
GADTs for Invariants and Postconditions
by �ukasz Stafiniak

Institute of Computer Science
University of Wrocªaw

Abstract

We implemented a system that infers invariants as types of recursive
de�nitions, and postconditions as existential types. We present a Gen-
eralizedAlgebraic DataTypes type systemMMG(X) based onFrancois
Pottier and Vincent Simonet's HMG(X) but without type annotations.
We extend it to a language with existential types represented as implic-
itly de�ned and usedGADTs. We present the type inference problem as
satisfaction of secondorder constraints over amulti-sorted domain. The
InvarGenT system solves the constraints by iterated constraint abduc-
tion and disjunction elimination. It uses a Joint Constraint Abduction
under Quanti�er Pre�x algorithm for free terms, linear equations and
inequalities over rationals, and a "plug-in" algorithm for multisorted
domains. Disjunction elimination in case of free terms computes anti-
uni�cation and in case of rationals computes extended convex hull.

Keywords: invariant inference, type inference, GADTs, constraint
abduction

1 Introduction

Type systems are established natural deduction-style means to reason about
programs. Dependent types can represent arbitrarily complex properties as they
use the same language for both types and programs, the type of value returned
by a function can itself be a function of the argument. Generalized Algebraic
Data Types bring some of that expressivity to type systems that deal with data-
types. Type systems with GADTs introduce the ability to reason about return
type by case analysis of the input value, while keeping the bene�ts of a simple
semantics of types, for example deciding equality can be very simple. Existential
types are types that hide some information conveyed in a type, usually when that
information cannot be reconstructed in the type system. A part of the type will
often fail to be expressible in the simple language of types, it might even depend
on input to the program. GADTs express existential types by using local type
variables for the hidden parts of the type encapsulated in a GADT.

Our type system for GADTs di�ers from all others in that we do not require
any type (or invariant) annotations on expressions, even on recursive functions.
Our implementation: InvarGenT, see [19], di�ers from type systems in main-
stream functional languages also in that we include linear equations and inequali-
ties over rational numbers in the language of types, with the possibility to
introduce more domains in the future.

1

1.1 Demonstration

The concrete syntax of InvarGenT is similar to that of OCaml. The sort of a
type variable is identi�ed by the �rst letter of the variable. a,b,c,r,s,t,a1,... are
in the sort of terms, i.e. �types proper�. i,j,k,l,m,n,i1,... are in the sort of linear
arithmetics over rational numbers. Type constructors and value constructors
have the same syntax: capitalized name followed by a tuple of arguments. They
are introduced by newtype and newcons respectively. Values assumed into the
environment are introduced by external.

equal is a function comparing values provided representation of their types:

newtype Ty : type newtype Int newtype List : type
newcons Zero : Int newcons TInt : Ty Int
newcons Nil : 8a. List a
newcons TPair : 8a, b. Ty a * Ty b −! Ty (a, b)
newcons TList : 8a. Ty a −! Ty (List a)
newtype Bool newcons True : Bool newcons False : Bool
external eq_int : Int ! Int ! Bool
external b_and : Bool ! Bool ! Bool
external b_not : Bool ! Bool
external forall2 : 8a, b. (a!b!Bool) ! List a ! List b ! Bool

let rec equal = function
| TInt, TInt -> fun x y -> eq_int x y
| TPair (t1, t2), TPair (u1, u2) ->
(fun (x1, x2) (y1, y2) ->

b_and (equal (t1, u1) x1 y1)
(equal (t2, u2) x2 y2))

| TList t, TList u -> forall2 (equal (t, u))
| _ -> fun _ _ -> False

InvarGenT returns an unexpected type: equal: 8a,b.(Ty a, Ty b)!b!
b!Bool, one of four maximally general types of equal. This illustrates that
unrestricted type systems with GADTs lack principal typing property.

InvarGenT commits to a type of a toplevel de�nition before proceeding to
the next one, so sometimes we need to provide more information in the pro-
gram. Besides type annotations, there are two means to enrich the generated
constraints: assert false syntax for providing negative constraints, and test
syntax for including constraints of use cases with constraint of a de�nition. To
ensure only one maximally general type for equal, we use both. We add the lines:

| TInt, TList l -> (function Nil -> assert false)
| TList l, TInt -> (fun _ -> function Nil -> assert false)

test b_not (equal (TInt, TList TInt) Zero Nil)

Actually, InvarGenT returns the expected type equal:8a,b.(a,b)!a!b!
Bool when either the two assert false clauses or the test clause is added.

