GADTs for Invariants and Postconditions

by Łukasz Stafiniak
Institute of Computer Science
University of Wrocław

Abstract

We implemented a system that infers invariants as types of recursive definitions, and postconditions as existential types. We present a Generalized Algebraic Data Types type system MMG(X) based on Francois Pottier and Vincent Simonet's HMG (X) but without type annotations. We extend it to a language with existential types represented as implicitly defined and used GADTs. We present the type inference problem as satisfaction of second order constraints over a multi-sorted domain. The InvarGenT system solves the constraints by iterated constraint abduction and disjunction elimination. It uses a Joint Constraint Abduction under Quantifier Prefix algorithm for free terms, linear equations and inequalities over rationals, and a "plug-in" algorithm for multisorted domains. Disjunction elimination in case of free terms computes antiunification and in case of rationals computes extended convex hull.

Keywords: invariant inference, type inference, GADTs, constraint abduction

1 Introduction

Type systems are established natural deduction-style means to reason about programs. Dependent types can represent arbitrarily complex properties as they use the same language for both types and programs, the type of value returned by a function can itself be a function of the argument. Generalized Algebraic Data Types bring some of that expressivity to type systems that deal with datatypes. Type systems with GADTs introduce the ability to reason about return type by case analysis of the input value, while keeping the benefits of a simple semantics of types, for example deciding equality can be very simple. Existential types are types that hide some information conveyed in a type, usually when that information cannot be reconstructed in the type system. A part of the type will often fail to be expressible in the simple language of types, it might even depend on input to the program. GADTs express existential types by using local type variables for the hidden parts of the type encapsulated in a GADT.

Our type system for GADTs differs from all others in that we do not require any type (or invariant) annotations on expressions, even on recursive functions. Our implementation: InvarGenT, see [19], differs from type systems in mainstream functional languages also in that we include linear equations and inequalities over rational numbers in the language of types, with the possibility to introduce more domains in the future.

1.1 Demonstration

The concrete syntax of InvarGenT is similar to that of OCaml. The sort of a type variable is identified by the first letter of the variable. $a, b, c, r, s, t, a 1, \ldots$ are in the sort of terms, i.e. "types proper". $i, j, k, l, m, n, i 1, \ldots$ are in the sort of linear arithmetics over rational numbers. Type constructors and value constructors have the same syntax: capitalized name followed by a tuple of arguments. They are introduced by newtype and newcons respectively. Values assumed into the environment are introduced by external.
equal is a function comparing values provided representation of their types:

```
newtype Ty : type newtype Int newtype List : type
newcons Zero : Int newcons TInt : Ty Int
newcons Nil : \foralla. List a
newcons TPair : \foralla, b. Ty a * Ty b }\longrightarrow\mathrm{ Ty (a, b)
newcons TList : \foralla. Ty a }\longrightarrow\mathrm{ Ty (List a)
newtype Bool newcons True : Bool newcons False : Bool
external eq_int : Int }->\mathrm{ Int }->\mathrm{ Bool
external b_and : Bool }->\mathrm{ Bool }->\mathrm{ Bool
external b_not : Bool -> Bool
external forall2 : \foralla, b. (a }->\textrm{b}->\textrm{Bool})->\mathrm{ List a }->\mathrm{ List b }->\mathrm{ Bool
let rec equal = function
    | TInt, TInt -> fun x y -> eq_int x y
    | TPair (t1, t2), TPair (u1, u2) ->
        (fun (x1, x2) (y1, y2) ->
            b_and (equal (t1, u1) x1 y1)
                            (equal (t2, u2) x2 y2))
    | TList t, TList u -> forall2 (equal (t, u))
    | _ -> fun _ _ -> False
```

InvarGenT returns an unexpected type: equal: $\forall \mathrm{a}, \mathrm{b} .(\mathrm{Ty} \mathrm{a}, \mathrm{Ty} \mathrm{b}) \rightarrow \mathrm{b} \rightarrow$ $\mathrm{b} \rightarrow$ Bool, one of four maximally general types of equal. This illustrates that unrestricted type systems with GADTs lack principal typing property.

InvarGenT commits to a type of a toplevel definition before proceeding to the next one, so sometimes we need to provide more information in the program. Besides type annotations, there are two means to enrich the generated constraints: assert false syntax for providing negative constraints, and test syntax for including constraints of use cases with constraint of a definition. To ensure only one maximally general type for equal, we use both. We add the lines:

```
    | TInt, TList l -> (function Nil -> assert false)
    | TList l, TInt -> (fun _ -> function Nil -> assert false)
test b_not (equal (TInt, TList TInt) Zero Nil)
```

Actually, InvarGenT returns the expected type equal: $\forall \mathrm{a}, \mathrm{b} .(\mathrm{a}, \mathrm{b}) \rightarrow \mathrm{a} \rightarrow \mathrm{b} \rightarrow$ Bool when either the two assert false clauses or the test clause is added.

Now we demonstrate numerical invariants:

```
newtype Binary : num newtype Carry : num
newcons Zero : Binary 0
newcons PZero : }\forall\textrm{n}[0\leq\textrm{n}].\mathrm{ . Binary(n) }\longrightarrow\mathrm{ Binary(n+n)
newcons POne : }\forall\textrm{n}[0\leqn]. Binary(n) \longrightarrow Binary (n+n+1
newcons CZero : Carry 0 newcons COne : Carry 1
let rec plus =
    function CZero ->
        (function Zero -> (fun b -> b)
            | PZero a1 as a ->
                (function Zero -> a
                    | PZero b1 -> PZero (plus CZero a1 b1)
                            | POne b1 -> POne (plus CZero a1 b1))
[...truncated...]
```

 We get plus: \(\forall \mathrm{i}, \mathrm{j}, \mathrm{k}\). Carry \(\mathrm{i} \rightarrow\) Binary \(\mathrm{j} \rightarrow\) Binary \(\mathrm{k} \rightarrow\) Binary (\(\mathrm{i}+\mathrm{j}+\mathrm{k}\)).
 We can introduce existential types directly in type declarations. To have
 an existential type inferred, we have to use efunction or ematch expressions, which differ from function and match only in that the (return) type is an existential type. To use a value of an existential type, we have to bind it with a let..in expression. Otherwise, the existential type will not be unpacked. An existential type will be automatically unpacked before being "repackaged" as another existential type.

```
newtype Room newtype Yard newtype Village
newtype Castle : type newtype Place : type
newcons Room : Room \longrightarrow Castle Room
newcons Yard : Yard \longrightarrow Castle Yard
newcons CastleRoom : Room \longrightarrow Place Room
newcons CastleYard : Yard \longrightarrow Place Yard
newcons Village : Village }\longrightarrow\mathrm{ Place Village
external wander : }\forall\textrm{a}.\mathrm{ Place a }->\exists\textrm{b}\mathrm{ . Place b
let rec find_castle = efunction
    | CastleRoom x -> Room x
    | CastleYard x -> Yard x
    | Village _ as x ->
        let y = wander x in
        find_castle y
```

We get find_castle: $\forall \mathrm{a}$. Place $\mathrm{a} \rightarrow \exists \mathrm{b}$. Castle b. We end with a more practical existential type example:

```
newtype Bool newcons True : Bool newcons False : Bool
newtype List : type * num
newcons LNil : \foralla. List(a, 0)
newcons LCons : }\forall\textrm{n},\textrm{a}[0\leq\textrm{n}].\textrm{a * List(a, n) \longrightarrow List(a, n+1)
```

```
let rec filter = fun f ->
    efunction LNil -> LNil
        | LCons (x, xs) ->
        ematch f x with
            | True ->
                let ys = filter f xs in
                LCons (x, ys)
            | False ->
                filter f xs
```

 We get filter: \(\forall \mathrm{a}, \mathrm{i} .(\mathrm{a} \rightarrow \mathrm{Bool}) \rightarrow\) List \((\mathrm{a}, \mathrm{i}) \rightarrow \exists \mathrm{j}[\mathrm{j} \leq \mathrm{i}]\). List (\(\mathrm{a}, \mathrm{j})\).
 Besides displaying types of toplevel definitions, InvarGenT also exports an
 OCaml source file with all the required GADT definitions and type annotations.

1.2 Contributions

We present the type inference problem for $\operatorname{MMG}(X)$, a Milner-Mycroft style variant of the $\mathrm{HMG}(X)$ type system without subtyping, as satisfaction of second order constraints over a multi-sorted domain. We provide a minimal extension of this type system that enables inference and easy use of existential types. Although introduction and elimination of existential types is not automated by the inference process, it is seamlessly integrated into expressions. Due to space constraints, the proofs are delegated to the appendix. We demonstrate several use cases using the InvarGenT system, see [19]. This concludes contributions of this publication. Below we list contributions brought by the InvarGenT system.

We revise our early work on abduction for multi-sorted domains from [18]. Our Joint Constraint Abduction under Quantifier Prefix algorithm builds on the fully maximal SCA answers algorithm from [8], but thanks to backtracking it can find answers to joint problems that are not fully maximal answers to each implication in the joint problem. Our JCA algorithm for linear arithmetics is novel.

We define the Constraint Disjunction Elimination problem. In case of free terms it is equivalent to anti-unification and in case of linear equations and inequalities it is equivalent to finding extended convex hull. As we do for abduction, we provide a combination-of-domains algorithm for disjunction elimination.

We design and implement an algorithm solving for predicate variables of the existential second order constraints generated for our type system. Details of all algorithms can be found in [19].

1.3 Related work

In the tradition of the Milner-Mycroft type system (see [3]), we modify the $\operatorname{HMG}(X)$ type system from [15] to $\operatorname{MMG}(X)$ by dropping the type specifications on recursive definitions from program terms. We also naturally restrict it by limiting the user-specified and inferred invariant constraints to use conjunction as the only logical connective. The traditional framework for loop invariant
generation of [2] inspired the iterative aspect of our solver. While undecidability of type inference for polymorphic recursion suggests that an unbounded number of iterations might be needed, in practice abduction solves type inference for polymorphic recursion in one go. Still, with an arithmetic sort, we need 3 to 5 iterations. If a bound on the number of iterations could be derived, it would provide a proof of undecidability of constraint abduction.

Initially we were only aware of the work [4], which applies Dijkstra's weakest precondition calculus to refinement types. A work similar to ours could be done by application of the weakest precondition calculus to the Hoare logic of [12], with the conditions inserted by type inference.

The work in [17], although it is advertised as focused on dependent types, can be seen as extending [4] with reasoning by Boolean cases. Their programming language and type system is in several ways less expressive than the ML language with polymorphic recursion and the full GADTs type system: no inductive types (and therefore no pattern matching), refinement predicates over integers only instead of over arbitrary domains including types. Still, the inclusion of reasoning by cases and development of methods to actually find the refinement predicates, make [17] closer to our results.

Our algorithm eliminates implications in a way similar to [16], but using a slightly different definition of abduction. Use of abduction in [16] is related to the work in [7] and [8], where a more complete abduction algorithm is provided. Our algorithm is extensible to any constraint domain, by providing an abduction algorithm and a quantified conjunctive constraints solution algorithm. It necessarily includes the domain of equations over (free) algebraic terms.

There is a surge of recent work on type inference for GADTs, not contributing to our approach. Works such as [11] (older), [14], [6] and [5] modify the GADTs type system to make it more amenable to type inference (rejecting some reasonable programs as untypable), and develop less declarative inference algorithms. These works also do not allow other domains (than the free term algebra) to express invariants. [5] stands out from our point of view as it handles type inference for polymorphic recursion (by iteration).

Abduction algorithm for the term algebra is provided in [8], and for the linear arithmetic in [9], although further work driven by practical issues was needed.

In case of the free algebra of terms, constraint disjunction elimination reduces to anti-unification. Anti-unification was first introduced by Plotkin [10] and Reynolds [13]. [1] is a recent work on anti-unification, with an example application to invariant inference.

2 The Type System

We start by introducing notation. By the bar \bar{e} we denote a sequence (or a set, depending on context) of elements e, by \# we denote disjointness. With a free index $i, \overline{e_{i}}$ denotes $\left(e_{1}, \ldots, e_{n}\right)$ for some n associated with the index i; similarly, $\wedge_{i} \Phi_{i}$ denotes $\Phi_{1} \wedge \ldots \wedge \Phi_{n}$. For convenience, we treat a conjunction of atoms $\wedge_{i} c_{i}$ as a set of atoms $\left\{c_{1}, \ldots, c_{n}\right\}$.

In some contexts, for a quantifier prefix \mathcal{Q} we write \mathcal{Q} to denote the set of variables quantified by \mathcal{Q}. Let FV be a generic function returning the free variables of any expression. For a quantifier prefix \mathcal{Q} and variables x, y in \mathcal{Q}, by $x<_{\mathcal{Q}} y$ we denote that x is to the left of y in \mathcal{Q} and they are separated by a quantifier alternation, by $x \leqslant_{\mathcal{Q}} y$ that it is not the case that $y<_{\mathcal{Q}} x$.

By $\Phi[\bar{\alpha}:=\bar{t}], \Phi[\overline{\alpha:=t}]$, or $\Phi\left[\alpha_{1}:=t_{1} ; \ldots ; \alpha_{n}:=t_{n}\right]$, we denote a substitution of terms \bar{t} for corresponding variables $\bar{\alpha}$ in the formula Φ (where $\bar{\alpha}$ and \bar{t} are finite sequences of the same length). By $\bar{s} \doteq \bar{t}$ we denote $\wedge_{i} s_{i} \doteq t_{i}$, where $\bar{s}=\left(s_{1}, \ldots, s_{n}\right)$ and $\bar{t}=\left(t_{1}, \ldots, t_{n}\right)$ for some n. When a substitution has a name, for example $S=[\bar{\alpha}:=\bar{t}]$, we write substitution application as $S(\Phi)=\Phi[\bar{\alpha}:=\bar{t}]$; we write $\dot{S}=\bar{\alpha} \doteq \bar{t}$; and we denote the substitution S corresponding to a formula $A=\dot{S}=\bar{\alpha} \doteq \bar{t}$ by \tilde{A}. We say that a substitution $[\bar{\alpha}:=\bar{t}]$ agrees with a quantifier prefix \mathcal{Q}, when $\vDash \mathcal{Q} \cdot \bar{\alpha} \doteq \bar{t}$ and in case of $\alpha_{1} \doteq \alpha_{2} \in \bar{\alpha} \doteq \bar{t}$ for variables α_{1}, α_{2}, we have $\alpha_{2} \leqslant_{\mathcal{Q}} \alpha_{1}$.

2.1 The Language of Constraints

We are interested in a multisorted first-order language with equality \mathcal{L}, interpreted in a given model \mathcal{M}. The sort of terms or "types proper", denoted $s_{\text {ty }}$, plays a special role. In the current presentation, we will abstract from details of the language, posing the necessary properties as assumptions.

Consider a (first-order) language \mathcal{L} with a model \mathcal{M}, the language of constraints for our type inference problem. Let ρ be an interpretation of types, that is an assignment of elements of \mathcal{M} to variables in the corresponding sort, extended homomorphically to terms in the standard way. For $\Phi \in \mathcal{L}$, let $\mathcal{M}, \rho \vDash \Phi$ denote the interpretation of a formula Φ in the model \mathcal{M} under the interpretation ρ, in the standard way, for example $\mathcal{M}, \rho \vDash \pi(t)$ if and only if $\pi(\rho(t))$ holds in \mathcal{M}, where predicate symbol π in \mathcal{L} corresponds to predicate π in \mathcal{M}, etc.

Add to \mathcal{L} a set of unary predicates $\chi(\cdot)$, which stand for invariants of recursive definitions in the constraints we will derive for type inference problems. Add a set of binary predicates $\chi_{K}(\cdot, \cdot)$, which will be put as constraints of data constructors K when we introduce inferred existential types. We call χ and χ_{K} predicate variables. Let $\mathrm{PV}^{1}(\cdot)$, resp. $\mathrm{PV}^{2}(\cdot)$ be the set of unary, resp. binary predicate variables in any expression, and $\mathrm{PV}(\Phi)=\mathrm{PV}^{1}(\Phi) \cup \mathrm{PV}^{2}(\Phi)$. We define solved form formulas to be existentially quantified conjunctions of atoms $\exists \bar{\alpha} . A$ without predicate variables.

For a formula Φ, let $\bar{\chi}=\mathrm{PV}^{1}(\Phi)$, resp. $\overline{\chi K}=\mathrm{PV}^{2}(\Phi)$, and let $\overline{\chi\left(\tau_{\chi, k}\right)}$, resp. $\overline{\chi_{K}\left(\tau_{K, k}, \tau_{K, k}^{\prime}\right)}$ be all occurrences of χ, resp. χ_{K} in Φ. We call an assignment $\mathcal{I}=\bar{\chi}:=\overline{\exists \bar{\alpha}_{\chi} \cdot F_{\chi}} ; \overline{\chi_{K}}:=\overline{\exists \bar{\alpha}_{K} \cdot F_{K}}$ an interpretation of predicate variables for Φ when

1. $\exists \overline{\bar{\alpha}_{i} \cdot F_{i}} \exists \overline{\bar{\alpha}_{j} \cdot F_{j}}$ are solved form formulas,
2. $\delta \bar{\alpha}_{\chi} \# \mathrm{FV}\left(\wedge_{k} \tau_{\chi, k}\right)$ and $\delta \delta^{\prime} \bar{\alpha}_{K} \# \mathrm{FV}\left(\wedge_{k} \tau_{K, k} \wedge_{k} \tau_{K, k}^{\prime}\right)$,
3. for every variable $\beta \in \mathrm{FV}\left(F_{\chi}\right) \backslash \delta \bar{\alpha}_{\chi}$, there is a quantifier that binds β at every position of $\chi\left(\tau_{\chi, k}\right)$ in Φ,
4. $\mathrm{FV}\left(F_{K}\right) \subseteq \delta \delta^{\prime} \bar{\alpha}_{K}$.

