] Łukasz Stafiniak. Joint constraint abduction problems. The

International Workshop on Unification, 2011.

[16] Łukasz Stafiniak. Joint constraint abduction problems.

Manuscript, 2011. Available at
http://www.ii.uni.wroc.pl/~lukstafi/pubs/abduction.pdf

[17] Łukasz Stafiniak. A gadt system for invariant inference.
Manuscript, 2012. Available at

http://www.ii.uni.wroc.pl/~lukstafi/pubs/EGADTs.pdf

[18] Łukasz Stafiniak. Finding gadt invariants via abduction.

Manuscript, 2012. Available at
http://www.ii.uni.wroc.pl/~lukstafi/pubs/invariants.pdf

11