Now we demonstrate numerical invariants:

2 Section 1

newtype Binary : num newtype Carry : num
newcons Zero : Binary 0
newcons PZero : 8n[0�n]. Binary(n) −! Binary(n+n)
newcons POne : 8n[0�n]. Binary(n) −! Binary(n+n+1)
newcons CZero : Carry 0 newcons COne : Carry 1

let rec plus =
function CZero ->
(function Zero -> (fun b -> b)

| PZero a1 as a ->
(function Zero -> a

| PZero b1 -> PZero (plus CZero a1 b1)
| POne b1 -> POne (plus CZero a1 b1))

[:::truncated:::]

We get plus: 8i,j,k.Carry i!Binary j!Binary k!Binary (i+j+k).
We can introduce existential types directly in type declarations. To have

an existential type inferred, we have to use efunction or ematch expressions,
which di�er from function and match only in that the (return) type is an
existential type. To use a value of an existential type, we have to bind it with
a let..in expression. Otherwise, the existential type will not be unpacked. An
existential type will be automatically unpacked before being �repackaged� as
another existential type.

newtype Room newtype Yard newtype Village
newtype Castle : type newtype Place : type
newcons Room : Room −! Castle Room
newcons Yard : Yard −! Castle Yard
newcons CastleRoom : Room −! Place Room
newcons CastleYard : Yard −! Place Yard
newcons Village : Village −! Place Village
external wander : 8a. Place a ! 9b. Place b

let rec find_castle = efunction
| CastleRoom x -> Room x
| CastleYard x -> Yard x
| Village _ as x ->
let y = wander x in
find_castle y

We get find_castle: 8a. Place a! 9b. Castle b.
We end with a more practical existential type example:

newtype Bool newcons True : Bool newcons False : Bool
newtype List : type * num
newcons LNil : 8a. List(a, 0)
newcons LCons : 8n,a[0�n]. a * List(a, n) −! List(a, n+1)

Introduction 3

let rec filter = fun f ->
efunction LNil -> LNil
| LCons (x, xs) ->

ematch f x with
| True ->

let ys = filter f xs in
LCons (x, ys)

| False ->
filter f xs

We get filter:8a,i.(a!Bool)!List (a, i)! 9j[j�i].List (a, j).
Besides displaying types of toplevel de�nitions, InvarGenT also exports an

OCaml source �le with all the required GADT de�nitions and type annotations.

1.2 Contributions

We present the type inference problem for MMG(X), a Milner-Mycroft style
variant of the HMG(X) type system without subtyping, as satisfaction of second
order constraints over a multi-sorted domain. We provide a minimal extension
of this type system that enables inference and easy use of existential types.
Although introduction and elimination of existential types is not automated by
the inference process, it is seamlessly integrated into expressions. Due to space
constraints, the proofs are delegated to the appendix. We demonstrate several
use cases using the InvarGenT system, see [19]. This concludes contributions of
this publication. Below we list contributions brought by the InvarGenT system.

We revise our early work on abduction for multi-sorted domains from [18].
Our Joint Constraint Abduction under Quanti�er Pre�x algorithm builds on the
fully maximal SCA answers algorithm from [8], but thanks to backtracking it
can �nd answers to joint problems that are not fully maximal answers to each
implication in the joint problem. Our JCA algorithm for linear arithmetics is
novel.

We de�ne the Constraint Disjunction Elimination problem. In case of free
terms it is equivalent to anti-uni�cation and in case of linear equations and
inequalities it is equivalent to �nding extended convex hull. As we do for abduc-
tion, we provide a combination-of-domains algorithm for disjunction elimination.

We design and implement an algorithm solving for predicate variables of the
existential second order constraints generated for our type system. Details of all
algorithms can be found in [19].

1.3 Related work

In the tradition of the Milner-Mycroft type system (see [3]), we modify the
HMG(X) type system from [15] to MMG(X) by dropping the type speci�cations
on recursive de�nitions from program terms. We also naturally restrict it by
limiting the user-speci�ed and inferred invariant constraints to use conjunction
as the only logical connective. The traditional framework for loop invariant

4 Section 1

generation of [2] inspired the iterative aspect of our solver. While undecidability
of type inference for polymorphic recursion suggests that an unbounded number
of iterations might be needed, in practice abduction solves type inference for
polymorphic recursion in one go. Still, with an arithmetic sort, we need 3 to 5
iterations. If a bound on the number of iterations could be derived, it would
provide a proof of undecidability of constraint abduction.

Initially we were only aware of the work [4], which applies Dijkstra's weakest
precondition calculus to re�nement types. A work similar to ours could be done
by application of the weakest precondition calculus to the Hoare logic of [12],
with the conditions inserted by type inference.

The work in [17], although it is advertised as focused on dependent types, can
be seen as extending [4] with reasoning by Boolean cases. Their programming
language and type system is in several ways less expressive than the ML language
with polymorphic recursion and the full GADTs type system: no inductive types
(and therefore no pattern matching), re�nement predicates over integers only
instead of over arbitrary domains including types. Still, the inclusion of reasoning
by cases and development of methods to actually �nd the re�nement predicates,
make [17] closer to our results.