Define a statement $\mathcal{M}, \mathcal{I}, \rho \vDash \Phi$ by: \mathcal{I} is an interpretation of predicate variables for Φ, ρ is an interpretation of types, and $\mathcal{M}, \rho \vDash \mathcal{I}(\Phi)$. Define $\mathcal{M}, \mathcal{I} \vDash \Phi$ as: for all interpretations of types $\rho, \mathcal{M}, \mathcal{I}, \rho \vDash \Phi$. Define $\mathcal{M} \vDash \Phi$ as: for all interpretations of predicate variables \mathcal{I} for $\Phi, \mathcal{M}, \mathcal{I} \vDash \Phi$. Often we write $\mathcal{I} \vDash \Phi$, resp. $\vDash \Phi$, instead of $\mathcal{M}, \mathcal{I} \vDash \Phi$, resp. $\mathcal{M} \vDash \Phi$, since the model is fixed. We write $\mathcal{I}, C \vDash \Phi$, resp. $C \vDash \Phi$, for $\mathcal{I} \vDash C \Rightarrow \Phi$, resp. $\vDash C \Rightarrow \Phi$.

We say that a formula Φ is satisfiable, if and only if there exists an interpretation of predicate variables \mathcal{I} for Φ, such that $\mathcal{I} \vDash \exists \mathrm{FV}(\Phi) . \Phi$. As seen above, we extend the notion of substitution to handle predicate variable atoms, where the replacement of each occurrence of a variable depends on the argument of that variable. For interpretations of predicate variables $\mathcal{I}_{1}, \mathcal{I}_{2}$ with disjoint domains, we write their composition $\mathcal{I}_{1} \mathcal{I}_{2}(\cdot)=\mathcal{I}_{1}\left(\mathcal{I}_{2}(\cdot)\right)$.

Above we in effect introduce a Henkin semantics for existential second order logic, tailored to our needs of invariant and postcondition inference.

2.2 The GADT Type System

By types τ we mean terms of sort $s_{\text {ty }}$. Define type schemes σ as $\forall \beta[D] . \beta$, where D is either a solved form formula $\exists \bar{\alpha} . E$ or a predicate variable $\chi(\beta)$, and β is a variable of sort $s_{\text {ty. }}$. A simple environment (or monomorphic environment) maps variables x to types τ. An environment (or polymorphic environment) maps variables x to type schemes σ. When a simple environment is appended to an environment, we identify τ and $\forall \beta[\beta \doteq \tau] . \beta$ for $\beta \notin \mathrm{FV}(\tau)$. When operations pertaining to formulas are applied to a type scheme $\forall \beta[\exists \bar{\alpha} \cdot E] . \beta$ or $\forall \beta[\chi(\beta)] . \beta$, they are performed on the formula $\exists \bar{\alpha} \cdot E$ or $\chi(\beta)$. When operations pertaining to type schemes (types) are applied to (simple) environments Γ, they are performed on the image of Γ. Define environment fragments Δ to be triples $\exists \bar{\alpha}[D]$. Γ of variables $\bar{\alpha}$, atomic conjunctions D in \mathcal{L} and simple environment Γ.

Unfortunately, our type inference algorithm does not handle disjunctive patterns. We therefore do not introduce them in our type system.

First, we present the type system in the standard, natural deduction style. The type judgement $C, \Gamma \vdash e: \tau$ or $C, \Gamma \vdash e: \sigma$ is composed of a formula C without predicate variables, an environment Γ, an expression e and a type τ or type scheme σ. Not mentioned explicitly is a set of data constructors Σ, which is fixed when typing an expression. If alternative sets of constructors are considered, we make them explicit by writing $C, \Gamma, \Sigma \vdash e: \tau$. The intended meaning of the type judgement $C, \Gamma, \Sigma \vdash e: \tau$ is: for every interpretation \mathcal{I}, ρ, if $\mathcal{I}, \rho \vDash C$, then the expression e has a ground type $\rho(\tau)$ in a ground environment $\rho(\mathcal{I}(\Gamma))$; and with constructors $\mathcal{I}(\Sigma)$ but this only becomes relevant starting from subsection 2.4. We define validity of type judgements in table 5 , where D is a conjunction of atoms.

Note that the lack of the standard type schemes $\forall \bar{\alpha}[E] . \tau$ is only for the simplicity of presentation, as they are equivalent to $\forall \beta[\exists \bar{\alpha} \cdot E \wedge \beta \doteq \tau] . \beta$.

A data constructor K for a datatype ε (recall that the sort $s_{\text {ty }}$ holds two categories of elements: datatypes and function types) has definition
$K:: \forall \bar{\alpha} \bar{\beta}[D] . \tau_{1} \times \ldots \times \tau_{n} \rightarrow \varepsilon(\bar{\alpha})$ where $\operatorname{FV}\left(D, \tau_{1}, \ldots, \tau_{n}\right) \subseteq \bar{\alpha} \bar{\beta} . D$ is a solved form formula $\exists \bar{\beta}^{\prime} . A$.

- Patterns (syntax-directed)

$$
\begin{array}{ll}
\text { p-Empty } & \text { p-Wild } \\
C \vdash 0: \tau \longrightarrow \exists \varnothing[\boldsymbol{F}]\{ \} & C \vdash 1: \tau \longrightarrow \exists \varnothing[\boldsymbol{T}]\{ \} \\
& \\
\begin{array}{ll}
\text { p-And } & \text { p-Var } \\
\frac{\forall i \quad, ~}{C \vdash p_{1} \wedge p_{2}: \tau \rightarrow p_{i}: \tau \longrightarrow \Delta_{i} \times \Delta_{2}} & C \vdash x: \tau \longrightarrow \exists \varnothing[\boldsymbol{T}]\{x \mapsto \tau\} \\
\text { p-Cstr } & \\
\frac{\forall i C \wedge D \vdash p_{i}: \tau_{i} \longrightarrow \Delta_{i}}{} K:: \forall \bar{\alpha} \bar{\beta}[D] \cdot \tau_{1} \times \ldots \times \tau_{n} \rightarrow \varepsilon(\bar{\alpha}) \quad \bar{\beta} \# \mathrm{FV}(C) \\
C \vdash K p_{1} \ldots p_{n}: \varepsilon(\bar{\alpha}) \longrightarrow \exists \bar{\beta}[D]\left(\Delta_{1} \times \ldots \times \Delta_{n}\right)
\end{array}
\end{array}
$$

- Patterns (non-syntax-directed)

p-EqIn	p-SubOut	p-Hide
$\begin{aligned} & C \vdash p: \tau^{\prime} \longrightarrow \Delta \\ & C \vDash \tau=\tau^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & C \vdash p: \tau \longrightarrow \Delta^{\prime} \\ & C \vDash \Delta^{\prime} \leqslant \Delta \end{aligned}$	$\begin{aligned} & C \vdash p: \tau \longrightarrow \Delta \\ & \bar{\alpha} \# \mathrm{FV}(\tau, \Delta) \end{aligned}$
$C \vdash p: \tau \longrightarrow \Delta$	$C \vdash p: \tau \longrightarrow \Delta$	$\overline{\exists \bar{\alpha} . C \vdash p: \tau \longrightarrow \Delta}$

- Expressions (syntax-directed)

Var
$\frac{\Gamma(x)=\forall \beta[\exists \bar{\alpha} \cdot D] \cdot \beta \quad C \vDash D}{C, \Gamma \vdash x: \beta}$

Cstr
LetIn
$\forall i C, \Gamma \vdash e_{i}: \tau_{i} \quad C \vDash D$ $\frac{K:: \forall \bar{\alpha} \bar{\beta}[D] . \tau_{1} \ldots \tau_{n} \rightarrow \varepsilon(\bar{\alpha})}{C, \Gamma \vdash K e_{1} \ldots e_{n}: \varepsilon(\bar{\alpha})} \quad \frac{C, \Gamma \vdash \lambda\left(p . e_{2}\right) e_{1}: \tau}{C, \Gamma \vdash \operatorname{let} p=e_{1} \operatorname{in} e_{2}: \tau}$

App

LetRec

$\frac{\begin{array}{l}C, \Gamma \vdash e_{1}: \tau^{\prime} \rightarrow \tau \\ C, \Gamma \vdash e_{2}: \tau^{\prime}\end{array}}{C, \Gamma \vdash e_{1} e_{2}: \tau}$

$$
C, \Gamma^{\prime} \vdash e_{1}: \sigma \quad C, \Gamma^{\prime} \vdash e_{2}: \tau
$$

$$
\frac{\sigma=\forall \beta[\exists \bar{\alpha} . D] . \beta \quad \Gamma^{\prime}=\Gamma\{x \mapsto \sigma\}}{C, \Gamma \vdash \text { letrec } x=e_{1} \operatorname{in} e_{2}: \tau}
$$

$$
\frac{\forall i C, \Gamma \vdash c_{i}: \tau_{1} \rightarrow \tau_{2}}{C, \Gamma \vdash \lambda\left(c_{1} \ldots c_{n}\right): \tau_{1} \rightarrow \tau_{2}}
$$

- Expressions (non-syntax-directed)

Gen	Inst	DisjElim
$\begin{aligned} & C \wedge D, \Gamma \vdash e: \beta \\ & \beta \bar{\alpha} \# \mathrm{FV}(\Gamma, C) \end{aligned}$	$\begin{aligned} & C, \Gamma \vdash e: \forall \bar{\alpha}[D] \cdot \tau^{\prime} \\ & C \vDash D[\bar{\alpha}:=\bar{\tau}] \end{aligned}$	$C, \Gamma \vdash e: \tau \quad D, \Gamma \vdash e: \tau$
$\overline{C \wedge \exists \beta \bar{\alpha} \cdot D, \Gamma \vdash e: \forall \beta[\exists \bar{\alpha} \cdot D] . \beta}$	$\overline{C, \Gamma \vdash e: \tau^{\prime}[\bar{\alpha}:=\bar{\tau}]}$	$C \vee D, \Gamma \vdash e: \tau$
Hide	Equ	FElim
$C, \Gamma \vdash e: \tau$	$C, \Gamma \vdash e: \tau$	
$\bar{\alpha} \# \mathrm{FV}(\Gamma, \tau)$	$C \vDash \tau \doteq \tau^{\prime}$	
$\overline{\exists \bar{\alpha} . C, \Gamma \vdash e: \tau}$	$\overline{C, \Gamma \vdash e: \tau^{\prime}}$	$\overline{\boldsymbol{F}, \Gamma \vdash e: \tau}$

- Clauses

Clause

$\frac{C \vdash p: \tau_{1} \longrightarrow \exists \bar{\beta}[D] \Gamma^{\prime} \quad C \wedge D, \Gamma \Gamma^{\prime} \vdash e: \tau_{2} \bar{\beta} \# \mathrm{FV}\left(C, \Gamma, \tau_{2}\right)}{C, \Gamma \vdash p . e: \tau_{1} \rightarrow \tau_{2}}$
Table 1. Typing rules

At this point the construction LetIn is a syntactic sugar for single branch patterns - if polymorphic let is needed, use LetRec. Note that DisjElim is unrelated to Constraint Disjunction Elimination we introduce in a later section.

An expression e is well typed given Γ, Σ when $\operatorname{PV}(\Gamma, \Sigma)=\varnothing$ and $C, \Gamma, \Sigma \vdash e: \sigma$ holds for some satisfiable constraint C. For simplicity, InvarGenT only admits type and invariant annotations from the user on toplevel definitions. Toplevel definitions in InvarGenT can be seen as a nesting of subsequent LetRec and Let In constructions in the scope of previous definitions, with the restriction that the body of each definition is a well typed expression given Γ, Σ with $\mathrm{FV}(\Gamma)=\varnothing$.

Now, we present type judgements declaratively by reducing them to constraints. For $\bar{c}=\overline{p_{i} \cdot e_{i}}, \llbracket \Gamma \vdash \bar{c}: \tau_{1} \rightarrow \tau_{2} \rrbracket:=\wedge_{i} \llbracket \Gamma \vdash p_{i} \cdot e_{i}: \tau_{1} \rightarrow \tau_{2} \rrbracket$. (The presentation is a little bit heavy due to explicit capture-avoidance conditions.)

$$
\begin{aligned}
&- \text { Patterns (constraint generation) } \\
& \llbracket \vdash 0 \downarrow \tau \rrbracket= \boldsymbol{T} \\
& \llbracket \vdash 1 \downarrow \tau \rrbracket= \boldsymbol{T} \\
& \llbracket \vdash x \downarrow \tau \rrbracket= \boldsymbol{T} \\
& \llbracket \vdash p_{1} \wedge p_{2} \downarrow \tau \rrbracket= \llbracket \vdash p_{1} \downarrow \tau \rrbracket \wedge \llbracket \vdash p_{2} \downarrow \tau \rrbracket \\
& \llbracket \vdash K p_{1} \ldots p_{n} \downarrow \tau \rrbracket= \exists \bar{\alpha}^{\prime} \cdot\left(\varepsilon\left(\bar{\alpha}^{\prime}\right) \doteq \tau \wedge\right. \\
&\left.\forall \bar{\beta}^{\prime} \cdot D\left[\bar{\alpha} \bar{\beta}:=\bar{\alpha}^{\prime} \bar{\beta}^{\prime}\right] \Rightarrow \wedge_{i} \llbracket p_{i} \downarrow \tau_{i}\left[\bar{\alpha} \bar{\beta}:=\bar{\alpha}^{\prime} \bar{\beta}^{\prime}\right] \rrbracket\right) \\
& \text { where } K:: \forall \forall \bar{\alpha} \bar{\beta}[D] \cdot \tau_{1} \times \ldots \times \tau_{n} \rightarrow \varepsilon(\bar{\alpha}), \\
& \bar{\alpha}^{\prime} \bar{\beta}^{\prime} \# \mathrm{FV}(\Sigma, \tau) \\
&- \text { Patterns (environment fragment generation) } \\
& \llbracket \vdash 0 \uparrow \tau \rrbracket= \exists \varnothing[\boldsymbol{F}]\} \\
& \llbracket \vdash 1 \uparrow \tau \rrbracket=\exists \varnothing[\boldsymbol{T}]\}\} \\
& \llbracket \vdash x \uparrow \tau \rrbracket= \exists \varnothing[\boldsymbol{T}]\{x \mapsto \tau\} \\
& \llbracket \vdash p_{1} \wedge p_{2} \uparrow \tau \rrbracket= \llbracket \vdash p_{1} \uparrow \tau \rrbracket \times \llbracket \vdash p_{2} \uparrow \tau \rrbracket \\
& \llbracket \vdash K p_{1} \ldots p_{n} \uparrow \tau \rrbracket= \exists \bar{\alpha}^{\prime} \bar{\beta}^{\prime}\left[\varepsilon\left(\bar{\alpha}^{\prime}\right) \doteq \tau \wedge D\left[\bar{\alpha} \bar{\beta}:=\bar{\alpha}^{\prime} \bar{\beta}^{\prime}\right]\right] \\
& \quad\left(\times_{i} \llbracket p_{i} \uparrow \tau_{i}\left[\bar{\alpha} \bar{\beta}:=\bar{\alpha}^{\prime} \bar{\beta}^{\prime}\right] \rrbracket\right) \\
& \text { where } K:: \forall \bar{\alpha}^{\prime} \bar{\beta}[D] \cdot \tau_{1} \times \ldots \times \tau_{n} \rightarrow \varepsilon(\bar{\alpha}), \\
& \bar{\alpha}^{\prime} \bar{\beta}^{\prime} \# \mathrm{FV}(\Sigma, \tau)
\end{aligned}
$$

Table 2. Type inference for patterns

$$
\begin{aligned}
& \llbracket \Gamma \vdash x: \tau \rrbracket=\boldsymbol{F} \text { when } x \notin \operatorname{Dom}(\Gamma) \\
& \llbracket \Gamma \vdash x: \tau \rrbracket=\exists \beta^{\prime} \bar{\alpha}^{\prime} . D\left[\beta \bar{\alpha}:=\beta^{\prime} \bar{\alpha}^{\prime}\right] \wedge \beta^{\prime} \doteq \tau \\
& \text { where } \Gamma(x)=\forall \beta[\exists \bar{\alpha} . D] . \beta, \beta^{\prime} \bar{\alpha}^{\prime} \# \mathrm{FV}(\Gamma, \tau) \\
& \llbracket \Gamma \vdash \lambda \bar{c}: \tau \rrbracket=\exists \alpha_{1} \alpha_{2} . \llbracket \Gamma \vdash \bar{c}: \alpha_{1} \rightarrow \alpha_{2} \rrbracket \wedge \alpha_{1} \rightarrow \alpha_{2} \doteq \tau, \\
& \alpha_{1} \alpha_{2} \# \mathrm{FV}(\Gamma, \tau) \\
& \llbracket \Gamma \vdash e_{1} e_{2}: \tau \rrbracket=\exists \alpha . \llbracket \Gamma \vdash e_{1}: \alpha \rightarrow \tau \rrbracket \wedge \llbracket \Gamma \vdash e_{2}: \alpha \rrbracket, \alpha \# \mathrm{FV}(\Gamma, \tau) \\
& \llbracket \Gamma \vdash K e_{1} \ldots e_{n}: \tau \rrbracket=\exists \bar{\alpha}^{\prime} \bar{\beta}^{\prime} .\left(\wedge_{i} \llbracket \Gamma \vdash e_{i}: \tau_{i}\left[\bar{\alpha} \bar{\beta}:=\bar{\alpha}^{\prime} \bar{\beta}^{\prime}\right] \rrbracket \wedge\right. \\
& \left.D\left[\bar{\alpha} \bar{\beta}:=\bar{\alpha}^{\prime} \bar{\beta}^{\prime}\right] \wedge \varepsilon\left(\bar{\alpha}^{\prime}\right) \doteq \tau\right) \\
& \text { where } \Sigma \ni K:: \forall \bar{\alpha} \bar{\beta}[D] . \tau_{1} \times \ldots \times \tau_{n} \rightarrow \varepsilon(\bar{\alpha}) \text {, } \\
& \bar{\alpha}^{\prime} \bar{\beta}^{\prime} \# \mathrm{FV}(\Gamma, \tau) \\
& \begin{aligned}
\llbracket \Gamma \vdash \text { letrec } x=e_{1} \text { in } e_{2}: \tau \rrbracket= & (\forall \beta(\chi(\beta) \Rightarrow \\
& \left.\left.(\exists \alpha \cdot \chi(\alpha)) \wedge \llbracket \Gamma\{x \mapsto \forall \beta[\chi(\beta)] . \beta\} \vdash e_{1}: \beta \rrbracket\right)\right) \wedge
\end{aligned} \\
& \text { where } \beta \# \mathrm{FV}(\Gamma, \tau), \chi \# \mathrm{PV}(\Gamma) \\
& \llbracket \Gamma \vdash p . e: \tau_{1} \rightarrow \tau_{2} \rrbracket=\llbracket \vdash p \downarrow \tau_{1} \rrbracket \wedge \forall \bar{\beta} \cdot D \Rightarrow \llbracket \Gamma \Gamma^{\prime} \vdash e: \tau_{2} \rrbracket \\
& \text { where } \exists \bar{\beta}[D] \Gamma^{\prime} \text { is } \llbracket \vdash p \uparrow \tau_{1} \rrbracket, \bar{\beta} \# \mathrm{FV}\left(\Gamma, \tau_{2}\right) \\
& \llbracket \Gamma \vdash \mathrm{ce}: \forall \bar{\alpha}[D] . \tau \rrbracket=\forall \bar{\alpha}^{\prime} . D\left[\bar{\alpha}:=\bar{\alpha}^{\prime}\right] \Rightarrow \llbracket \Gamma \vdash \mathrm{ce}: \tau\left[\bar{\alpha}:=\bar{\alpha}^{\prime}\right] \rrbracket, \\
& \bar{\alpha}^{\prime} \# \mathrm{FV}(\Gamma)
\end{aligned}
$$

Table 3. Type inference for expressions and clauses

The two presentations are equivalent, in the sense of theorems correctness and completeness below.