Our algorithm eliminates implications in a way similar to [16], but using a
slightly di�erent de�nition of abduction. Use of abduction in [16] is related to
the work in [7] and [8], where a more complete abduction algorithm is provided.
Our algorithm is extensible to any constraint domain, by providing an abduc-
tion algorithm and a quanti�ed conjunctive constraints solution algorithm. It
necessarily includes the domain of equations over (free) algebraic terms.

There is a surge of recent work on type inference for GADTs, not contributing
to our approach. Works such as [11] (older), [14], [6] and [5] modify the GADTs
type system to make it more amenable to type inference (rejecting some reason-
able programs as untypable), and develop less declarative inference algorithms.
These works also do not allow other domains (than the free term algebra) to
express invariants. [5] stands out from our point of view as it handles type
inference for polymorphic recursion (by iteration).

Abduction algorithm for the term algebra is provided in [8], and for the linear
arithmetic in [9], although further work driven by practical issues was needed.

In case of the free algebra of terms, constraint disjunction elimination reduces
to anti-uni�cation. Anti-uni�cation was �rst introduced by Plotkin [10] and
Reynolds [13]. [1] is a recent work on anti-uni�cation, with an example applica-
tion to invariant inference.

2 The Type System

We start by introducing notation. By the bar e� we denote a sequence (or a set,
depending on context) of elements e, by # we denote disjointness. With a free
index i, ei� denotes (e1; :::; en) for some n associated with the index i; similarly,
^i�i denotes �1^ :::^�n. For convenience, we treat a conjunction of atoms ^ici
as a set of atoms fc1; :::; cng.

The Type System 5

In some contexts, for a quanti�er pre�x Q we write Q to denote the set
of variables quanti�ed by Q. Let FV be a generic function returning the free
variables of any expression. For a quanti�er pre�x Q and variables x; y in Q,
by x<Q y we denote that x is to the left of y in Q and they are separated by a
quanti�er alternation, by x6Q y that it is not the case that y <Q x.

By �[�� := t�], �[� := t], or �[�1 := t1; :::;�n := tn], we denote a substitution
of terms t� for corresponding variables �� in the formula � (where �� and t�

are �nite sequences of the same length). By s�=_ t� we denote ^isi=_ ti, where
s� = (s1; :::; sn) and t� = (t1; :::; tn) for some n. When a substitution has a name,
for example S=[�� := t�], we write substitution application as S(�)=�[�� := t�];
we write S_ =��=_ t� ; and we denote the substitution S corresponding to a formula
A=S_ =��=_ t� by A~. We say that a substitution [�� := t�] agrees with a quanti�er
pre�x Q, when �Q:��=_ t� and in case of �1=_ �2 2 ��=_ t� for variables �1; �2, we
have �26Q�1.

2.1 The Language of Constraints

We are interested in a multisorted �rst-order language with equality L, inter-
preted in a given model M. The sort of terms or �types proper�, denoted sty,
plays a special role. In the current presentation, we will abstract from details of
the language, posing the necessary properties as assumptions.

Consider a (�rst-order) language L with a model M, the language of con-
straints for our type inference problem. Let � be an interpretation of types,
that is an assignment of elements of M to variables in the corresponding sort,
extended homomorphically to terms in the standard way. For�2L, letM; ���
denote the interpretation of a formula� in the modelM under the interpretation
�, in the standard way, for example M; � � �(t) if and only if �(�(t)) holds in
M, where predicate symbol � in L corresponds to predicate � in M, etc.

Add to L a set of unary predicates �(�), which stand for invariants of recursive
de�nitions in the constraints we will derive for type inference problems. Add
a set of binary predicates �K(�; �), which will be put as constraints of data
constructors K when we introduce inferred existential types. We call � and �K
predicate variables . Let PV1(�), resp. PV2(�) be the set of unary, resp. binary
predicate variables in any expression, and PV(�)=PV1(�)[PV2(�). We de�ne
solved form formulas to be existentially quanti�ed conjunctions of atoms 9�� :A
without predicate variables.

For a formula �, let �� =PV1(�), resp. �K =PV2(�), and let �(��;k), resp.
�K(�K;k ; �K;k

0) be all occurrences of �, resp. �K in �. We call an assignment
I = �� := 9���:F� ; �K := 9��K:FK an interpretation of predicate variables for �
when

1. 9��i:Fi 9��j:Fj are solved form formulas,

2. ����#FV(^k��;k) and �� 0��K#FV(^k�K;k ^k �K;k
0),

3. for every variable � 2 FV(F�)n����, there is a quanti�er that binds � at
every position of �(��;k) in �,

6 Section 2

4. FV(FK)� �� 0��K.
De�ne a statementM; I ; ��� by: I is an interpretation of predicate variables
for �, � is an interpretation of types, andM; ��I(�). De�ne M; I �� as: for
all interpretations of types �,M;I ; ���. De�neM�� as: for all interpretations
of predicate variables I for �,M;I ��. Often we write I ��, resp. ��, instead
of M; I � �, resp. M � �, since the model is �xed. We write I ; C � �, resp.
C ��, for I �C)�, resp. �C)�.

We say that a formula � is satis�able, if and only if there exists an interpre-
tation of predicate variables I for �, such that I �9FV(�):�. As seen above, we
extend the notion of substitution to handle predicate variable atoms, where the
replacement of each occurrence of a variable depends on the argument of that
variable. For interpretations of predicate variables I1;I2 with disjoint domains,
we write their composition I1I2(�)= I1(I2(�)).

Above we in e�ect introduce a Henkin semantics for existential second order
logic, tailored to our needs of invariant and postcondition inference.

2.2 The GADT Type System

By types � we mean terms of sort sty. De�ne type schemes � as 8�[D]:�, where
D is either a solved form formula 9�� :E or a predicate variable �(�), and � is
a variable of sort sty. A simple environment (or monomorphic environment)
maps variables x to types � . An environment (or polymorphic environment)
maps variables x to type schemes �. When a simple environment is appended to
an environment, we identify � and 8�[�=_ �]:� for � 2/ FV(�). When operations
pertaining to formulas are applied to a type scheme 8�[9�� :E]:� or 8�[�(�)]:�,
they are performed on the formula 9�� :E or �(�). When operations pertaining to
type schemes (types) are applied to (simple) environmentsΓ, they are performed
on the image of Γ. De�ne environment fragments � to be triples 9��[D]:Γ of
variables �� , atomic conjunctions D in L and simple environment Γ.

Unfortunately, our type inference algorithm does not handle disjunctive pat-
terns. We therefore do not introduce them in our type system.

First, we present the type system in the standard, natural deduction style.
The type judgement C;Γ` e: � or C;Γ` e:� is composed of a formula C without
predicate variables, an environment Γ, an expression e and a type � or type
scheme �. Not mentioned explicitly is a set of data constructors �, which is �xed
when typing an expression. If alternative sets of constructors are considered,
we make them explicit by writing C; Γ; � ` e: � . The intended meaning of the
type judgement C; Γ;� ` e: � is: for every interpretation I ; �, if I ; � �C, then
the expression e has a ground type �(�) in a ground environment �(I(Γ)); and
with constructors I(�) but this only becomes relevant starting from subsection
2.4. We de�ne validity of type judgements in table 5, where D is a conjunction
of atoms.

Note that the lack of the standard type schemes 8��[E]:� is only for the
simplicity of presentation, as they are equivalent to 8�[9�� :E ^ �=_ �]:�.

A data constructor K for a datatype " (recall that the sort sty holds
two categories of elements: datatypes and function types) has de�nition

The Type System 7

K ::8����[D]:�1 � ::: � �n! "(��) where FV(D; �1; :::; �n) � ���� . D is a solved
form formula 9�� 0:A.

� Patterns (syntax-directed)
p-Empty p-Wild
C ` 0: � −!9?[F]fg C ` 1: � −!9?[T]fg

p-And p-Var
8i C;�` pi: � −!�i

C ` p1^ p2: � −!�1��2
C `x: � −!9?[T]fx 7! � g

p-Cstr
8i C ^D ` pi: �i−!�i K ::8����[D]:�1� :::� �n! "(��) ��#FV(C)

C `Kp1:::pn: "(��)−!9��[D](�1� :::��n)

� Patterns (non-syntax-directed)
p-EqIn p-SubOut p-Hide
C ` p: � 0−!�
C � �=_ � 0
C ` p: � −!�

C ` p: � −!�0

C ��06�
C ` p: � −!�

C ` p: � −!�
��#FV(� ;�)
9��:C ` p: � −!�

� Expressions (syntax-directed)
Var Cstr LetIn

Γ(x)= 8�[9��:D]:� C �D
C;Γ`x: �

8iC;Γ` ei: �i C �D
K ::8����[D]:�1:::�n! "(��)

C;Γ`Ke1:::en: "(��)

C;Γ`�(p:e2) e1: �
C;Γ` let p= e1 in e2: �

App LetRec Abs
C;Γ` e1: � 0! �
C;Γ` e2: � 0

C;Γ` e1 e2: �

C;Γ0` e1: � C;Γ0` e2: �
�= 8�[9��:D]:� Γ0=Γfx 7! �g
C;Γ` letrec x= e1 in e2: �

8iC;Γ` ci: �1! �2
C;Γ`�(c1:::cn): �1! �2

� Expressions (non-syntax-directed)
Gen Inst DisjElim

C ^D;Γ` e: �
���#FV(Γ; C)

C ^9���:D;Γ` e:8�[9��:D]:�

C;Γ` e:8��[D]:� 0
C �D[�� :=��]
C;Γ` e: � 0[�� := ��]

C;Γ` e: � D;Γ` e: �
C _D;Γ` e: �

Hide Equ FElim
C;Γ` e: �
��#FV(Γ; �)
9��:C;Γ` e: �

C;Γ` e: �
C � �=_ � 0
C;Γ` e: � 0 F ;Γ` e: �

� Clauses
Clause
C ` p: �1−!9��[D]Γ0 C ^D;ΓΓ0` e: �2 ��#FV(C;Γ; �2)

C;Γ` p:e: �1! �2

Table 1. Typing rules

8 Section 2

At this point the construction LetIn is a syntactic sugar for single branch
patterns � if polymorphic let is needed, use LetRec. Note that DisjElim is
unrelated to Constraint Disjunction Elimination we introduce in a later section.