Theorem 1. Correctness (expressions). $\llbracket \Gamma \vdash \mathrm{ce}: \tau \rrbracket, \Gamma \vdash \mathrm{ce}: \tau$.

Theorem 2. Completeness (expressions). If $\mathrm{PV}(C, \Gamma)=\varnothing$ and $C, \Gamma \vdash \mathrm{ce}: \tau$, then there exists an interpretation of predicate variables \mathcal{I} such that $\mathcal{I}, C \vDash \llbracket \Gamma \vdash \mathrm{ce}: \tau \rrbracket$.

Corollary 3. If $C, \Gamma \vdash \mathrm{ce}: \forall \bar{\alpha}[D] . \tau$ and $\bar{\alpha} \# \mathrm{FV}(\Gamma)$, then there is an interpretation \mathcal{I} such that $\mathcal{I}, C \vDash \forall \bar{\alpha} . D \Rightarrow \llbracket \Gamma \vdash \mathrm{ce}: \tau \rrbracket$.

2.3 Example: eval

Consider a short example function eval:

```
newtype Term : type newtype Int newtype Bool
external plus : Int }->\mathrm{ Int }->\mathrm{ Int
external is_zero : Int }->\mathrm{ Bool
external if : \foralla. Bool }->\textrm{a}->\textrm{a}->\textrm{a
newcons Lit : Int }\longrightarrow\mathrm{ Term Int
newcons Plus : Term Int * Term Int }\longrightarrow\mathrm{ Term Int
newcons IsZero : Term Int }\longrightarrow\mathrm{ Term Bool
newcons If : \foralla. Term Bool * Term a * Term a }\longrightarrow\mathrm{ Term a
let rec eval = function
    | Lit i -> i
    | IsZero x -> is_zero (eval x)
    | Plus (x, y) -> plus (eval x) (eval y)
    | If (b, t, e) -> if (eval b) (eval t) (eval e)
```

Constraint, with indentation showing scope of implication conclusions:

```
t1.\chi1(t1) \Longrightarrow
    \existst3, t4. t3 -> t4 = t1 ^ \existst5. Term t5 = t3 ^
    t6. Term t6 = t3 ^ Int = t6 \Longrightarrow ヨ. Int = t4 ^
    \existst7. Term t7 = t3 ^
    t8. Term t8 = t3 ^ Bool = t8 \Longrightarrow
        \existst9. Int }->\mathrm{ Bool = t9 }->\textrm{t}4
        \existst10. \existst11. t11 = t10 -> t9 ^ \chi1(t11) ^ Term Int = t10 ^
    \existst12. (Term t12) = t3 ^
    \forallt13. Term t13 = t3 ^ Int = t13 \Longrightarrow
```

```
    \existst14. \existst17. Int }->\mathrm{ Int }->\mathrm{ Int = t17 }->\textrm{t}14 -> t4 
    \existst18. \existst19. t19 = t18 -> t17 ^ \chi1(t19) ^ Term Int = t18 ^
    \existst15. \existst16. t16 = t15 -> t14 ^ \chi1(t16) ^ Term Int = t15 ^
    \existst20. Term t20 = t3 ^
    \forallt21. Term t21 = t3 \Longrightarrow
    \existst22. \existst25. \existst28.
    \existst31. Bool }->\textrm{t}31->\textrm{t}31->\textrm{t}31=\textrm{t}28->\textrm{t}25->\textrm{t}22->\textrm{t}4
    \existst29. \existst30. t30 = t29 -> t28 ^ \chi1(t30) ^ Term Bool = t29 ^
    \existst26. \existst27. t27 = t26 -> t25 ^ \chi1(t27) ^ Term t21 = t26 ^
    \existst23. \existst24. t24 = t23 -> t22 ^ \chi1(t24) ^ Term t21 = t23 ^
\existst2. \chi1(t2)
```

Normalized and simplified constraint, schematically $\mathcal{Q} . \wedge_{i}\left(D_{i} \Longrightarrow C_{i}\right)$:

```
1| \chi1(t2)
2| \chi1(t1) \Longrightarrow t3 = Term t5 ^ t1 = Term t5 -> t4
3| (Term t21) = t3 ^ \chi1(t1) \Longrightarrow t24 = Term t21 -> t4 ^
    t27 = (Term t21 -> t4) ^ t30 = Term Bool }->\mathrm{ Bool }\wedge \chi1(t30) ^
    \chi1(t27) ^ \chi1(t24)
4| Term t6 = t3 ^ Int = t6 ^ \chi1(t1) \Longrightarrow t4 = Int
5| Term t8 = t3 ^ Bool = t8 ^ \chi1(t1) \Longrightarrow t11 = Term Int }->\mathrm{ Int }
    t4 = Bool ^ \chi1(t11)
6| Term t13 = t3 ^ Int = t13 ^ \chi1(t1) \Longrightarrow t16 = Term Int }->\mathrm{ Int
    t19 = Term Int }->\mathrm{ Int }\wedge t4 = Int ^ \chi1(t19) ^ \chi1(t16
```

Quantifier structure is preserved separately. Implication branch 1 (with empty premise) makes sure that the invariant for eval is satisfiable. Branch 2 records that the argument of eval is a Term. Branch 3 covers the recursive calls in if, ensuring that Term Bool \rightarrow Bool satisfies the invariant. Branch 4 says that the result for input Lit i is of type Int. Branch 5 is derived for the case computing is_zero (eval x) given input IsZero x, and branch 6 for computing plus.

2.4 Existential Types

In context of GADTs, existential types play a prominent role, beyond the traditional role of abstraction in software engineering. Without existential types, computations would need to express parameters of the output datatype invariant as a function of parameters of the input datatype invariant. Since GADTs are introduced to curtail the expressivity of types compared to full dependent type systems, opportunities for such functional dependency are rare by design. We
need the capacity in the type system to express whatever relations it can of the resulting datatype parameters to the input datatype parameters. Traditionally in GADTs we package the result into a custom datatype. This is tedious and contrary to the benefits of type inference. We automate this process, in effect introducing inferred existential types to our type system. Since the modification of the type system is minimal, formal guarantees carry over to it and it will be familiar to users of GADTs.

Existential quantifiers in argument positions of function types are redundant: they can be lifted to be traditional, polymorphic variables constrained by the invariant of the function. We prohibit the use of inferred existential types in argument positions: it could only result from a mistake.

We introduce a new expression construct $\lambda[K] \bar{c}$, where K is a value constructor, but is not available in concrete syntax, and \bar{c} are pattern matching clauses. In the implementation, the parser introduces a fresh K and forms $\lambda[K] \bar{c}$ for efunction $\bar{c} . \lambda[K] \bar{c}$ is eliminated by a normalization step. We also introduce a rule ExLet In to the type system, responsible for elimination of existential types. When $K:: \forall \bar{\alpha} \bar{\beta} \gamma[E] . \gamma \rightarrow \varepsilon_{K}(\bar{\alpha}) \in \Sigma$ is such a data constructor absent from concrete syntax, the pretty-printer for types prints $\varepsilon_{K}(\bar{\tau})$ as $(\exists \bar{\beta} \gamma[E[\bar{\alpha}:=\bar{\tau}]] . \gamma)$, or $\left(\exists \bar{\beta}[E[\bar{\alpha}:=\bar{\tau}]] . \tau_{e}\right)$ when $\gamma \doteq \tau_{e} \in E$.

Let $l(e)$ defined in table 4 determine whether an expression introduces or eliminates an existential type.

$$
\begin{aligned}
l(x) & =\boldsymbol{F} \\
l(\lambda \bar{c}) & =\boldsymbol{F} \\
l\left(e_{1} e_{2}\right) & =l\left(e_{1}\right) \\
l\left(K e_{1} \ldots e_{n}\right) & =\boldsymbol{F} \\
\left.l=e_{1} \mathbf{i n} e_{2}\right) & =l\left(e_{2}\right) \\
l\left(\lambda[K] \overline{p_{i} \cdot e_{i}}\right) & =\boldsymbol{T} \\
l\left(\text { letrec } p=e_{1} \text { in } e_{2}\right) & =\boldsymbol{T}
\end{aligned}
$$

Table 4. Does the expression introduce or eliminate an existential type?
Let all occurrences of $\lambda[K]$ in e use distinct K. Let $n(e):=n(e, \perp)$, defined in table 5 , flatten nested introductions of existential types. Let $\mathcal{E}(e):=\mathcal{E}(e, \boldsymbol{F})$, defined in table 6 , collect value constructors introduced for existential types.

$$
\begin{aligned}
& n\left(e, K^{\prime}\right)=\operatorname{let} x=n(e, \perp) \text { in } K^{\prime} x \\
& \text { when } K^{\prime} \neq \perp \wedge l(e)=\boldsymbol{F} \\
& n(x, \perp)=x \\
& n(\lambda \bar{c}, \perp)=\lambda(\overline{n(c, \perp)}) \\
& n\left(e_{1} e_{2}, K^{\prime}\right)=n\left(e_{1}, K^{\prime}\right) n\left(e_{2}, \perp\right) \\
& n\left(K e_{1} \ldots e_{n}, \perp\right)=K n\left(e_{1}, \perp\right) \ldots n\left(e_{n}, \perp\right) \\
& n\left(p . e, K^{\prime}\right)=\operatorname{letrec} x=n\left(e_{1}, \perp\right) \text { in } n\left(e_{2}, K^{\prime}\right) \\
& n(\lambda[K] \bar{c}, \perp)=\lambda\left(e, K^{\prime}\right) \\
& n\left(\lambda[K] \bar{c}, K^{\prime}\right)=\lambda(\overline{n(c, K)}) \\
&\text { when } \left.\left.K^{\prime} \neq \perp, K^{\prime}\right)\right) \\
& n\left(\text { letrec } p=e_{1} \text { in } e_{2}, K^{\prime}\right)=\text { let } p=n\left(e_{1}, \perp\right) \operatorname{in} n\left(e_{2}, K^{\prime}\right)
\end{aligned}
$$

Table 5. Flatten nested introductions of existential types

$$
\begin{aligned}
& \mathcal{E}(x, v)=\varnothing \\
& \mathcal{E}(\lambda \bar{c}, v)=\cup \overline{\mathcal{E}(c, \boldsymbol{F})} \\
& \mathcal{E}\left(e_{1} e_{2}, v\right)=\mathcal{E}\left(e_{1}, v\right) \cup \mathcal{E}\left(e_{2}, \boldsymbol{F}\right) \\
& \mathcal{E}\left(K e_{1} \ldots e_{n}, v\right)=\cup_{i} \mathcal{E}\left(e_{i}, \boldsymbol{F}\right) \\
& \mathcal{E}\left(\text { letrec } x=e_{1} \text { in } e_{2}, v\right)=\mathcal{E}\left(e_{1}, \boldsymbol{F}\right) \cup \mathcal{E}\left(e_{2}, v\right) \\
& \mathcal{E}(p . e, v)=\mathcal{E}(e, v) \overline{\mathcal{E}(\lambda[K] \bar{c}, \boldsymbol{F})} \\
& \mathcal{E}(\lambda[K] \bar{c}, \boldsymbol{T})=\cup \mathcal{E}\} \cup \mathcal{E}(c, \boldsymbol{T}) \\
& \mathcal{E}\left(\text { let } p=e_{1} \mathbf{i n}\right) \\
&\left.\mathbf{e}_{2}, v\right)=\mathcal{E}\left(e_{1}, \boldsymbol{F}\right) \cup \mathcal{E}\left(e_{2}, v\right)
\end{aligned}
$$

Table 6. Collect introduced value constructors

We put the normalization step into the type system as rule ExIntro. W.l.o.g. ExIntro can be used once at the beginning of derivation. We add rule ExLetIn. Although LetIn and ExLetIn resemble "syntactic sugar", their application is non-deterministic. We include value constructor environment in judgements to faciliate the completeness proof. Me modify the rule App to exclude existential types from function positions. We achieve that by introducing a new atomic predicate $\notin \in$ to the sort of terms, i.e. $\notin(\tau) \equiv \wedge_{K} \neg \exists \bar{\alpha} . \tau \doteq \varepsilon_{K}(\bar{\alpha})$.
App
$\begin{aligned} & C, \Gamma, \Sigma \vdash e_{1}: \tau^{\prime} \rightarrow \tau \\ & C, \Gamma, \Sigma \vdash e_{2}: \tau^{\prime} \quad C \vDash \notin\left(\tau^{\prime}\right) \\ & C, \Gamma, \Sigma \vdash e_{1} e_{2}: \tau\end{aligned}$

ExLetIn
$\varepsilon_{K}(\bar{\alpha})$ in $\Sigma \quad C, \Gamma, \Sigma \vdash e_{1}: \tau^{\prime}$
$C, \Gamma, \Sigma \vdash K p . e_{2}: \tau^{\prime} \rightarrow \tau$

ExIntro
$\operatorname{Dom}\left(\Sigma^{\prime}\right) \backslash \operatorname{Dom}(\Sigma)=\mathcal{E}(e)$
$C, \Gamma, \Sigma^{\prime} \vdash n(e): \tau$

Table 7. Added typing rules

Definition 4. Let $\Sigma=\Sigma_{0} \cup \Sigma_{e}$ and $\Sigma^{\prime}=\Sigma_{0} \cup \Sigma_{e}^{\prime}$ be sets of value constructors related to each other as follows:

$$
\begin{aligned}
& -\mathrm{PV}^{2}\left(\Sigma_{0}\right)=\varnothing \\
& -\Sigma_{e}=\overline{K:: \forall \alpha_{K} \gamma_{K}\left[\chi_{K}\left(\gamma_{K}, \alpha_{K}\right)\right] \cdot \gamma_{K} \rightarrow \varepsilon_{K}\left(\alpha_{K}\right)}, \\
& - \text { and } \Sigma_{e}^{\prime}=\overline{K:: \forall \bar{\alpha}_{K}^{\prime} \bar{\beta}_{K}^{\prime} \gamma_{K}\left[E_{K}\right] \cdot \gamma_{K} \rightarrow \varepsilon_{K}\left(\bar{\alpha}_{K}^{\prime}\right)}
\end{aligned}
$$

where $\exists \bar{\alpha}_{K}^{\prime} \bar{\beta}_{K}^{\prime} \gamma_{K} . E_{K}$ are solved form formulas. Define $\Sigma^{\prime} / \Sigma=\mathcal{I}_{e}=[\overline{\chi K}:=$ $\left.\overline{\exists \bar{\alpha}_{K} \cdot F_{K}}\right]$ be $F_{K}=E_{K} \wedge \alpha_{K} \doteq \overrightarrow{\alpha_{K}^{\prime}}{ }^{\prime}$ and $\bar{\alpha}_{K}=\bar{\alpha}_{K}^{\prime} \bar{\beta}_{K}^{\prime}$.

Note that by proposition 8 , we do not lose generality by using single-argument datatypes $\varepsilon_{K}(\alpha)$ rather than the general form $\varepsilon_{K}(\bar{\alpha})$.

Normalization defined in table 5 is responsible for introduction of existential types, but it also ensures that inferred existential types never directly contain other existential types. This flattening of existential types has no downsides, and enables the use of all information available to derive the postcondition, i.e. the existential type. To flatten nested existential types, we rename constructors K to K^{\prime} in $n\left(\lambda[K] \bar{c}, K^{\prime}\right)$, and eliminate potential existential type before introducing one in $n\left(e, K^{\prime}\right)$ when $K^{\prime} \neq \perp \wedge l(e)=\boldsymbol{F}$.