An expression e is well typed given Γ;� when PV(Γ;�)=? and C;Γ;�`e:�
holds for some satis�able constraint C. For simplicity, InvarGenT only admits
type and invariant annotations from the user on toplevel de�nitions. Toplevel
de�nitions in InvarGenT can be seen as a nesting of subsequent LetRec and
LetIn constructions in the scope of previous de�nitions, with the restriction that
the body of each de�nition is a well typed expression given Γ;� with FV(Γ)=?.

Now, we present type judgements declaratively by reducing them to con-
straints. For c� = pi:ei , JΓ` c�:�1!�2K :=^iJΓ` pi:ei: �1! �2K. (The presentation
is a little bit heavy due to explicit capture-avoidance conditions.)

� Patterns (constraint generation)
J`0#�K = T

J`1#�K = T

J`x#�K = T

J`p1^ p2#�K = J`p1#�K^J`p2#�K

J`Kp1:::pn#�K = 9�� 0:("(�� 0)=_ � ^
8�� 0:D[���� := �� 0�� 0])^iJpi#�i[���� := �� 0�� 0]K)

where K ::8����[D]:�1� :::� �n! "(��);

�� 0�� 0#FV(�; �)
� Patterns (environment fragment generation)

J`0"�K = 9?[F]fg

J`1"�K = 9?[T]fg

J`x"�K = 9?[T]fx 7! � g

J`p1^ p2"�K = J`p1"�K�J`p2"�K

J`Kp1:::pn"�K = 9�� 0�� 0["(�� 0)=_ � ^D[���� :=�� 0�� 0]]

(�iJpi"�i[���� := �� 0�� 0]K)

where K ::8����[D]:�1� :::� �n! "(��);

�� 0�� 0#FV(�; �)

Table 2. Type inference for patterns

The Type System 9

JΓ`x: �K = F when x2/ Dom(Γ)

JΓ`x: �K = 9� 0�� 0:D[��� := � 0�� 0]^ � 0=_ �

where Γ(x)= 8�[9�� :D]:�; � 0�� 0#FV(Γ; �)

JΓ`�c�: �K = 9�1�2:JΓ` c�:�1!�2K^�1!�2=_ � ;

�1�2#FV(Γ; �)

JΓ` e1 e2: �K = 9�:JΓ` e1:�! �K^ JΓ` e2:�K; �#FV(Γ; �)

JΓ`Ke1:::en: �K = 9�� 0�� 0:(^iJΓ` ei: �i[���� := �� 0�� 0]K^
D[���� := �� 0�� 0]^ "(�� 0)=_ �)

where �3K ::8����[D]:�1� :::� �n! "(��);

�� 0�� 0#FV(Γ; �)

JΓ` letrec x= e1 in e2: �K = (8�(�(�)) JΓfx 7! 8�[�(�)]:�g ` e1: �K))^
(9�:�(�))^ JΓfx 7! 8�[�(�)]:�g ` e2: �K

where �#FV(Γ; �); �#PV(Γ)

JΓ` p:e: �1! �2K = J`p#�1K^8�� :D) JΓΓ0` e: �2K

where 9��[D]Γ0 is J`p"�1K; ��#FV(Γ; �2)

JΓ` ce: 8��[D]:�K = 8�� 0:D[�� :=�� 0]) JΓ` ce: � [�� :=�� 0]K;
�� 0#FV(Γ)

Table 3. Type inference for expressions and clauses

The two presentations are equivalent, in the sense of theorems correctness
and completeness below.

10 Section 2

Theorem 1. Correctness (expressions). JΓ` ce: �K;Γ` ce: �.

Theorem 2. Completeness (expressions). If PV(C;Γ)=? and C;Γ`ce:�, then
there exists an interpretation of predicate variables I such that I ;C � JΓ` ce: �K.

Corollary 3. If C;Γ`ce:8��[D]:� and ��#FV(Γ), then there is an interpretation
I such that I ; C �8�� :D) JΓ` ce: �K.