2.5 Type Inference Constraints for Existential Types

The type inference uses predicate variables to determine the existential condition. For the non-recursive call to $\llbracket \cdot \rrbracket$, we normalize the expression. We shorten $\llbracket \Gamma, \Sigma \vdash: \tau \tau$ to $\llbracket \Gamma \vdash \cdot: \tau \rrbracket$.

$$
\begin{aligned}
& \llbracket \Gamma \vdash e_{1} e_{2}: \tau \rrbracket= \exists \alpha \cdot \llbracket \Gamma \vdash e_{1}: \alpha \rightarrow \tau \rrbracket \wedge \llbracket \Gamma \vdash e_{2}: \alpha \rrbracket \wedge \notin(\alpha), \alpha \# \mathrm{FV}(\Gamma, \tau) \\
& \llbracket \Gamma, \Sigma_{0} \vdash e: \tau \rrbracket= \llbracket \Gamma, \Sigma \vdash n(e): \tau \rrbracket \\
& \text { when } \mathcal{E}(e) \neq \varnothing \text { where } \Sigma= \\
& \Sigma_{0} \bar{K}:: \forall \alpha_{K} \gamma_{K}\left[\chi_{K}\left(\gamma_{K}, \alpha_{K}\right)\right] \cdot \gamma_{K} \rightarrow \varepsilon_{K}\left(\alpha_{K}\right) \\
& K \in \mathcal{E}(e) \\
& \llbracket \Gamma \vdash \text { let } p=e_{1} \text { in } e_{2}: \tau \rrbracket= \exists \alpha_{0} \cdot \llbracket \Gamma \vdash e_{1}: \alpha_{0} \rrbracket \wedge \\
&\left(\llbracket \Gamma \vdash p \cdot e_{2}: \alpha_{0} \rightarrow \tau \rrbracket \wedge \notin\left(\alpha_{0}\right) \vee_{\mathcal{E}} \llbracket \Gamma \vdash K p . e_{2}: \alpha_{0} \rightarrow \tau \rrbracket\right) \\
& \text { where } \mathcal{E}=\left\{K \mid K:: \forall \bar{\alpha} \bar{\beta}[E] \cdot \tau \rightarrow \varepsilon_{K}(\bar{\alpha}) \in \Sigma\right\}
\end{aligned}
$$

Table 8. Type inference for the added expressions

Our tools for solving second order constraints only handle conjunctions of implications. We solve disjunctions early, which is problematic as selecting a disjunct may require information hidden in other disjunctions or in predicate variables. For example, in the normalization of constraints we need to associate each unary predicate variable with at most one inferred existential type that can occur as return type in its solution. The pragmatics we adopt in InvarGenT is that whenever the $\llbracket \Gamma \vdash p . e_{2}: \alpha_{0} \rightarrow \tau \rrbracket$ disjunct coming from the LetIn rule is satisfiable with the rest of the constraint, we select it for the solution. One can turn the pragmatics into semantics by adding premise $C, \Gamma, \Sigma \nvdash \lambda\left(p . e_{2}\right) e_{1}: \tau$ to the ExLetIn rule, but it makes the formalism a bit more complex.

Theorem 5. Theorems 1 (Correctness) and 2 (Completeness) hold for the type system extended with ExIntro and ExLetIn in the following sense.

Correctness: $\llbracket \Gamma, \Sigma \vdash \mathrm{ce}: \tau \rrbracket, \Gamma, \Sigma \vdash \mathrm{ce}: \tau$.
Completeness: If $\operatorname{PV}(C, \Gamma, \Sigma)=\varnothing$ and $C, \Gamma, \Sigma \vdash \mathrm{ce}: \tau$, then there exist interpretations of predicate variables $\mathcal{I}_{u}, \mathcal{I}_{e}$ such that $\operatorname{Dom}\left(\mathcal{I}_{u}\right)$ are unary, $\operatorname{Dom}\left(\mathcal{I}_{e}\right)=$ $\left\{\chi_{K} \mid K \in \mathcal{E}(\mathrm{ce})\right\}$, and $\mathcal{I}_{u}, C \vDash \mathcal{I}_{e}(\llbracket \Gamma, \Sigma \vdash \mathrm{ce}: \tau \rrbracket)\left[\overline{\varepsilon_{K}(\vec{\tau})}:=\overline{\varepsilon_{K}(\bar{\tau})}\right]$.

The set of value constructors is updated in InvarGenT after a toplevel definition with a well typed body: from Σ_{0} to Σ^{\prime}, using the notation from definition 4 .

2.6 Example: filter

Consider the function filter from the end of demonstration subsection. Constraint with disjunctions already pruned, for conciseness:

```
t1.\chi2(t1) \Longrightarrow
    \existst3, t4. t3 -> t4 = t1 ^[...truncated...]
    \foralln25, n26, t27.
    List (t27, n25) = t5 ^ (n26 + 1) = n25 ^ 0 \leq n26 \Longrightarrow
        \existst28.\existst30, t31. t30 -> t31 = t28 -> t6 ^ \exists. Bool = t30^
        Bool = t30 \Longrightarrow
            \existst32. \existst33. \existst34.
            \existst35. t35 = t34 -> t33 -> t32^ \chi2(t35) ^t3 = t34 ^
            E(t34) ^ List (t27, n26) = t33 ^ & (t33) ^
            \exists\textrm{t}37.}(\exists2:\delta[\chi1(\delta,\textrm{t}37)].\delta)=\textrm{t}32\wedge\forall\textrm{t}36
            \forallt38, t39. (\exists2:\delta[\chi1(\delta, t39)]. \delta) = t32 ^ \chi1(t38, t39) \Longrightarrow
                \existst40.\existsn41, n42, t43.
                List (t43, n41) = t40 ^ n42 + 1 = n41 ^ 0 \leq n42 ^
                t27 = t43 ^ t38 = List (t43, n42) ^
                \exists\textrm{t}50, t51. (\exists2:\delta[\chi1(\delta, t51)].\delta) = t31 ^
                \chi1(t50, t51) ^ t40 = t50 ^ E(t40) ^[...truncated...]
```

Notation such as ($\exists 2: \delta[\chi 1(\delta, \mathrm{t} 51)] . \delta)$ identifies an occurrence of existential type, here $\varepsilon_{K_{2}}\left(t_{51}\right)$ such that $K_{2}:: \forall \delta \alpha\left[\chi_{1}(\delta, \alpha)\right] . \delta \rightarrow \varepsilon_{K_{2}}(\alpha)$. Normalized and simplified constraint:

```
1| \(\chi 2\) (t2)
2| \(\chi 2(\mathrm{t} 1) \Longrightarrow \mathrm{t} 5=\) List ( \(\mathrm{t} 8, \mathrm{n} 7\) ) \(\wedge \mathrm{t} 1=\mathrm{t} 3 \rightarrow\) List ( \(\mathrm{t} 8, \mathrm{n} 7\) ) \(\rightarrow \mathrm{t} 6\)
\(31(\exists 2: \delta[\chi 1(\delta, \mathrm{t} 39)] . \delta)=\mathrm{t} 32 \wedge \chi 1(\mathrm{t} 38, \mathrm{t} 39) \wedge\)
    List (t27, n25) \(=\mathrm{t} 5 \wedge \mathrm{n} 26+1=\mathrm{n} 25 \wedge 0 \leq \mathrm{n} 26 \wedge \chi 2(\mathrm{t} 1) \Longrightarrow\)
    \(\mathrm{t} 40=\mathrm{t} 50 \wedge \mathrm{t} 31=(\exists 2: \delta[\chi 1(\delta, \mathrm{t} 51)] . \delta) \wedge \chi 1(\mathrm{t} 50, \mathrm{t} 51) \wedge\)
    \(\mathrm{t} 38=\) List (t27, n42) \(\wedge \mathrm{t} 40=\) List (t27, n41) \(\wedge\)
    \(\mathrm{n} 42+1=\mathrm{n} 41 \wedge 0 \leq \mathrm{n} 42\)
\(4 \mid(\exists 2: \delta[\chi 1(\delta, \mathrm{t} 71)] . \delta)=\mathrm{t} 64 \wedge \chi 1(\mathrm{t} 70, \mathrm{t} 71) \wedge\)
    List \((\mathrm{t} 27, \mathrm{n} 25)=\mathrm{t} 5 \wedge \mathrm{n} 26+1=\mathrm{n} 25 \wedge 0 \leq \mathrm{n} 26 \wedge \chi 2(\mathrm{t} 1) \Longrightarrow\)
    \(\mathrm{t} 72=\mathrm{t} 70 \wedge \mathrm{t} 31=(\exists 2: \delta[\chi 1(\delta, \mathrm{t} 73)] . \delta) \wedge \chi 1(\mathrm{t} 72, \mathrm{t} 73)\)
\(5 \mid\) List (t10, n9) \(=\mathrm{t} 5 \wedge 0=\mathrm{n} 9 \wedge \chi 2(\mathrm{t} 1) \Longrightarrow \mathrm{t} 11=\mathrm{t} 20 \wedge\)
    \(\mathrm{t} 6=(\exists 2: \delta[\chi 1(\delta, \mathrm{t} 21)] . \delta) \wedge \chi 1(\mathrm{t} 20, \mathrm{t} 21) \wedge\)
    t11 \(=\) List ( \(\mathrm{t} 13, \mathrm{n} 12\) ) \(\wedge 0=\mathrm{n} 12\)
\(6 \mid\) List (t27, n25) \(=\mathrm{t} 5 \wedge \mathrm{n} 26+1=\mathrm{n} 25 \wedge 0 \leq \mathrm{n} 26 \wedge \chi 2(\mathrm{t} 1) \Longrightarrow\)
    \(\mathrm{t} 32=(\exists 2: \delta[\chi 1(\delta, \mathrm{t} 37)] . \delta) \wedge \mathrm{t} 64=(\exists 2: \delta[\chi 1(\delta, \mathrm{t} 69)] . \delta) \wedge\)
    \(\mathrm{t} 3=\mathrm{t} 27 \rightarrow\) Bool \(\wedge \mathrm{t} 31=\mathrm{t} 6 \wedge\)
    \(\mathrm{t} 35=\mathrm{t} 3 \rightarrow\) List \((\mathrm{t} 27, \mathrm{n} 26) \rightarrow \mathrm{t} 32 \wedge \chi 2(\mathrm{t} 35) \wedge\)
    \(\mathrm{t} 67=\mathrm{t} 3 \rightarrow\) List \((\mathrm{t} 27, \mathrm{n} 26) \rightarrow \mathrm{t} 64 \wedge \chi 2(\mathrm{t} 67)\)
```

Branch 1 ensures that the invariant is satisfiable. Branch 2 decomposes the type of the recursive definition and ensures that the second argument is a list. Branch 3 is the case of passed element: t38 is the type of the recursive call, and
the length of resulting list n 41 is increased. Branch 4 is the case of dropped element: the result t72 and the recursive call result t70 coincide. Branch 5 is the case of empty list. Branch 6 provides invariant information for branches 3 and 4: t 35 is the type of recursive call with result t 38 thanks to $\chi 1$ ($\mathrm{t} 38, \mathrm{t} 39$), and t 67 of call with result t 70 thanks to $\chi 1(\mathrm{t} 70, \mathrm{t} 71)$.

3 Solving Second Order Constraints

Least Upper Bounds and Greatest Lower Bounds computations are the standard tools for finding unknowns involved in an order structure. In case of implicational constraints, constraint abduction and constraint "disjunction elimination" belong to this toolset. Simple Constraint Abduction under Quantifier Prefix is the task of finding for an implication $\mathcal{Q} . D \Rightarrow C$, where \mathcal{Q} is a quantifier prefix and D, C are conjunctions of atoms, a weakest solved form formula $\exists \bar{\alpha} . A$ such that $\vDash(\exists \bar{\alpha} \cdot A) \Rightarrow(D \Rightarrow C)$, equivalently $\vDash(\exists \bar{\alpha} . A) \wedge D \Rightarrow C, \vDash \exists F V(A, D, C) . A \wedge D \wedge C$ and $\vDash \mathcal{Q} . A[\bar{\alpha}:=\bar{t}]$ for some \bar{t}. Joint Constraint Abduction under Q.P. handles several implications, i.e. $\mathcal{Q} . \wedge_{i}\left(D_{i} \Rightarrow C_{i}\right)$, simultaneously. We need for each i : $\vDash(\exists \bar{\alpha} . A) \wedge D_{i} \Rightarrow C_{i}, \vDash \exists \mathrm{FV}\left(A, D_{i}, C_{i}\right) . A \wedge D_{i} \wedge C_{i}$ and $\vDash \mathcal{Q} . A[\bar{\alpha}:=\bar{t}]$ for some \bar{t}. Constraint Disjunction Elimination answer to a disjunction $\vee_{i} D_{i}$ of conjunctions of atoms is a solved form formula $\exists \bar{\alpha} . A$ such that for each $i, \vDash D_{i} \Rightarrow \exists \bar{\alpha} . A$. The task of constraint disjunction elimination is simple: in case of terms, it is anti-unification, and in case of linear inequalities, it is extended convex hull computation.

Short of enumerating all formulas, algorithms for finding any constraint abduction answer in the domain of (non-unary) free term algebra, and the domain of linear equations, are not known to the author. The task becomes easier when we restrict attention to fully maximal answers to $\mathcal{Q} . D \Rightarrow C$: those $\exists \bar{\alpha} . A$ for which $(\exists \bar{\alpha} . A \wedge D) \Leftrightarrow(C \wedge D)$. The algorithms look at various combinations of atoms from $D \wedge C$, and their "abstracted" variants.

Equipped with these tools, consider first solving for invariants - unary predicates $\chi(\cdot)$. We want the invariants to be as weak as possible, to make the use of the corresponding definitions as easy as possible: the weaker the invariant, the more general the type of definition. We perform joint constraint abduction, and divide the atoms of the answer $\exists \bar{\alpha} . A$ into solutions to the predicate variables A_{χ} and a remainder $A_{\text {res }}=A \backslash \cup_{\chi} A_{\chi}$, depending on the variables in the atoms and so that the residuum holds under the quantifiers: $\vDash \mathcal{Q} . A_{\text {res }}$. Note that a predicate takes only one variable $\chi\left(\beta_{\chi}\right)$ in premises. We substitute the result $\mathcal{Q} . \wedge_{i}\left(D_{i} \Rightarrow C_{i}\right)\left[\bar{\chi}:=\overline{A_{\chi}\left[\beta_{\chi}:=\delta\right]}\right]$ and repeat abduction - perform another iteration of the main algorithm - just in case some the occurrences of $\exists \alpha \cdot \chi(\alpha) \wedge \Phi$ in conclusions, for example, bind α inside Φ with a term containing a universally quantified variable. It might be that the added constraints cannot all fit in next iteration's $\vDash \mathcal{Q} . A_{\text {res }}^{\prime}$ and have to be part of next iteration's A_{χ}^{\prime}. It seems to never happen in practice.

For postconditions we want the strongest possible solutions, because stronger postcondition provides more information at use sites of a definition. Therefore we use disjunction elimination to initialize binary predicate variables $\chi_{K}(\cdot, \cdot)$ without "hurting" the constraint. If required to make the residuum hold: $\vDash \mathcal{Q} . A_{\text {res }}$, more atoms $A_{\chi_{K}}$ can be added to a postcondition. Detailed documentation of the algorithms can be found in [19].

4 Concluding Remarks

We have set out to develop an invariant and postcondition inference framework around constraint based type inference for GADTs, utilizing a formulation parametric w.r.t. the domain of constraints, leaving open what data properties can be expressed. For the difficult task of inference, rather than verification, of arbitrary invariants, we have given up decidability and principal types. Realizing that flexibility of invariant inference requires abstract postconditions, we have introduced implicitly generated existential types into the system.

As in traditional invariant inference, we allow the invariants be built in several iteration steps. It turns out abduction usually finds the invariants at once. For technical reasons - collecting all information, we only start inference for sorts other than terms in the second iteration. Some inference tasks, e.g.

$$
\text { flatten_pairs }: \forall \alpha, n[0 \leq n] . \operatorname{List}((\alpha, \alpha), n) \rightarrow \operatorname{List}(\alpha, n+n)
$$

require that our abduction algorithm, here for numerical equations, starts with non-recursive branches only, and with the bootstrapped solution considers all branches in the next iteration. But the reason is that our abduction algorithms are built on fully maximal simple constraint abduction. If any maximally general abduction answer could be considered, inference would again be solved in a single (i.e. in the second) iteration. One could try justifying this effectiveness of abduction by analysing what constraints are generated for recursive calls. On the other hand, given an oracle for joint constraint abduction problems, a formal argument could be made about semi-completeness of the solver (with oracle for abduction) for unary predicate variables (i.e. without existential types) in the single-sorted case, and correctness in general case. By correctness we mean that when the algorithm stops iterating, if it returns "not solvable", there is no answer, and if it returns an answer, it is a correct answer; by semi-completeness, that it stops if there is an answer.

In case of solving for both invariants and postconditions, the situation is more complex. The postconditions are not guaranteed to change monotonically between iterations. In practice, postconditions for terms are solved "at once", but convergence in the numerical domain has to be enforced by at some point (e.g. in 5th iteration) dropping the atoms that change between iterations. At the time of writing, inferring postconditions in InvarGenT is still work in progress. Moreover, the implementation of InvarGenT leaves plenty of opportunities for optimization.

The author wishes to thank patient anonymous reviewers of an early attempt to present these ideas.

Bibliography

[1] Peter Bulychev, Egor Kostylev and Vladimir Zakharov. Anti-unification algorithms and their applications in program analysis. In Amir Pnueli, Irina Virbitskaite and Andrei Voronkov, editors, Perspectives of Systems Informatics, volume 5947 of Lecture Notes in Computer Science, pages 413-423. Springer Berlin / Heidelberg, 2010. 10.1007/978-3-642-11486-1 $1_{3} 5$.
[2] P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions: mathematical foundations. SIGPLAN Notices, 12(8):1-12, aug 1977.
[3] Fritz Henglein. Type inference with polymorphic recursion. ACM Trans. Program. Lang. Syst., 15(2):253-289, 1993.
[4] Kenneth W. Knowles and Cormac Flanagan. Type reconstruction for general refinement types. In ESOP, volume 4421 of Lecture Notes in Computer Science, pages 505-519. Springer, 2007.
[5] Chuan-kai Lin. Practical type inference for the GADT type system. PhD dissertation, Portland State University, Department of Computer Science, 2010.
[6] Chuan-kai Lin and Tim Sheard. Pointwise generalized algebraic data types. In Proceedings of the 5th ACM SIGPLAN workshop on Types in language design and implementation, TLDI '10, pages 51-62. New York, NY, USA, 2010. ACM.
[7] Michael Maher. Herbrand constraint abduction. In LICS '05: Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science, pages 397-406. Washington, DC, USA, 2005. IEEE Computer Society.
[8] Michael Maher and Ge Huang. On computing constraint abduction answers. In Iliano Cervesato, Helmut Veith and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning, volume 5330 of Lecture Notes in Computer Science, pages 421-435. Springer Berlin / Heidelberg, 2008. 10.1007/978-3-540-89439-1 $1_{3} 0$.
[9] MichaelJ. Maher. Abduction of linear arithmetic constraints. In Maurizio Gabbrielli and Gopal Gupta, editors, Logic Programming, volume 3668 of Lecture Notes in Computer Science, pages 174-188. Springer Berlin Heidelberg, 2005.
[10] G.D. Plotkin. A note on inductive generalization. Machine Intelligence, , 1969.
[11] François Pottier and Yann Régis-Gianas. Stratified type inference for generalized algebraic data types. In Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL '06, pages 232-244. New York, NY, USA, 2006. ACM.
[12] Yann Regis-Gianas and Francois Pottier. A Hoare logic for call-by-value functional programs. In Proceedings of the Ninth International Conference on Mathematics of Program Construction (MPC'08), volume 5133 of Lecture Notes in Computer Science, pages 305335. Springer, JUL 2008.
[13] J. C. Reynolds. Transformational systems and the algebraic structure of atomic formulas. In Machine Intelligence. 1970.
[14] Tom Schrijvers, Simon Peyton Jones, Martin Sulzmann and Dimitrios Vytiniotis. Complete and decidable type inference for gadts. In Proceedings of the 14 th ACM SIGPLAN international conference on Functional programming, ICFP '09, pages 341-352. New York, NY, USA, 2009. ACM.
[15] Vincent Simonet and Francois Pottier. A constraint-based approach to guarded algebraic data types. ACM Transactions on Programming Languages and Systems, 29(1), JAN 2007.
[16] M. Sulzmann, T. Schrijvers and P. J. Stuckey. Type inference for GADTs via Herbrand constraint abduction. Manuscript, July 2006.
[17] Hiroshi Unno and Naoki Kobayashi. Dependent type inference with interpolants. In Proceedings of the 11 th ACM SIGPLAN conference on Principles and practice of declarative programming, PPDP '09, pages 277-288. New York, NY, USA, 2009. ACM.
[18] Łukasz Stafiniak. Joint constraint abduction problems. 2011. The International Workshop on Unification.
[19] Łukasz Stafiniak. Invargent: implementation. Manuscript, 2013. https:// github.com/lukstafi/invargent/blob/master/doc/invargent.pdf

5 Appendix

5.1 The GADT Type System

Set $\Delta:=\exists \bar{\beta}[D] . \Gamma$ and $\Delta^{\prime}:=\exists \bar{\beta}^{\prime}\left[D^{\prime}\right] \cdot \Gamma^{\prime}$ such that $\bar{\beta} \# \mathrm{FV}\left(\Gamma^{\prime}\right), \bar{\beta}^{\prime} \# \mathrm{FV}(\Delta)$ and $\bar{\beta}^{\prime} \# C$. Let $C \vDash \Delta^{\prime} \leqslant \Delta$ denote $C \wedge D^{\prime} \vDash \exists \bar{\beta} .\left(D \wedge_{x \in \operatorname{Dom}(\Gamma)} \Gamma(x) \doteq \Gamma^{\prime}(x)\right)$ when $\operatorname{Dom}(\Gamma)=\operatorname{Dom}\left(\Gamma^{\prime}\right)$, and otherwise a falsehood (compare lemma 3.5 of [15]). Let $\Delta \times \Delta^{\prime}$ denote $\exists \bar{\beta} \bar{\beta}^{\prime}\left[D \wedge D^{\prime}\right] . \Gamma \dot{\cup} \Gamma^{\prime}$, and $\exists \bar{\beta}^{\prime}\left[D^{\prime}\right] \Delta$ denote $\exists \bar{\beta} \bar{\beta}^{\prime}\left[D \wedge D^{\prime}\right] . \Gamma$.

Proposition 6. Properties of environment fragments (see [15] lemma 3.15).
f-Hide. $\vDash \Delta \leqslant \exists \bar{\alpha} . \Delta$.
f-Imply. $C_{1} \Rightarrow C_{2} \vDash\left[C_{1}\right] \Delta \leqslant\left[C_{2}\right] \Delta$.
f-Enrich. $C \Rightarrow \Delta_{1} \leqslant \Delta_{2} \vDash[C] \Delta_{1} \leqslant[C] \Delta_{2}$.
\boldsymbol{f}-Ex. $\forall \bar{\alpha} . \Delta_{1} \leqslant \Delta_{2} \vDash\left(\exists \bar{\alpha} . \Delta_{1}\right) \leqslant\left(\exists \bar{\alpha} . \Delta_{2}\right)$.
f-And. $\Delta_{1} \leqslant \Delta_{2} \vDash \Delta \times \Delta_{1} \leqslant \Delta \times \Delta_{2}$.
Proposition 7. Constructor $K:: \forall \bar{\alpha} \bar{\beta}[D] . \tau_{1} \times \ldots \times \tau_{n} \rightarrow \varepsilon(\bar{\alpha})$ where $D=\exists \bar{\beta}^{\prime} . A$, is equivalent to $K:: \forall \bar{\alpha} \overline{\gamma_{i}}\left[\exists \bar{\beta} \bar{\beta}^{\prime} \cdot \overline{\gamma_{i}} \doteq \overline{\tau_{i}} \wedge A\right] \cdot \gamma_{1} \times \ldots \times \gamma_{n} \rightarrow \varepsilon(\bar{\alpha})$.

Proposition 8. Constructors of the form $K:: \forall \overline{\alpha_{i}} \bar{\beta}[D] . \tau_{1} \times \ldots \times \tau_{n} \rightarrow$ $\varepsilon\left(\overline{\alpha_{i}}\right)$ where $D=\exists \bar{\beta}^{\prime}$.A, are equivalent to constructors of the form $K:: \forall \alpha \bar{\beta}\left[\exists \overline{\alpha_{i}} \bar{\beta}^{\prime} . \alpha \doteq \alpha_{1} \rightarrow \ldots \rightarrow \alpha_{m} \wedge A\right] . \gamma_{1} \times \ldots \times \gamma_{n} \rightarrow \varepsilon(\alpha)$ when all uses of $\varepsilon\left(\tau_{1}, \ldots, \tau_{m}\right)$ are translated to $\varepsilon\left(\tau_{1} \rightarrow \ldots \rightarrow \tau_{m}\right)$.

Lemma 9. Weakening (patterns and expressions). Assume $C_{1} \vDash C_{2}$. If $C_{2} \vdash p$: $\tau \longrightarrow \Delta$ (resp. $C_{2}, \Gamma \vdash$ ce: $\tau, C_{2}, \Gamma \vdash \mathrm{ce}: \sigma$) is derivable, then there exists a derivation of $C_{1} \vdash p: \tau \longrightarrow \Delta$ (resp. $C_{1}, \Gamma \vdash \mathrm{ce}: \tau, C_{1}, \Gamma \vdash \mathrm{ce}: \sigma$) of the same structure.

The lemma follows from transitivity of $\vDash(A \vDash B$ and $B \vDash C$ imply $A \vDash C)$ by induction on the structure of the derivation.

Lemma 10. If $\Sigma \subset \Sigma^{\prime}$ and $C \vdash p: \tau \longrightarrow \Delta$ (resp. $C, \Gamma \vdash$ ce: $\tau, C, \Gamma \vdash$ ce: σ) is derivable with constructors Σ, then the same derivation works with constructors Σ^{\prime}.

Lemma 11. Correctness (patterns). $\llbracket \vdash p \downarrow \tau \rrbracket \vdash p: \tau \longrightarrow \llbracket \vdash p \uparrow \tau \rrbracket$.
Proof. By induction on the structure of p.

- Cases 0, 1 and x : follow directly from p-Empty, p-Wild and p-Var respectively.
- Case $p_{1} \wedge p_{2}$.

1. By the induction hypothesis, $\llbracket \vdash p_{i} \downarrow \tau \rrbracket \vdash p_{i}: \tau \longrightarrow \llbracket \vdash p_{i} \uparrow \tau \rrbracket$ for $i=1,2$.
2. By weakening and p -And we have the goal.

- Case $K p_{1} \ldots p_{n}$.

1. Let $\Sigma \ni K:: \forall \bar{\alpha} \bar{\beta}[D] . \tau_{1} \times \ldots \times \tau_{n} \rightarrow \varepsilon(\bar{\alpha})$.
2. By the induction hypothesis, $\llbracket \vdash p_{i} \downarrow \tau_{i} \rrbracket \vdash p_{i}: \tau_{i} \longrightarrow \llbracket \vdash p_{i} \uparrow \tau_{i} \rrbracket$ for $i=1, \ldots, n$.
3. The p-Cstr rule says $\forall i\left(C \wedge D \vdash p_{i}: \tau_{i} \longrightarrow \Delta_{i}\right) / \mathrm{p}-\mathrm{Cstr} C \vdash p$: $\varepsilon(\bar{\alpha}) \longrightarrow \exists \bar{\beta}[D]\left(\Delta_{1} \times \ldots \times \Delta_{n}\right)$, where $\Delta_{i}:=\llbracket \vdash p_{i} \uparrow \tau_{i} \rrbracket$. Applying it to (2) we get $C \vdash p: \varepsilon(\bar{\alpha}) \longrightarrow \exists \bar{\beta}[D]\left(\Delta_{1} \times \ldots \times \Delta_{n}\right)$ as long as $C \wedge D \vDash \llbracket \vdash p_{i} \downarrow \tau_{i} \rrbracket$.
4. Let $\bar{\alpha}^{\prime} \bar{\beta}^{\prime} \# \mathrm{FV}(\Sigma, \tau)$ and $\tau_{i}^{\prime}:=\tau_{i}\left[\bar{\alpha} \bar{\beta}:=\bar{\alpha}^{\prime} \bar{\beta}^{\prime}\right], D^{\prime}:=D\left[\bar{\alpha} \bar{\beta}:=\bar{\alpha}^{\prime} \bar{\beta}^{\prime}\right]$. Let Δ_{i}^{\prime} be Δ_{i} with unbound occurrences of $\bar{\alpha} \bar{\beta}$ renamed to $\bar{\alpha}^{\prime} \bar{\beta}^{\prime}$.
5. By weakening and p-EqIn, (3) gives $\bar{\alpha} \bar{\beta} \doteq \bar{\alpha}^{\prime} \bar{\beta}^{\prime} \wedge \varepsilon\left(\bar{\alpha}^{\prime}\right) \doteq \tau \wedge C \vdash p$: $\tau \longrightarrow \exists \bar{\beta}[D]\left(\Delta_{1} \times \ldots \times \Delta_{n}\right)$.
6. By proposition 6 , transitivity of \leqslant, and p-SubOut, we get $\bar{\alpha} \bar{\beta} \doteq \bar{\alpha}^{\prime} \bar{\beta}^{\prime} \wedge \varepsilon\left(\bar{\alpha}^{\prime}\right) \doteq \tau \wedge C \vdash p: \tau \longrightarrow \exists \bar{\alpha}^{\prime} \bar{\beta}^{\prime}\left[D^{\prime}\right]\left(\Delta_{1}^{\prime} \times \ldots \times \Delta_{n}^{\prime}\right)$.
7. By applying p-Hide to (6) with $C=\bar{\alpha} \doteq \bar{\alpha}^{\prime} \wedge \forall \bar{\beta}^{\prime} . D^{\prime} \Rightarrow \wedge_{i} \llbracket p_{i} \downarrow \tau_{i}^{\prime} \rrbracket$ and weakening, since w.l.o.g. $\bar{\alpha} \bar{\beta}$ do not appear unbound in the goal, and $C \wedge D \vDash \llbracket \vdash p_{i} \downarrow \tau_{i} \rrbracket$, we get the goal $\exists \bar{\alpha}^{\prime} \cdot \varepsilon\left(\bar{\alpha}^{\prime}\right) \doteq \tau \wedge$ $\forall \bar{\beta}^{\prime} . D^{\prime} \Rightarrow \wedge_{i} \llbracket \vdash p_{i} \downarrow \tau_{i}^{\prime} \rrbracket \vdash p: \tau \longrightarrow \exists \bar{\alpha}^{\prime} \bar{\beta}^{\prime}\left[D^{\prime}\right]\left(\Delta_{1}^{\prime} \times \ldots \times \Delta_{n}^{\prime}\right)$.

Proof of theorem 1.
Proof. By induction on the structure of ce.

- Case ce is x.

1. If $x \notin \operatorname{Dom}(\Gamma)$, then the goal follows by applying FElim. Otherwise, let $\Gamma(x)$ be $\forall \beta[\exists \bar{\alpha} . D] . \beta$. By Var, $D, \Gamma \vdash x: \beta$.
2. Let $\beta^{\prime} \bar{\alpha}^{\prime} \# \mathrm{FV}(\Gamma, \tau)$. By (1), weakening and Equ, $\beta \bar{\alpha} \doteq \beta^{\prime} \bar{\alpha}^{\prime} \wedge D^{\prime} \wedge$ $\beta^{\prime} \doteq \tau, \Gamma \vdash x: \tau$, where $D^{\prime}:=D\left[\beta \bar{\alpha}:=\beta^{\prime}{ }^{\prime}\right]$.
3. By Hide and weakening, since w.l.o.g. $\beta \bar{\alpha}$ do not appear unbounded in the goal, this implies the goal $\exists \beta^{\prime} \bar{\alpha}^{\prime} \cdot\left(D^{\prime} \wedge \beta^{\prime} \dot{=} \tau\right)$, $\Gamma \vdash x: \tau$.

- Case ce is $\lambda \bar{c}$ where $\bar{c}=\left(c_{1}, \ldots, c_{n}\right)$.

1. Let $\alpha_{1} \alpha_{2} \# \mathrm{FV}(\Gamma, \tau)$.
2. Induction hypothesis yelds $\llbracket \Gamma \vdash c_{i}: \alpha_{1} \rightarrow \alpha_{2} \rrbracket, \Gamma \vdash c_{i}: \alpha_{1} \rightarrow \alpha_{2}$.
3. By (2), weakening and Abs, $\llbracket \Gamma \vdash \bar{c}: \alpha_{1} \rightarrow \alpha_{2} \rrbracket, \Gamma \vdash \lambda \bar{c}: \alpha_{1} \rightarrow \alpha_{2}$.
4. By weakening and Equ, (3) implies $\llbracket \Gamma \vdash \bar{c}: \alpha_{1} \rightarrow \alpha_{2} \rrbracket \wedge \alpha_{1} \rightarrow \alpha_{2} \dot{=} \tau$, $\Gamma \vdash \lambda \bar{c}: \tau$.
5. By (1) and Hide, this implies $\llbracket \Gamma \vdash \lambda \bar{c}: \tau \rrbracket, \Gamma \vdash \lambda \bar{c}: \tau$.

- Case ce is $e_{1} e_{2}$.

1. Let $\alpha \# \mathrm{FV}(\Gamma, \tau)$.
2. By the induction hypothesis, we have $\llbracket \Gamma \vdash e_{1}: \alpha \rightarrow \tau \rrbracket, \Gamma \vdash e_{1}: \alpha \rightarrow \tau$ and $\llbracket \Gamma \vdash e_{2}: \alpha \rrbracket, \Gamma \vdash e_{2}: \alpha$.
3. By weakening and App, this yields $\llbracket \Gamma \vdash e_{1}: \alpha \rightarrow \tau \rrbracket \wedge \llbracket \Gamma \vdash e_{2}: \alpha \rrbracket$, $\Gamma \vdash e_{1} e_{2}: \tau$.
4. By Hide using (1), $\llbracket \Gamma \vdash e_{1} e_{2}: \tau \rrbracket, \Gamma \vdash e_{1} e_{2}: \tau$.

- Case ce is $K e_{1} \ldots e_{n}$.

1. Let $\Sigma \ni K:: \forall \bar{\alpha} \bar{\beta}[D] . \tau_{1} \times \ldots \times \tau_{n} \rightarrow \varepsilon(\bar{\alpha})$.
2. By induction hypothesis and weakening for each $i=1, \ldots, n$

$$
\wedge_{j} \llbracket \Gamma \vdash e_{j}: \tau_{j} \rrbracket \wedge D \wedge \varepsilon(\bar{\alpha}) \doteq \tau, \Gamma \vdash e_{i}: \tau_{i}
$$

3. Applying Cstr to (1) and (3) we obtain

$$
\wedge_{i} \llbracket \Gamma \vdash e_{i}: \tau_{i} \rrbracket \wedge D \wedge \varepsilon(\bar{\alpha}) \doteq \tau, \Gamma \vdash K e_{1} \ldots e_{n}: \varepsilon(\bar{\alpha})
$$

4. Let $\bar{\alpha}^{\prime} \bar{\beta}^{\prime} \# \mathrm{FV}(\Gamma, \tau)$ and $\tau_{i}^{\prime}:=\tau_{i}\left[\bar{\alpha} \bar{\beta}:=\bar{\alpha}^{\prime} \bar{\beta}^{\prime}\right], D^{\prime}:=D\left[\beta \bar{\alpha}:=\beta^{\prime} \bar{\alpha}^{\prime}\right]$.

$$
\bar{\alpha} \bar{\beta} \doteq \bar{\alpha}^{\prime} \bar{\beta}^{\prime} \wedge_{i} \llbracket \Gamma \vdash e_{i}: \tau_{i}^{\prime} \rrbracket \wedge D \wedge \varepsilon\left(\bar{\alpha}^{\prime}\right) \doteq \tau, \Gamma \vdash K e_{1} \ldots e_{n}: \varepsilon\left(\bar{\alpha}^{\prime}\right)
$$

5. By Equ, (1) Hide and weakening, since w.l.o.g. $\bar{\alpha} \bar{\beta}$ do not appear unbounded in the goal, $\llbracket \Gamma \vdash K e_{1} \ldots e_{n}: \tau \rrbracket, \Gamma \vdash K e_{1} \ldots e_{n}: \tau$.

- Case ce is letrec $x=e_{1}$ in e_{2}.