2.3 Example: eval

Consider a short example function eval:

newtype Term : type newtype Int newtype Bool
external plus : Int ! Int ! Int
external is_zero : Int ! Bool
external if : 8a. Bool ! a ! a ! a
newcons Lit : Int −! Term Int
newcons Plus : Term Int * Term Int −! Term Int
newcons IsZero : Term Int −! Term Bool
newcons If : 8a. Term Bool * Term a * Term a −! Term a

let rec eval = function
| Lit i -> i
| IsZero x -> is_zero (eval x)
| Plus (x, y) -> plus (eval x) (eval y)
| If (b, t, e) -> if (eval b) (eval t) (eval e)

Constraint, with indentation showing scope of implication conclusions:

8t1.�1(t1) =)
9t3, t4. t3 ! t4 = t1 ^ 9t5. Term t5 = t3 ^
8t6. Term t6 = t3 ^ Int = t6 =) 9. Int = t4 ^
9t7. Term t7 = t3 ^
8t8. Term t8 = t3 ^ Bool = t8 =)
9t9. Int ! Bool = t9 ! t4 ^
9t10. 9t11. t11 = t10 ! t9 ^ �1(t11) ^ Term Int = t10 ^

9t12. (Term t12) = t3 ^
8t13. Term t13 = t3 ^ Int = t13 =)

The Type System 11

9t14. 9t17. Int ! Int ! Int = t17 ! t14 ! t4 ^
9t18. 9t19. t19 = t18 ! t17 ^ �1(t19) ^ Term Int = t18 ^
9t15. 9t16. t16 = t15 ! t14 ^ �1(t16) ^ Term Int = t15 ^

9t20. Term t20 = t3 ^
8t21. Term t21 = t3 =)
9t22. 9t25. 9t28.
9t31. Bool ! t31 ! t31 ! t31 = t28 ! t25 ! t22 ! t4 ^
9t29. 9t30. t30 = t29 ! t28 ^ �1(t30) ^ Term Bool = t29 ^
9t26. 9t27. t27 = t26 ! t25 ^ �1(t27) ^ Term t21 = t26 ^
9t23. 9t24. t24 = t23 ! t22 ^ �1(t24) ^ Term t21 = t23 ^

9t2. �1(t2)

Normalized and simpli�ed constraint, schematically Q:^i (Di=)Ci):

1| �1(t2)
2| �1(t1) =) t3 = Term t5 ^ t1 = Term t5 ! t4
3| (Term t21) = t3 ^ �1(t1) =) t24 = Term t21 ! t4 ^

t27 = (Term t21 ! t4) ^ t30 = Term Bool ! Bool ^ �1(t30) ^
�1(t27) ^ �1(t24)

4| Term t6 = t3 ^ Int = t6 ^ �1(t1) =) t4 = Int
5| Term t8 = t3 ^ Bool = t8 ^ �1(t1) =) t11 = Term Int ! Int ^

t4 = Bool ^ �1(t11)
6| Term t13 = t3 ^ Int = t13 ^ �1(t1) =) t16 = Term Int ! Int

^ t19 = Term Int ! Int ^ t4 = Int ^ �1(t19) ^ �1(t16)

Quanti�er structure is preserved separately. Implication branch 1 (with
empty premise) makes sure that the invariant for eval is satis�able. Branch
2 records that the argument of eval is a Term. Branch 3 covers the recur-
sive calls in if, ensuring that Term Bool ! Bool satis�es the invariant. Branch
4 says that the result for input Lit i is of type Int. Branch 5 is derived for
the case computing is_zero (eval x) given input IsZero x, and branch 6
for computing plus.

2.4 Existential Types

In context of GADTs, existential types play a prominent role, beyond the tra-
ditional role of abstraction in software engineering. Without existential types,
computations would need to express parameters of the output datatype invariant
as a function of parameters of the input datatype invariant. Since GADTs are
introduced to curtail the expressivity of types compared to full dependent type
systems, opportunities for such functional dependency are rare by design. We

12 Section 2

need the capacity in the type system to express whatever relations it can of the
resulting datatype parameters to the input datatype parameters. Traditionally
in GADTs we package the result into a custom datatype. This is tedious and
contrary to the bene�ts of type inference. We automate this process, in e�ect
introducing inferred existential types to our type system. Since the modi�cation
of the type system is minimal, formal guarantees carry over to it and it will be
familiar to users of GADTs.

Existential quanti�ers in argument positions of function types are redundant:
they can be lifted to be traditional, polymorphic variables constrained by the
invariant of the function. We prohibit the use of inferred existential types in
argument positions: it could only result from a mistake.

We introduce a new expression construct �[K]c� , where K is a value con-
structor, but is not available in concrete syntax, and c� are pattern matching
clauses. In the implementation, the parser introduces a freshK and forms �[K]c�
for efunction c� . �[K]c� is eliminated by a normalization step. We also intro-
duce a rule ExLetIn to the type system, responsible for elimination of existential
types. When K ::8����[E]:! "K(��)2� is such a data constructor absent from
concrete syntax, the pretty-printer for types prints "K(��) as (9��[E[�� := ��]]:),
or (9��[E[�� := ��]]:�e) when =_ �e2E.