1. Let $\alpha \beta \# \mathrm{FV}(\Gamma, \tau)$ and $\chi \# \mathrm{PV}(\Gamma)$.
2. Let $\sigma=\forall \beta[\chi(\beta)] . \beta, \Gamma^{\prime}=\Gamma\{x \mapsto \sigma\}$. By the induction hypothesis, $\llbracket \Gamma^{\prime} \vdash e_{1}: \beta \rrbracket, \Gamma^{\prime} \vdash e_{1}: \beta$ and $\llbracket \Gamma^{\prime} \vdash e_{2}: \tau \rrbracket, \Gamma^{\prime} \vdash e_{2}: \tau$.
3. Let $D=\forall \beta \cdot\left(\chi(\beta) \Rightarrow \llbracket \Gamma^{\prime} \vdash e_{1}: \beta \rrbracket\right)$. Since $D \wedge \chi(\beta)$ implies $\llbracket \Gamma^{\prime} \vdash e_{1}: \beta \rrbracket$, by weakening of (2), we have $D \wedge \chi(\beta), \Gamma^{\prime} \vdash e_{1}: \beta$. From (1) we have $\alpha \# \operatorname{FV}\left(D, \Gamma^{\prime}, \tau\right)$, by Gen we have $D \wedge \exists \beta \cdot \chi(\beta)$, $\Gamma^{\prime} \vdash e_{1}: \forall \beta[\chi(\beta)] \cdot \beta$, by (1) and renaming we have

$$
D \wedge \exists \alpha \cdot \chi(\alpha), \Gamma^{\prime} \vdash e_{1}: \sigma
$$

4. By weakening of both (2) and (3), and by LetRec, we have $\llbracket \Gamma \vdash \operatorname{letrec} x=e_{1}$ in $e_{2}: \tau \rrbracket$, $\Gamma \vdash$ letrec $x=e_{1}$ in $e_{2}: \tau$.

- Case ce is p.e.

1. τ is of the form $\tau_{1} \rightarrow \tau_{2}$. Write $\llbracket \vdash p \uparrow \tau_{1} \rrbracket$ as $\exists \bar{\beta}[D] \Gamma^{\prime}$, where $\bar{\beta} \# \mathrm{FV}\left(\Gamma, \tau_{1}, \tau_{2}\right)$.
2. By induction hypothesis, $\llbracket \Gamma \Gamma^{\prime} \vdash e: \tau_{2} \rrbracket, \Gamma \Gamma^{\prime} \vdash e: \tau_{2}$.
3. By lemma 11 and (1), we have $\llbracket \vdash p \downarrow \tau_{1} \rrbracket \vdash p: \tau_{1} \longrightarrow \exists \bar{\beta}[D] \Gamma^{\prime}$.
4. By instantiation of $\bar{\beta}$ and weakening, (2) implies

$$
\llbracket \Gamma \vdash p . e: \tau \rrbracket \wedge D, \Gamma \Gamma^{\prime} \vdash e: \tau_{2}
$$

5. By weakening, (3) implies $\llbracket \Gamma \vdash p . e: \tau \rrbracket \vdash p: \tau_{1} \longrightarrow \exists \bar{\beta}[D] \Gamma^{\prime}$.
6. By (4), (5), (1), and Clause, we obtain $\llbracket \Gamma \vdash p . e: \tau \rrbracket, \Gamma \vdash p . e: \tau$.
$\Gamma^{\prime} \doteq \Gamma^{\prime \prime}$ stands for $\forall x \in \operatorname{Dom}\left(\Gamma^{\prime}\right) \cup \operatorname{Dom}\left(\Gamma^{\prime \prime}\right) \cdot \Gamma^{\prime}(x) \doteq \Gamma^{\prime \prime}(x)$ and is false when $\operatorname{Dom}\left(\Gamma^{\prime}\right) \neq \operatorname{Dom}\left(\Gamma^{\prime \prime}\right)$. Recall that for $\Delta:=\exists \bar{\beta}[D] . \Gamma$ and $\Delta^{\prime}:=\exists \bar{\beta}^{\prime}\left[D^{\prime}\right] . \Gamma^{\prime}$ such that $\bar{\beta} \# \mathrm{FV}\left(\Gamma^{\prime}\right), \bar{\beta}^{\prime} \# \mathrm{FV}(\Delta)$ and $\bar{\beta}^{\prime} \# C, C \vDash \Delta^{\prime} \leqslant \Delta$ denotes $C \wedge D^{\prime} \vDash \exists \bar{\beta} . D \wedge$ $\Gamma \doteq \Gamma^{\prime}$. Observe, that $C \vDash \Delta^{\prime} \leqslant \Delta$ iff $C \vDash \forall \bar{\beta}^{\prime} . D^{\prime} \Rightarrow \exists \bar{\beta} . D \wedge \Gamma \doteq \Gamma^{\prime}$.

Lemma 12. Completeness (patterns). Let $\Delta=\exists \bar{\beta}^{\prime}\left[D^{\prime}\right] \Gamma^{\prime}$ and $\llbracket \vdash p \uparrow \tau \rrbracket=$ $\exists \bar{\beta}^{\prime \prime}\left[D^{\prime \prime}\right] \Gamma^{\prime \prime}=\Delta^{\prime} . C \vdash p: \tau \longrightarrow \Delta$ implies $C \vDash \llbracket \vdash p \downarrow \tau \rrbracket$ and $C \vDash \forall \bar{\beta}^{\prime \prime} . D^{\prime \prime} \Rightarrow$ $\exists \bar{\beta}^{\prime} .\left(D^{\prime} \wedge \Gamma^{\prime \prime} \dot{=} \Gamma^{\prime}\right)$, i.e. $C \vDash \Delta^{\prime} \leqslant \Delta$.

Proof. By induction on the derivation of $C \vdash p: \tau \longrightarrow \Delta$. To slightly simplify the proof, the induction is actually on the lexicographic ordering: (\# of applications of p-Cstr, \# of other rules applications).

- Cases p-Empty, p-Wild, p-Var. $\llbracket \vdash p \downarrow \tau \rrbracket=\boldsymbol{T} . \llbracket \vdash p \uparrow \tau \rrbracket$ and Δ coincide: $\Gamma^{\prime \prime}=\Gamma^{\prime}, D^{\prime}=D^{\prime \prime}=\boldsymbol{T}$ and $\vDash \exists \bar{\beta} \cdot \Gamma^{\prime} \equiv \Gamma^{\prime}$ holds because sorts are nonempty.
- Case p-And. In this case $\Delta=\Delta_{1} \times \Delta_{2}, \bar{\beta}^{\prime}=\bar{\beta}_{1}^{\prime} \bar{\beta}_{2}^{\prime}, D^{\prime}=D_{1}^{\prime} \wedge D_{2}^{\prime}$, $\Gamma^{\prime}=\Gamma_{1}^{\prime} \dot{U}_{2}^{\prime}$.

1. p-And's premises are $C \vdash p_{i}: \tau \longrightarrow \Delta_{i}$, which by induction hypothesis gives $C \vDash \llbracket \vdash p_{i} \downarrow \tau \rrbracket$ and $C \vDash \forall \bar{\beta}_{i}^{\prime \prime} . D_{i}^{\prime \prime} \Rightarrow \exists \bar{\beta}_{i}^{\prime} .\left(D_{i}^{\prime} \wedge \Gamma_{i}^{\prime \prime} \doteq \Gamma_{i}^{\prime}\right)$ for $i=1,2$.
2. (1) gives $C \vDash \llbracket \vdash p_{1} \wedge p_{2} \downarrow \tau \rrbracket$ as $\llbracket \vdash p_{1} \wedge p_{2} \downarrow \tau \rrbracket=\llbracket \vdash p_{1} \downarrow \tau \rrbracket \wedge \llbracket \vdash p_{2} \downarrow \tau \rrbracket$.
3. $\llbracket \vdash p_{1} \wedge p_{2} \uparrow \tau \rrbracket=\llbracket \vdash p_{1} \uparrow \tau \rrbracket \times \llbracket \vdash p_{2} \uparrow \tau \rrbracket=\exists \bar{\beta}_{1}^{\prime \prime} \bar{\beta}_{2}^{\prime \prime}\left[D_{1}^{\prime \prime} \wedge D_{2}^{\prime \prime}\right] \Gamma_{1}^{\prime \prime} \dot{\cup} \Gamma_{2}^{\prime \prime}$. We will show $C \vDash \forall \bar{\beta}_{1}^{\prime \prime} \bar{\beta}_{2}^{\prime \prime} . D_{1}^{\prime \prime} \wedge D_{2}^{\prime \prime} \Rightarrow \exists \bar{\beta}_{1}^{\prime} \bar{\beta}_{2}^{\prime} .\left(D_{1}^{\prime} \wedge D_{2}^{\prime} \wedge \Gamma_{1}^{\prime \prime} \dot{\cup} \Gamma_{2}^{\prime \prime} \doteq \Gamma_{1}^{\prime} \dot{\cup} \Gamma_{2}^{\prime}\right)$.
4. Assume w.l.o.g. $\bar{\beta}_{1}^{\prime} \# \bar{\beta}_{2}^{\prime}$, $\bar{\beta}_{1}^{\prime \prime} \# \bar{\beta}_{2}{ }^{\prime \prime}$. Applying (1) for $i=1,2$ gives $C \vDash \forall \bar{\beta}_{1}^{\prime \prime} \bar{\beta}_{2}^{\prime \prime} \cdot D_{1}^{\prime \prime} \wedge D_{2}^{\prime \prime} \Rightarrow \exists \bar{\beta}_{1}^{\prime} \bar{\beta}_{2}^{\prime} .\left(D_{1}^{\prime} \wedge D_{2}^{\prime} \wedge \Gamma_{1}^{\prime \prime} \doteq \Gamma_{1}^{\prime} \wedge \Gamma_{2}^{\prime \prime} \doteq \Gamma_{2}^{\prime}\right)$, which completes the goal.

- Case p-Cstr. In this case $\Delta=\exists \bar{\beta}_{0}\left[D_{0}\right]\left(\Delta_{1} \times \ldots \times \Delta_{n}\right)$, and $\tau=\varepsilon\left(\bar{\alpha}_{0}\right)$, where $D_{0}:=D_{K}\left[\bar{\alpha} \bar{\beta}:=\bar{\alpha}_{0} \bar{\beta}_{0}\right]$ for $\Sigma \ni K:: \forall \bar{\alpha} \bar{\beta}\left[D_{K}\right] . \tau_{1} \times \ldots \times \tau_{n} \rightarrow \varepsilon(\bar{\alpha})$ and $\bar{\beta}_{0} \# \mathrm{FV}(C)$.

1. p-Cstr's premises are $C \wedge D_{0} \vdash p_{i}: \tau_{i}\left[\bar{\alpha} \bar{\beta}:=\bar{\alpha}_{0} \bar{\beta}_{0}\right] \longrightarrow \Delta_{i}$.
2. Let $\bar{\alpha}_{0}^{\prime} \bar{\beta}_{0}^{\prime} \# \mathrm{FV}\left(\tau, \bar{\alpha} \bar{\beta}, \bar{\alpha}_{0} \bar{\beta}_{0}, C\right)$.
3. Let $\tau_{i}^{\prime}:=\tau_{i}\left[\bar{\alpha} \bar{\beta}:=\bar{\alpha}_{0}^{\prime} \bar{\beta}_{0}^{\prime}\right]$. By weakening and p-EqIn, (1) gives $C \wedge D_{0} \wedge \bar{\alpha}_{0} \bar{\beta}_{0} \doteq \bar{\alpha}_{0}^{\prime} \bar{\beta}_{0}^{\prime} \vdash p_{i}: \tau_{i}^{\prime} \longrightarrow \Delta_{i}$.
4. By induction hypothesis we have $C \wedge D_{0} \wedge \bar{\alpha}_{0} \bar{\beta}_{0} \doteq \bar{\alpha}_{0}^{\prime} \bar{\beta}_{0}{ }^{\prime} \vDash \llbracket \vdash p_{i} \downarrow \tau_{i}^{\prime} \rrbracket$ and $C \wedge D_{0} \wedge \bar{\alpha}_{0} \bar{\beta}_{0} \doteq \bar{\alpha}_{0}^{\prime} \bar{\beta}_{0}{ }^{\prime} \vDash \forall \bar{\beta}_{i}{ }^{\prime \prime} . D_{i}^{\prime \prime} \Rightarrow \exists \bar{\beta}_{i}{ }^{\prime} .\left(D_{i}^{\prime} \wedge \Gamma_{i}^{\prime \prime} \doteq \Gamma_{i}^{\prime}\right)$ for $i=1, \ldots, n$.
5. Let $D_{0}^{\prime}:=D_{K}\left[\bar{\alpha} \bar{\beta}:=\bar{\alpha}_{0}^{\prime} \bar{\beta}_{0}{ }^{\prime}\right]$. From (4) follows $C \wedge$ $\bar{\alpha}_{0} \bar{\beta}_{0} \doteq \bar{\alpha}_{0}^{\prime} \bar{\beta}_{0}^{\prime} \vDash D_{0}^{\prime} \Rightarrow \wedge_{i} \llbracket \vdash p_{i} \downarrow \tau_{i}^{\prime} \rrbracket$.
6. W.l.o.g. $\bar{\alpha}_{0} \bar{\beta}_{0} \# \mathrm{FV}\left(D_{0}^{\prime} \Rightarrow \wedge_{i} \llbracket \vdash p_{i} \downarrow \tau_{i}^{\prime} \rrbracket\right)$. (5) gives $C \wedge$ $\bar{\alpha}_{0} \doteq \bar{\alpha}_{0}^{\prime} \vDash \forall \bar{\beta}_{0}{ }^{\prime} . D_{0}^{\prime} \Rightarrow \wedge_{i} \llbracket \vdash p_{i} \downarrow \tau_{i}^{\prime} \rrbracket$ because we can drop $\bar{\beta}_{0} \doteq \bar{\beta}_{0}^{\prime}$ from premises.
7. (6) is equivalent to $C \wedge \bar{\alpha}_{0} \doteq \bar{\alpha}_{0}^{\prime} \vDash \varepsilon\left(\bar{\alpha}_{0}\right) \doteq \varepsilon\left(\bar{\alpha}_{0}^{\prime}\right) \wedge \forall \bar{\beta}_{0}^{\prime} \cdot D_{0}^{\prime} \Rightarrow$ $\wedge_{i} \llbracket p_{i} \downarrow \tau_{i}^{\prime} \rrbracket$ which by the nonempty domain property implies $C \wedge$ $\bar{\alpha}_{0} \doteq \bar{\alpha}_{0}^{\prime} \vDash \exists \bar{\alpha}_{0}^{\prime} . \varepsilon\left(\bar{\alpha}_{0}\right) \doteq \varepsilon\left(\bar{\alpha}_{0}^{\prime}\right) \wedge \forall \bar{\beta}_{0}^{\prime} . D_{0}^{\prime} \Rightarrow \wedge_{i} \llbracket \vdash p_{i} \downarrow \tau_{i}^{\prime} \rrbracket$.
8. Because by (6) we can drop $\bar{\alpha}_{0} \doteq \bar{\alpha}_{0}^{\prime}$ from premises, (7) is equivalent to $C \vDash \exists \bar{\alpha}_{0}^{\prime} . \varepsilon\left(\bar{\alpha}_{0}\right) \doteq \varepsilon\left(\bar{\alpha}_{0}^{\prime}\right) \wedge \forall \bar{\beta}_{0}{ }^{\prime} . D_{0}^{\prime} \Rightarrow \wedge_{i} \llbracket \vdash p_{i} \downarrow \tau_{i}^{\prime} \rrbracket$, which is the first part of the goal.
9. From (4), $C \wedge \bar{\alpha}_{0} \bar{\beta}_{0} \doteq \bar{\alpha}_{0}^{\prime} \bar{\beta}_{0}^{\prime} \vDash D_{0}^{\prime} \Rightarrow \forall \bar{\beta}_{1}^{\prime \prime} \ldots \bar{\beta}_{n}^{\prime \prime}$. $\wedge_{i} D_{i}^{\prime \prime} \Rightarrow$ $\exists \bar{\beta}_{1}^{\prime} \ldots \bar{\beta}_{n}^{\prime} . \wedge_{i}\left(D_{i}^{\prime} \wedge \Gamma_{i}^{\prime \prime} \doteq \Gamma_{i}^{\prime}\right)$.
10. From (9) by (2) and (6), $C \vDash \forall \bar{\alpha}_{0}^{\prime} \bar{\beta}_{0}^{\prime} \cdot \bar{\alpha}_{0} \bar{\beta}_{0} \doteq \bar{\alpha}_{0}^{\prime} \bar{\beta}_{0}^{\prime} \wedge D_{0}^{\prime} \Rightarrow$ $\forall \bar{\beta}_{1}^{\prime \prime} \ldots \bar{\beta}_{n}^{\prime \prime} . \wedge_{i} D_{i}^{\prime \prime} \Rightarrow \exists \bar{\beta}_{1}^{\prime} \ldots \bar{\beta}_{n}^{\prime} . \wedge_{i}\left(D_{i}^{\prime} \wedge \Gamma_{i}^{\prime \prime} \doteq \Gamma_{i}^{\prime}\right)$, which is equivalent to

$$
\begin{gathered}
C \vDash \forall \bar{\alpha}_{0}^{\prime} \bar{\beta}_{0}^{\prime} \bar{\beta}_{1}^{\prime \prime} \ldots \bar{\beta}_{n}^{\prime \prime} \cdot \bar{\alpha}_{0} \bar{\beta}_{0} \doteq \bar{\alpha}_{0}^{\prime} \bar{\beta}_{0}^{\prime} \wedge D_{0}^{\prime} \wedge_{i} D_{i}^{\prime \prime} \Rightarrow \\
\exists \bar{\beta}_{1}^{\prime} \ldots \bar{\beta}_{n}^{\prime} . \wedge_{i}\left(D_{i}^{\prime} \wedge \Gamma_{i}^{\prime \prime} \doteq \Gamma_{i}^{\prime}\right)
\end{gathered}
$$

11. Observe, that w.l.o.g. $\bar{\beta}^{\prime \prime}:=\bar{\alpha}_{0}^{\prime} \bar{\beta}_{0}^{\prime} \bar{\beta}_{1}^{\prime \prime} \ldots \bar{\beta}_{n}^{\prime \prime}$. Note by definition of $\llbracket \vdash p \uparrow \tau \rrbracket$, that $D^{\prime \prime}=\varepsilon\left(\bar{\alpha}_{0}\right) \doteq \varepsilon\left(\bar{\alpha}_{0}^{\prime}\right) \wedge D_{0}^{\prime} \wedge_{i} D_{i}^{\prime \prime}$. By the free generation property, $\vDash D^{\prime \prime} \Rightarrow \bar{\alpha}_{0} \doteq \bar{\alpha}_{0}^{\prime}$.
12. Observe, that $\Gamma^{\prime \prime} \doteq \Gamma^{\prime} \equiv \wedge_{i}\left(\Gamma_{i}^{\prime \prime} \doteq \Gamma_{i}^{\prime}\right)$ and $D^{\prime}=D_{0} \wedge_{i} D_{i}^{\prime}$. (10) and (11) imply

$$
C \vDash \forall \bar{\beta}^{\prime \prime} . \bar{\beta}_{0} \doteq \bar{\beta}_{0}^{\prime} \wedge D^{\prime \prime} \Rightarrow \exists \bar{\beta}_{1}^{\prime} \ldots \bar{\beta}_{n}^{\prime} . D^{\prime} \wedge \Gamma^{\prime \prime} \doteq \Gamma^{\prime}
$$

13. Also, $\bar{\beta}^{\prime}=\bar{\beta}_{0} \bar{\beta}_{1}^{\prime} \ldots \bar{\beta}_{n}^{\prime}$. Because $\bar{\beta}_{0} \# \mathrm{FV}\left(D^{\prime \prime}\right)$, because sorts are nonempty (12) gives $C \vDash \forall \bar{\beta}^{\prime \prime} . \bar{\alpha}_{0} \doteq \bar{\alpha}_{0}^{\prime} \wedge D^{\prime \prime} \Rightarrow \exists \bar{\beta}^{\prime} . D^{\prime} \wedge \Gamma^{\prime \prime} \doteq \Gamma^{\prime}$, the other part of the goal.