Let l(e) de�ned in table 4 determine whether an expression introduces or
eliminates an existential type.

l(x) = F
l(�c�) = F

l(e1 e2) = l(e1)
l(Ke1:::en) = F

l(letrec x= e1 in e2) = l(e2)
l(�[K]pi:ei) = T

l(let p= e1 in e2) = T

Table 4. Does the expression introduce or eliminate an existential type?

Let all occurrences of �[K] in e use distinct K. Let n(e) := n(e;?), de�ned
in table 5, �atten nested introductions of existential types. Let E(e) := E(e;F),
de�ned in table 6, collect value constructors introduced for existential types.

n(e; K 0) = letx=n(e;?) inK 0x
when K 0=/ ?^ l(e)=F

n(x;?) = x
n(�c� ;?) = �(n(c;?))

n(e1 e2;K
0) = n(e1;K

0)n(e2;?)
n(Ke1:::en;?) = Kn(e1;?):::n(en;?)

n(letrec x= e1 in e2;K 0) = letrec x=n(e1;?) in n(e2;K 0)
n(p:e; K 0) = p:n(e; K 0)

n(�[K]c� ;?) = �(n(c;K))
n(�[K]c� ;K 0) = �(n(c;K 0))
when K 0=/ ?

n(let p= e1 in e2;K 0) = let p=n(e1;?) inn(e2;K 0)

Table 5. Flatten nested introductions of existential types

The Type System 13

E(x; v) = ?
E(�c� ; v) = [E(c;F)
E(e1 e2; v) = E(e1; v)[E(e2;F)

E(Ke1:::en; v) = [iE(ei;F)
E(letrec x= e1 in e2; v) = E(e1;F)[E(e2; v)

E(p:e; v) = E(e; v)
E(�[K]c� ;F) = fKg[E(c;T)
E(�[K]c� ;T) = [E(c;T)

E(let p= e1 in e2; v) = E(e1;F)[E(e2; v)
Table 6. Collect introduced value constructors

We put the normalization step into the type system as rule ExIntro. W.l.o.g.
ExIntro can be used once at the beginning of derivation. We add rule ExLetIn.
Although LetIn and ExLetIn resemble �syntactic sugar�, their application is
non-deterministic. We include value constructor environment in judgements to
faciliate the completeness proof. Me modify the rule App to exclude existential
types from function positions. We achieve that by introducing a new atomic
predicate E to the sort of terms, i.e. E(�)�^K:9�� :�=_ "K(��).

App ExLetIn ExIntro
C;Γ;�` e1: � 0! �

C;Γ;�` e2: � 0 C �E(� 0)
C;Γ;�` e1 e2: �

"K(��) in � C;Γ;�` e1: � 0
C;Γ;�`Kp:e2: � 0! �

C;Γ;�` let p= e1 in e2: �

Dom(�0)nDom(�)= E(e)
C;Γ;�0`n(e): �

C;Γ;�` e: �

Table 7. Added typing rules

De�nition 4. Let �=�0 [�e and �0=�0 [�e0 be sets of value constructors
related to each other as follows:

� PV2(�0)=?,

� �e=K ::8�KK[�K(K ; �K)]:K! "K(�K) ,

� and �e
0 =K ::8��K0 ��K0K[EK]:K! "K(��K

0)

where 9��K0 ��K0K:EK are solved form formulas. De�ne �0/� = Ie = [�K :=
9��K:FK] be FK=EK ^�K=_ �K 0 and ��K=��K

0 ��K
0 .

Note that by proposition 8, we do not lose generality by using single-argu-
ment datatypes "K(�) rather than the general form "K(��).

Normalization de�ned in table 5 is responsible for introduction of existential
types, but it also ensures that inferred existential types never directly contain
other existential types. This �attening of existential types has no downsides, and
enables the use of all information available to derive the postcondition, i.e. the
existential type. To �atten nested existential types, we rename constructorsK to
K 0 in n(�[K]c� ;K 0), and eliminate potential existential type before introducing
one in n(e; K 0) when K 0=/ ?^ l(e)=F .

14 Section 2

2.5 Type Inference Constraints for Existential Types

The type inference uses predicate variables to determine the existential condi-
tion. For the non-recursive call to J�K, we normalize the expression. We shorten
JΓ;�` �: �K to JΓ` �: �K.