- Case p-EqIn.

1. p-EqIn's premises are: $C \vdash p: \tau^{\prime} \longrightarrow \Delta$, which by induction hypothesis gives $C \vDash \llbracket \vdash p \downarrow \tau^{\prime} \rrbracket$ and $C \vDash \Delta_{1}^{\prime} \leqslant \Delta$, for $\Delta_{1}^{\prime}=\exists \bar{\beta}_{1}^{\prime \prime}\left[D_{1}^{\prime \prime}\right] \Gamma_{1}^{\prime \prime}$
2. and $C \vDash \tau \doteq \tau^{\prime}$.
3. Observe by induction on p, that $C \wedge \tau \doteq \tau^{\prime} \vDash \llbracket \vdash p \downarrow \tau^{\prime} \rrbracket$ iff $C \wedge$ $\tau \doteq \tau^{\prime} \vDash \llbracket \vdash p \downarrow \tau \rrbracket$, which by (1) and (2) gives the first part of the goal.
4. Observe by induction on p, that $C \wedge \tau \doteq \tau^{\prime} \vDash \llbracket \vdash p \uparrow \tau \rrbracket \leqslant \llbracket \vdash p \uparrow \tau^{\prime} \rrbracket$, i.e. $C \wedge \tau \doteq \tau^{\prime} \vDash \Delta^{\prime} \leqslant \Delta_{1}^{\prime}$, which by (1), (2) and transitivity of \leqslant, proves the second part of the goal.

- Case p-SubOut follows by transitivity of \leqslant.
- Case p-Hide.

1. p-Hide's premises are $C^{\prime} \vdash p: \tau \longrightarrow \Delta$ and $\bar{\alpha}_{0} \# \mathrm{FV}(\tau, \Delta)$ for $C=\exists \bar{\alpha}_{0} . C^{\prime}$.
2. By inductive hypothesis, $C^{\prime} \vDash \llbracket \vdash p \downarrow \tau \rrbracket$ and $C^{\prime} \vDash \Delta^{\prime} \leqslant \Delta$.
3. By induction on $p, \mathrm{FV}(\llbracket \vdash p \downarrow \tau \rrbracket)=\mathrm{FV}(\tau)$.
4. By (1), (2) and (3) we have $C \vDash \llbracket \vdash p \downarrow \tau \rrbracket$.
5. By induction on $p, \mathrm{FV}\left(D^{\prime \prime}, \Gamma^{\prime \prime}\right) \subseteq \mathrm{FV}(\tau) \cup \bar{\beta}^{\prime \prime}$.
6. By (1), (2) and (3) we have $C \vDash \Delta^{\prime} \leqslant \Delta$.

Lemma 13. Let Γ be an environment and $\Gamma^{\prime}, \Gamma^{\prime \prime}$ be simple (i.e. monomorphic) environments. For any e, $\tau, C \wedge \Gamma^{\prime} \doteq \Gamma^{\prime \prime}, \Gamma \Gamma^{\prime} \vdash e: \tau$ iff $C \wedge \Gamma^{\prime} \doteq \Gamma^{\prime \prime}, \Gamma \Gamma^{\prime \prime} \vdash e: \tau$.

Proof. Consider a derivation of $C \wedge \Gamma^{\prime} \doteq \Gamma^{\prime \prime}, \Gamma \Gamma^{\prime} \vdash e: \tau$. The only case where Γ^{\prime} is referred to, is in the Var rule, which for a monomorphic environment simplifies to: $\Gamma^{\prime}(x)=\tau^{\prime} / C, \Gamma \Gamma^{\prime} \vdash x: \tau^{\prime}$. Replace Γ^{\prime} with $\Gamma^{\prime \prime}$ in judgements throughout the derivation. $\Gamma^{\prime}(x)=\tau^{\prime} / \operatorname{Var} C \wedge \Gamma^{\prime} \doteq \Gamma^{\prime \prime}, \Gamma \Gamma^{\prime \prime} \vdash x: \tau^{\prime}$ is not valid, correct it as $\Gamma^{\prime \prime}(x)=\tau^{\prime \prime} / \operatorname{var} C \wedge \Gamma^{\prime} \doteq \Gamma^{\prime \prime}, \Gamma \Gamma^{\prime \prime} \vdash x: \tau^{\prime \prime} /$ Equ $C \wedge \Gamma^{\prime} \doteq \Gamma^{\prime \prime}, \Gamma \Gamma^{\prime \prime} \vdash x: \tau^{\prime}$. Analogically follows the other direction of the equivalence of $C \wedge \Gamma^{\prime} \doteq \Gamma^{\prime \prime}, \Gamma \Gamma^{\prime} \vdash e: \tau$ and $C \wedge \Gamma^{\prime} \doteq \Gamma^{\prime \prime}, \Gamma \Gamma^{\prime \prime} \vdash e: \tau$.

Proof of theorem 2.

Proof. We proceed by induction on the derivation of $C, \Gamma \vdash$ ce: τ. To slightly simplify the proof, the induction is actually on the lexicographic ordering: (\# of structural rule applications Var, Cstr, Abs, App, LetRec, Clause; \# of nonstructural rule applications Equ, Hide, FElim, DisjElim). (The rules FElim and DisjElim are not needed when deriving the syntax-directed rules.)

- Case Var.

1. Var's first premise is $\Gamma(x)=\forall \beta[\exists \bar{\alpha} . D] . \beta$.
2. Var's second premise is $C \models D$.
3. The goal is: $\mathcal{I}, C \vDash \exists \beta^{\prime} \bar{\alpha}^{\prime} .\left(D\left[\beta \bar{\alpha}:=\beta^{\prime} \bar{\alpha}^{\prime}\right] \wedge \beta^{\prime} \doteq \tau\right)$, where w.l.o.g. $\beta^{\prime} \bar{\alpha}^{\prime} \# \mathrm{FV}(C, \Gamma, \tau, \beta, \bar{\alpha})$.
4. (3) follows from (2) by instantiating β to τ, because we assume that all sorts in \mathcal{M} are non-empty. We can take an empty interpretation $\mathcal{I}=\epsilon$.

- Case Cstr.

1. Cstr's premises are $C, \Gamma \vdash e_{i}: \tau_{i}, i=1, \ldots, n, C \vDash D$ and $K:: \forall \bar{\alpha} \bar{\beta}[D] . \tau_{1} \ldots \tau_{n} \rightarrow \varepsilon(\bar{\alpha}) . \quad \tau=\varepsilon(\bar{\alpha})$.
2. Let w.l.o.g. $\bar{\alpha}^{\prime} \bar{\beta}^{\prime} \# \mathrm{FV}(C, \Gamma, \tau)$. By weakening and Equ, (1) gives $C \wedge \bar{\alpha}^{\prime} \bar{\beta}^{\prime} \doteq \bar{\alpha} \bar{\beta}, \Gamma \vdash e_{i}: \tau_{i}\left[\bar{\alpha} \bar{\beta}:=\bar{\alpha}^{\prime} \bar{\beta}^{\prime}\right]$.
3. Let $\Phi_{i}=\llbracket \Gamma \vdash e_{i}: \tau_{i}\left[\bar{\alpha} \bar{\beta}:=\bar{\alpha}^{\prime} \bar{\beta}^{\prime}\right] \rrbracket$. By induction hypothesis, \mathcal{I}_{i}, $C \wedge \bar{\alpha}^{\prime} \bar{\beta}^{\prime} \doteq \overline{=} \bar{\beta} \bar{\beta} \vDash \Phi_{i}, i=1, \ldots, n$.
4. Observe, that (1) and (3) imply $\mathcal{I}_{i}, C \wedge \bar{\alpha}^{\prime} \bar{\beta}^{\prime} \doteq \bar{\alpha} \bar{\beta} \vDash \wedge_{i} \Phi_{i} \wedge$ $D\left[\bar{\alpha} \bar{\beta}:=\bar{\alpha}^{\prime} \bar{\beta}^{\prime}\right] \wedge \varepsilon\left(\bar{\alpha}^{\prime}\right) \doteq \varepsilon(\bar{\alpha})$.
5. By non-emptiness of sorts and because the premise $\operatorname{PV}(C, \Gamma)=\varnothing$ gives disjoint domains for the \mathcal{I}_{i}, (4) and (2) imply $\mathcal{I}_{1} \ldots \mathcal{I}_{n}$, $C \vDash \exists \bar{\alpha}^{\prime} \bar{\beta}^{\prime} . \wedge_{i} \Phi_{i} \wedge D\left[\bar{\alpha} \bar{\beta}:=\bar{\alpha}^{\prime} \bar{\beta}^{\prime}\right] \wedge \varepsilon\left(\bar{\alpha}^{\prime}\right) \doteq \varepsilon(\bar{\alpha})$.
6. By (1) and (5), $\mathcal{I}, C \vDash \llbracket \Gamma \vdash K e_{1} \ldots e_{n}: \tau \rrbracket$ for $\mathcal{I}=\mathcal{I}_{1} \ldots \mathcal{I}_{n}$.

- Case Abs. In this case, $\tau:=\tau_{1} \rightarrow \tau_{2}$.

1. Abs' premise is $C, \Gamma \vdash \bar{c}: \tau_{1} \rightarrow \tau_{2}$, which by induction hypothesis implies $\mathcal{I}_{i}, C \vDash \Phi_{i}$ for $\Phi_{i}=\llbracket \Gamma \vdash p_{i} . e_{i}: \tau_{1} \rightarrow \tau_{2} \rrbracket, i=1, \ldots, n$.
2. Let $\alpha_{1} \alpha_{2} \# \mathrm{FV}\left(C, \tau_{1}, \tau_{2}\right)$. Then, because sorts are nonempty, $C \vDash \exists \alpha_{1} \alpha_{2} .\left(C \wedge \alpha_{1} \doteq \tau_{1} \wedge \alpha_{2} \doteq \tau_{2}\right)$.
3. (1) and the premise implies $\mathcal{I}_{1} \mathcal{I}_{2}, C \wedge \alpha_{1} \doteq \tau_{1} \wedge \alpha_{2} \doteq \tau_{2} \vDash \wedge_{i} \Phi_{i} \wedge$ $\alpha_{1} \rightarrow \alpha_{2} \doteq \tau_{1} \rightarrow \tau_{2}$.
4. Combining (2) and (3), $\mathcal{I}_{1} \mathcal{I}_{2}, C \vDash \exists \alpha_{1} \alpha_{2} .\left(\wedge_{i} \Phi_{i} \wedge \alpha_{1} \rightarrow \alpha_{2} \doteq \tau_{1} \rightarrow \tau_{2}\right)$.
5. By (1) and (4), $\mathcal{I}_{1} \mathcal{I}_{2}, C \vDash \llbracket \Gamma \vdash \lambda \bar{c}: \tau \rrbracket$.

- Case App.

1. App's premises are $C, \Gamma \vdash e_{1}: \tau^{\prime} \rightarrow \tau$ and $C, \Gamma \vdash e_{2}: \tau^{\prime}$.
2. Pick w.l.o.g. $\alpha \notin \mathrm{FV}\left(C, \tau^{\prime}, \Gamma, \tau\right)$. By rule Equ, (1) implies $C \wedge \alpha \doteq \tau^{\prime}$, $\Gamma \vdash e_{1}: \alpha \rightarrow \tau$ and $C \wedge \alpha \doteq \tau^{\prime}, \Gamma \vdash e_{2}: \alpha$.
3. By induction hypothesis, (2) implies $\mathcal{I}_{i}, C \wedge \alpha \doteq \tau^{\prime} \vDash \Phi_{i}$ for $\Phi_{i}=$ $\llbracket \Gamma \vdash e_{i}: \tau_{i} \rrbracket, i=1,2, \tau_{1}:=\tau^{\prime} \rightarrow \tau, \tau_{2}:=\tau^{\prime}$.
4. By (2) and nonemptiness of sorts, we have $C \vDash \exists \alpha .\left(C \wedge \alpha \doteq \tau^{\prime}\right)$.
5. By (3), the premise and because $C \vDash D$ implies $\exists \alpha . C \vDash \exists \alpha . D$, we have $\mathcal{I}_{1} \mathcal{I}_{2}, \exists \alpha .\left(C \wedge \alpha \doteq \tau^{\prime}\right) \vDash \exists \alpha .\left(\Phi_{1} \wedge \Phi_{2}\right)$.
6. By (4) and (5), we have the goal $\mathcal{I}, C \vDash \llbracket \Gamma \vdash e_{1} e_{2}: \tau \rrbracket$ with $\mathcal{I}=\mathcal{I}_{1} \mathcal{I}_{2}$.

- Case LetRec. Let $\Gamma^{\prime}:=\Gamma\{x \mapsto \sigma\}$.

1. LetRec's premises are $C, \Gamma^{\prime} \vdash e_{1}: \sigma$, which can only be derived by Gen from $C^{\prime} \wedge D, \Gamma^{\prime} \vdash e_{1}: \beta$, where $\sigma=\forall \beta[\exists \bar{\alpha} . D] . \beta$ and $C=C^{\prime} \wedge \exists \beta \bar{\alpha} . D$; by induction hypothesis we get $\mathcal{I}_{1}, C^{\prime} \wedge D \vDash \Phi_{1}$ for $\Phi_{1}=\llbracket \Gamma^{\prime} \vdash e_{1}: \beta \rrbracket$;
2. and $C, \Gamma^{\prime} \vdash e_{2}: \tau$; by induction hypothesis we get $\mathcal{I}_{2}, C \vDash \Phi_{2}$ for $\Phi_{2}=\llbracket \Gamma^{\prime} \vdash e_{2}: \tau \rrbracket$.
3. $\beta \bar{\alpha} \# \mathrm{FV}\left(\Gamma, C^{\prime}\right)$. W.l.o.g., assume additionally that $\beta \bar{\alpha} \# \mathrm{FV}(\tau)$.
4. $\mathcal{I}_{1}, C^{\prime} \vDash \forall \beta .(\exists \bar{\alpha} . D) \Rightarrow \Phi_{1}$ iff $\mathcal{I}_{1}, C^{\prime} \vDash(\exists \bar{\alpha} . D) \Rightarrow \Phi_{1}$ iff \mathcal{I}_{1}, $C^{\prime} \vDash \forall \bar{\alpha} \cdot D \Rightarrow \Phi_{1}$ iff $\mathcal{I}_{1}, C^{\prime} \vDash D \Rightarrow \Phi_{1}$ iff $\mathcal{I}_{1}, C^{\prime} \wedge D \vDash \Phi_{1}$, which is exactly (1).
5. $\mathcal{I}_{2}, C^{\prime} \wedge \exists \beta \bar{\alpha} . D \vDash \forall \beta .(\exists \bar{\alpha} . D) \Rightarrow \Phi_{1}$ follows from (5), $\mathcal{I}_{2}, C^{\prime} \wedge$ $\exists \beta \bar{\alpha} . D \vDash \exists \beta . \exists \bar{\alpha} . D$, and $\mathcal{I}_{2}, C \vDash \Phi_{2}$ is exactly (2).
6. From (4), (5) and the premise, $\mathcal{I}_{1} \mathcal{I}_{2}, C \vDash\left(\forall \beta \cdot(\exists \bar{\alpha} . D) \Rightarrow \Phi_{1}\right) \wedge$ $(\exists \beta . \exists \bar{\alpha} . D) \wedge \Phi_{2}$.
7. Let $\mathcal{I}=\mathcal{I}_{1} \mathcal{I}_{2} ; \chi:=\exists \bar{\alpha} . D[\beta:=\delta]$, where $\chi \# \mathrm{PV}\left(\Gamma, \Phi_{1}, \Phi_{2}\right)$. (6) gives $\mathcal{I}, C \vDash\left(\forall \beta \cdot \chi(\beta) \Rightarrow \Phi_{1}\right) \wedge(\exists \beta \cdot \chi(\beta)) \wedge \Phi_{2}$, which is $\mathcal{I}, C \vDash \llbracket \Gamma \vdash$ letrec $x=e_{1}$ in $e_{2}: \tau \rrbracket$.

- Case Clause.

1. Clause's premises are: $C \vdash p: \tau_{1} \longrightarrow \exists \bar{\beta}[D] \Gamma^{\prime}$,
2. $C \wedge D, \Gamma \Gamma^{\prime} \vdash e: \tau_{2}$,
3. and $\bar{\beta} \# \mathrm{FV}\left(C, \Gamma, \tau_{2}\right)$.
4. Assume w.l.o.g. that $\bar{\beta} \# \mathrm{FV}\left(\tau_{1}\right)$.
5. Let $\llbracket \vdash p \uparrow \tau_{1} \rrbracket=\exists \bar{\beta}^{\prime}\left[D^{\prime}\right] \Gamma^{\prime \prime}$, where $\bar{\beta}^{\prime} \# \mathrm{FV}\left(\Gamma, C, \tau_{1}, \tau_{2}, \bar{\beta}\right)$.
6. By lemma 12, (1) and (5) gives $C \vDash \llbracket \vdash p \downarrow \tau_{1} \rrbracket$
7. and $C \vDash \forall \bar{\beta}^{\prime} . D^{\prime} \Rightarrow \exists \bar{\beta} \cdot D \wedge \Gamma^{\prime \prime} \doteq \Gamma^{\prime}$, which is equivalent to $C \wedge$ $D^{\prime} \vDash \exists \bar{\beta} . D \wedge \Gamma^{\prime \prime} \doteq \Gamma^{\prime}$.
8. By lemma $13,(2)$ implies $C \wedge D \wedge \Gamma^{\prime \prime} \doteq \Gamma^{\prime}, \Gamma \Gamma^{\prime \prime} \vdash e: \tau_{2}$.
9. By (3) and Hide, (8) implies $C \wedge \exists \bar{\beta} \cdot D \wedge \Gamma^{\prime \prime} \doteq \Gamma^{\prime}, \Gamma \Gamma^{\prime \prime} \vdash e: \tau_{2}$.
10. (7) and (9) imply $C \wedge D^{\prime}, \Gamma \Gamma^{\prime \prime} \vdash e: \tau_{2}$.
11. Which by induction hypothesis implies $\mathcal{I}, C \wedge D^{\prime} \vDash \Phi_{1}$ for $\Phi_{1}=$ $\llbracket \Gamma \Gamma^{\prime \prime} \vdash e: \tau_{2} \rrbracket$.
12. (6) and (11) give $\mathcal{I}, C \vDash \llbracket \vdash p \downarrow \tau_{1} \rrbracket \wedge \forall \bar{\beta}^{\prime} . D^{\prime} \Rightarrow \Phi_{1}$.

- Case Equ.

1. Equ's premises are $C, \Gamma \vdash$ ce: τ^{\prime}, which by induction hypothesis gives $\mathcal{I}, C \vDash \llbracket \Gamma \vdash e: \tau^{\prime} \rrbracket$,
2. and $C \vDash \tau^{\prime} \doteq \tau$.
3. Let $\Phi_{\tau}:=\llbracket \Gamma \vdash e: \tau \rrbracket$. Observe, that τ occurs in Φ_{τ} only as a subterm in a side of equation: $\doteq \tau, \doteq \ldots \rightarrow \tau, \doteq(\ldots \rightarrow(\ldots \rightarrow \tau) \ldots)$. Therefore, $\tau^{\prime} \doteq \tau \vDash \Phi_{\tau^{\prime}} \Leftrightarrow \Phi_{\tau}$.
4. (1), (2) and (3) imply that $\mathcal{I}, C \vDash \llbracket \Gamma \vdash e: \tau \rrbracket$.

- Case Hide.

1. Hide's premises are $C, \Gamma \vdash e: \tau$, that by induction hypothesis gives $\mathcal{I}, C \vDash \llbracket \Gamma \vdash e: \tau \rrbracket$,
2. and $\bar{\beta} \# \mathrm{FV}(\Gamma, \tau)$.
3. $\mathrm{By}(2)$, w.l.o.g. $\bar{\beta} \# \mathrm{FV}(\llbracket \Gamma \vdash e: \tau \rrbracket)$.
4. (1) implies that $\mathcal{I} \vDash \forall \bar{\beta} \cdot\left(C \Rightarrow \Phi_{1}\right)$ which by (3) is equivalent to \mathcal{I}, $\exists \bar{\beta} . C \vDash \llbracket \Gamma \vdash e: \tau \rrbracket$.

- Case FElim. $\mathcal{I}, \boldsymbol{F} \vDash \Phi$ holds for any Φ.
- Case DisjElim.

1. DisjElim premises are $C, \Gamma \vdash e: \tau$ and $D, \Gamma \vdash e: \tau$. Induction hypothesis gives $\mathcal{I}_{1}, C \vDash \llbracket \Gamma \vdash$ ce: $\tau \rrbracket$ and $\mathcal{I}_{2}, D \vDash \llbracket \Gamma \vdash$ ce: $\tau \rrbracket$ for some interpretations of predicate variables $\mathcal{I}_{1}, \mathcal{I}_{2}$.
2. Therefore, we have $\mathcal{I}, C \vee D \vDash \llbracket \Gamma \vdash$ ce: $\tau \rrbracket$, for both $\mathcal{I}=\mathcal{I}_{1}$ and $\mathcal{I}=\mathcal{I}_{2}$.

Proof of corollary 3.
Proof. $C, \Gamma \vdash$ ce: $\forall \bar{\alpha}[D] . \tau$ can only be derived by the Gen rule, therefore we have $C^{\prime} \wedge D, \Gamma \vdash e: \tau$ for $\bar{\alpha} \# \mathrm{FV}\left(\Gamma, C^{\prime}\right)$ and $C=C^{\prime} \wedge \exists \bar{\alpha} . D$. By theorem 2, there exists an interpretation \mathcal{I} such that $\mathcal{I}, C^{\prime} \wedge D \vDash \llbracket \Gamma \vdash e: \tau \rrbracket . \mathcal{I}, C^{\prime} \wedge D \vDash \llbracket \Gamma \vdash e: \tau \rrbracket$ iff $\mathcal{I} \vDash C^{\prime} \wedge D \Rightarrow \llbracket \Gamma \vdash e: \tau \rrbracket$ iff $\mathcal{I} \vDash \forall \bar{\alpha} . C^{\prime} \wedge D \Rightarrow \llbracket \Gamma \vdash e: \tau \rrbracket$ iff $\mathcal{I}, C^{\prime} \vDash \forall \bar{\alpha} . D \Rightarrow \llbracket \Gamma \vdash e: \tau \rrbracket$. Therefore $\mathcal{I}, C \vDash \forall \bar{\alpha} . D \Rightarrow \llbracket \Gamma \vdash e: \tau \rrbracket$.

5.2 Existential Types

Proof of theorem 5.
Proof. By inspecting table 5, note that $\lambda[K] e$ subexpressions are absent from $n(e)$. Thus \mathcal{I}_{e} is empty in all cases other than ExIntro. We therefore shorten these cases by not mentioning \mathcal{I}_{e} and Σ. Below we extend the inductive proofs with the cases for expressions introduced by, or rule applications of, ExIntro, LetIn and ExLetIn.

- Theorem 1 (Correctness) $\llbracket \Gamma, \Sigma_{0} \vdash$ ce: $\tau \rrbracket, \Gamma, \Sigma_{0} \vdash$ ce: τ. Case: $\mathcal{E}($ ce $) \neq \varnothing$.

1. Induction hypothesis states $\llbracket \Gamma, \Sigma \vdash n(e): \tau \rrbracket, \Gamma, \Sigma \vdash n(e): \tau$.
2. The goal follows by ExIntro.

- Theorem 1 (Correctness) Case: ce is let $p=e_{1}$ in e_{2}.

1. Induction hypothesis yields $\llbracket \Gamma \vdash K p . e_{2}: \alpha_{0} \rightarrow \tau \rrbracket, \Gamma \vdash K p . e_{2}: \alpha_{0} \rightarrow \tau$, $\llbracket \Gamma \vdash p . e_{2}: \alpha_{0} \rightarrow \tau \rrbracket, \Gamma \vdash p . e_{2}: \alpha_{0} \rightarrow \tau$ and $\llbracket \Gamma \vdash e_{1}: \alpha_{0} \rrbracket, \Gamma \vdash e_{1}: \alpha_{0}$.
2. By weakening, (1), Abs and App, we get $\llbracket \Gamma \vdash e_{1}: \alpha_{0} \rrbracket \wedge \llbracket \Gamma \vdash p . e_{2}$: $\alpha_{0} \rightarrow \tau \rrbracket \wedge \notin\left(\alpha_{0}\right), \Gamma \vdash \lambda\left(p . e_{2}\right) e_{1}: \tau$.
3. By ExLetIn we get $\llbracket \Gamma \vdash e_{1}: \alpha_{0} \rrbracket \wedge \llbracket \Gamma \vdash K p . e_{2}: \alpha_{0} \rightarrow \tau \rrbracket$, $\Gamma \vdash$ let $p=$ e_{1} in $e_{2}: \tau$, and by LetIn: $\llbracket \Gamma \vdash e_{1}: \alpha_{0} \rrbracket \wedge \llbracket \Gamma \vdash p . e_{2}: \alpha_{0} \rightarrow \tau \rrbracket \wedge \notin\left(\alpha_{0}\right)$, $\Gamma \vdash$ let $p=e_{1}$ in $e_{2}: \tau$.
4. By (3) and DisjElim we get $\left(\llbracket \Gamma \vdash e_{1}: \alpha_{0} \rrbracket \wedge \llbracket \Gamma \vdash\right.$ p. $e_{2}: \alpha_{0} \rightarrow \tau \rrbracket \wedge$ $\left.\mathcal{E}\left(\alpha_{0}\right)\right) \vee_{\mathcal{E}}\left(\llbracket \Gamma \vdash e_{1}: \alpha_{0} \rrbracket \wedge \llbracket \Gamma \vdash K p . e_{2}: \alpha_{0} \rightarrow \tau \rrbracket\right), \Gamma \vdash \operatorname{let} p=e_{1}$ in $e_{2}: \tau$ for $\mathcal{E}=\left\{K \mid K:: \forall \overline{\alpha_{K}} \bar{\beta}[E] . \tau \rightarrow \varepsilon_{K}\left(\overline{\alpha_{K}}\right)\right\}$.
5. By (4), weakening and Hide, we get the goal.

- Theorem 1 (Correctness) Case: ce is $e_{1} e_{2}$.

1. Let $\alpha \# \mathrm{FV}(\Gamma, \tau)$.
2. By the induction hypothesis, we have $\llbracket \Gamma \vdash e_{1}: \alpha \rightarrow \tau \rrbracket, \Gamma \vdash e_{1}: \alpha \rightarrow \tau$ and $\llbracket \Gamma \vdash e_{2}: \alpha \rrbracket, \Gamma \vdash e_{2}: \alpha$.
3. By weakening and App, this yields $\llbracket \Gamma \vdash e_{1}: \alpha \rightarrow \tau \rrbracket \wedge \llbracket \Gamma \vdash e_{2}: \alpha \rrbracket \wedge$ $\notin(\alpha), \Gamma \vdash e_{1} e_{2}: \tau$.
4. By Hide using (1), $\llbracket \Gamma \vdash e_{1} e_{2}: \tau \rrbracket, \Gamma \vdash e_{1} e_{2}: \tau$.

- Theorem 2 (Completeness) Case ExIntro: premise $C, \Gamma, \Sigma^{\prime} \vdash n(e): \tau$ for $\operatorname{Dom}\left(\Sigma^{\prime}\right) \backslash \operatorname{Dom}(\Sigma)=\mathcal{E}(e)$.

1. By induction hypothesis we have $\mathcal{I}_{u}, C \vDash \llbracket \Gamma, \Sigma^{\prime} \vdash n(e): \tau \rrbracket$.
2. Let $\Sigma_{1}=\Sigma \overline{K:: \forall \alpha_{K} \gamma_{K}\left[\chi_{K}\left(\gamma_{K}, \alpha_{K}\right)\right] . \gamma_{K} \rightarrow \varepsilon_{K}\left(\alpha_{K}\right)}$. The goal is \mathcal{I}_{u}, $C \vDash \mathcal{I}_{e}\left(\llbracket \Gamma, \Sigma_{1} \vdash n(e): \tau \rrbracket\right)\left[\overline{\varepsilon_{K}(\vec{\tau})}:=\overline{\varepsilon_{K}(\bar{\tau})}\right]$.
3. The goal follows by setting $\mathcal{I}_{e}=\Sigma^{\prime} / \Sigma$.

- Theorem 2 (Completeness) Case App.

1. App's premises are $C, \Gamma \vdash e_{1}: \tau^{\prime} \rightarrow \tau, C, \Gamma \vdash e_{2}: \tau^{\prime}$ and $C \vDash \notin\left(\tau^{\prime}\right)$.
2. Pick w.l.o.g. $\alpha \notin \mathrm{FV}\left(C, \tau^{\prime}, \Gamma, \tau\right)$. (1) implies $C \wedge \alpha \doteq \tau^{\prime} \vDash \notin(\alpha)$. By rule Equ, (1) implies $C \wedge \alpha \doteq \tau^{\prime}, \Gamma \vdash e_{1}: \alpha \rightarrow \tau$ and $C \wedge \alpha \doteq \tau^{\prime}, \Gamma \vdash e_{2}: \alpha$.
3. By induction hypothesis, (2) implies $\mathcal{I}_{i}, C \wedge \alpha \dot{=} \tau^{\prime} \vDash \Phi_{i}$ for $\Phi_{i}=$ $\llbracket \Gamma \vdash e_{i}: \tau_{i} \rrbracket, i=1,2, \tau_{1}:=\tau^{\prime} \rightarrow \tau, \tau_{2}:=\tau^{\prime}$.
4. By (2) and nonemptiness of sorts, we have $C \vDash \exists \alpha$. $\left(C \wedge \alpha \doteq \tau^{\prime}\right)$.
5. By (2), (3), and because $C \vDash D$ implies $\exists \alpha$. $C \vDash \exists \alpha$. D, we have $\mathcal{I}_{1} \mathcal{I}_{2}$, $\exists \alpha .\left(C \wedge \alpha \doteq \tau^{\prime}\right) \vDash \exists \alpha .\left(\Phi_{1} \wedge \Phi_{2} \wedge \notin(\alpha)\right)$.
6. By (4) and (5), we have the goal $\mathcal{I}, C \vDash \llbracket \Gamma \vdash e_{1} e_{2}: \tau \rrbracket$ with $\mathcal{I}=\mathcal{I}_{1} \mathcal{I}_{2}$.

- Theorem 2 (Completeness) Case LetIn: premise $C, \Gamma \vdash \operatorname{let} p=e_{1}$ in $e_{2}: \tau$.

1. LetIn's premise is: $C, \Gamma \vdash \lambda\left(p . e_{2}\right) e_{1}: \tau$,
2. derived by App and Abs from $C, \Gamma \vdash p . e_{2}: \tau^{\prime} \rightarrow \tau, C, \Gamma \vdash e_{1}: \tau^{\prime}$ and $C \vDash \notin\left(\tau^{\prime}\right)$.
3. Inductive hypothesis gives $\mathcal{I}_{1}, C \vDash \llbracket \Gamma \vdash p . e_{2}: \tau^{\prime} \rightarrow \tau \rrbracket$ and \mathcal{I}_{2}, $C \vDash \llbracket \Gamma \vdash e_{1}: \tau^{\prime} \rrbracket$.
4. (1) and (3) imply $\mathcal{I}_{1}, C \vDash \llbracket \Gamma \vdash p . e_{2}: \tau^{\prime} \rightarrow \tau \rrbracket \wedge \notin\left(\tau^{\prime}\right) \vee_{\mathcal{E}} \llbracket \Gamma \vdash K p . e_{2}$: $\alpha_{0} \rightarrow \tau \rrbracket$ as the first disjunct holds.
5. As the premise $\operatorname{PV}(C, \Gamma)=\varnothing$ gives disjoint domains for the \mathcal{I}_{i}, we have $\mathcal{I}, C \vDash \llbracket \Gamma \vdash e_{1}: \tau^{\prime} \rrbracket \wedge\left(\llbracket \Gamma \vdash p . e_{2}: \tau^{\prime} \rightarrow \tau \rrbracket \wedge \notin\left(\tau^{\prime}\right) \vee_{\mathcal{E}} \llbracket \Gamma \vdash K p . e_{2}\right.$: $\left.\tau^{\prime} \rightarrow \tau \rrbracket\right)$ for $\mathcal{I}=\mathcal{I}_{1} \mathcal{I}_{2}$.
6. $\mathcal{I}, C \vDash \exists \alpha_{0} . \llbracket \Gamma \vdash e_{1}: \alpha_{0} \rrbracket \wedge\left(\llbracket \Gamma \vdash p . e_{2}: \alpha_{0} \rightarrow \tau \rrbracket \wedge \notin\left(\alpha_{0}\right) \vee_{\mathcal{E}} \llbracket \Gamma \vdash K p . e_{2}\right.$: $\left.\alpha_{0} \rightarrow \tau \rrbracket\right)$ by abstracting $\alpha_{0}=\tau^{\prime}$.

- Theorem 2 (Completeness) Case ExLetIn: premise $C, \Gamma \vdash$ let $p=e_{1}$ in $e_{2}: \tau$.

1. ExLetIn's premises are: $C, \Gamma \vdash K p . e_{2}: \tau^{\prime} \rightarrow \tau$ and $C, \Gamma \vdash e_{1}: \tau^{\prime}$,
2. Inductive hypothesis gives $\mathcal{I}_{1}, C \vDash \llbracket \Gamma \vdash K p . e_{2}: \tau^{\prime} \rightarrow \tau \rrbracket$ and \mathcal{I}_{2}, $C \vDash \llbracket \Gamma \vdash e_{1}: \tau^{\prime} \rrbracket$.
3. (3) implies $\mathcal{I}_{1}, C \vDash \llbracket \Gamma \vdash p . e_{2}: \tau^{\prime} \rightarrow \tau \rrbracket \wedge \notin\left(\tau^{\prime}\right) \vee_{\mathcal{E}} \llbracket \Gamma \vdash K p . e_{2}: \tau^{\prime} \rightarrow \tau \rrbracket$ as one of the $\vee_{\mathcal{E}}$ disjuncts holds. The proof concludes as in the LetIn case.