JΓ` e1 e2: �K = 9�:JΓ`e1:�! �K^ JΓ`e2:�K^E(�);�#FV(Γ; �)

JΓ;�0` e: �K = JΓ;�`n(e): �K
when E(e) =/ ? where �=

�0K ::8�KK[�K(K ; �K)]:K! "K(�K)K2E(e)

JΓ` let p= e1 in e2: �K = 9�0:JΓ` e1:�0K^
(JΓ` p:e2:�0! �K^E(�0)_E JΓ`Kp:e2:�0! �K)

where E = fK jK ::8����[E]:�! "K(��)2�g
Table 8. Type inference for the added expressions

Our tools for solving second order constraints only handle conjunctions of
implications. We solve disjunctions early, which is problematic as selecting a
disjunct may require information hidden in other disjunctions or in predicate
variables. For example, in the normalization of constraints we need to associate
each unary predicate variable with at most one inferred existential type that
can occur as return type in its solution. The pragmatics we adopt in InvarGenT
is that whenever the JΓ ` p:e2: �0! �K disjunct coming from the LetIn rule is
satis�able with the rest of the constraint, we select it for the solution. One can
turn the pragmatics into semantics by adding premise C; Γ;� 0 �(p:e2) e1: � to
the ExLetIn rule, but it makes the formalism a bit more complex.

Theorem 5. Theorems 1 (Correctness) and 2 (Completeness) hold for the type
system extended with ExIntro and ExLetIn in the following sense.

Correctness: JΓ;�` ce: �K;Γ;�` ce: �.
Completeness: If PV(C;Γ;�)=? and C;Γ;�` ce: �, then there exist inter-

pretations of predicate variables Iu;Ie such that Dom(Iu) are unary, Dom(Ie)=
f�K jK 2E(ce)g, and Iu; C � Ie(JΓ;�` ce: �K)["K(�~) := "K(��)].

The set of value constructors is updated in InvarGenT after a toplevel de�-
nition with a well typed body: from�0 to�0, using the notation from de�nition 4.

2.6 Example: filter

Consider the function filter from the end of demonstration subsection.
Constraint with disjunctions already pruned, for conciseness:

The Type System 15

8t1.�2(t1) =)
9t3, t4. t3 ! t4 = t1 ^[:::truncated:::]
8n25, n26, t27.
List (t27, n25) = t5 ^ (n26 + 1) = n25 ^ 0 � n26 =)
9t28.9t30, t31. t30 ! t31 = t28 ! t6 ^ 9. Bool = t30 ^
Bool = t30 =)
9t32.9t33.9t34.
9t35. t35 = t34 ! t33 ! t32 ^ �2(t35) ^ t3 = t34 ^
E(t34) ^ List (t27, n26) = t33 ^ E(t33) ^
9t37. (92:�[�1(�, t37)].�) = t32 ^ 8t36.
8t38, t39. (92:�[�1(�, t39)].�) = t32 ^ �1(t38, t39) =)
9t40.9n41, n42, t43.
List (t43, n41) = t40 ^ n42 + 1 = n41 ^ 0 � n42 ^
t27 = t43 ^ t38 = List (t43, n42) ^
9t50, t51. (92:�[�1(�, t51)].�) = t31 ^
�1(t50, t51) ^ t40 = t50 ^ E(t40) ^[:::truncated:::]

Notation such as (92:�[�1(�, t51)].�) identi�es an occurrence of existen-
tial type, here "K2(t51) such that K2 ::8��[�1(�;�)]:�! "K2(�). Normalized and
simpli�ed constraint:

1| �2(t2)
2| �2(t1) =) t5 = List (t8, n7) ^ t1 = t3 ! List (t8, n7) ! t6
3| (92:�[�1(�, t39)].�) = t32 ^ �1(t38, t39) ^

List (t27, n25) = t5 ^ n26 + 1 = n25 ^ 0 � n26 ^ �2(t1) =)
t40 = t50 ^ t31 = (92:�[�1(�, t51)].�) ^ �1(t50, t51) ^
t38 = List (t27, n42) ^ t40 = List (t27, n41) ^
n42 + 1 = n41 ^ 0 � n42

4| (92:�[�1(�, t71)].�) = t64 ^ �1(t70, t71) ^
List (t27, n25) = t5 ^ n26 + 1 = n25 ^ 0 � n26 ^ �2(t1) =)
t72 = t70 ^ t31 = (92:�[�1(�, t73)].�) ^ �1(t72, t73)

5| List (t10, n9) = t5 ^ 0 = n9 ^ �2(t1) =) t11 = t20 ^
t6 = (92:�[�1(�, t21)].�) ^ �1(t20, t21) ^
t11 = List (t13, n12) ^ 0 = n12

6| List (t27, n25) = t5 ^ n26 + 1 = n25 ^ 0 � n26 ^ �2(t1) =)
t32 = (92:�[�1(�, t37)].�) ^ t64 = (92:�[�1(�, t69)].�) ^
t3 = t27 ! Bool ^ t31 = t6 ^
t35 = t3 ! List (t27, n26) ! t32 ^ �2(t35) ^
t67 = t3 ! List (t27, n26) ! t64 ^ �2(t67)

Branch 1 ensures that the invariant is satis�able. Branch 2 decomposes the
type of the recursive de�nition and ensures that the second argument is a list.
Branch 3 is the case of passed element: t38 is the type of the recursive call, and

16 Section 2

the length of resulting list n41 is increased. Branch 4 is the case of dropped
element: the result t72 and the recursive call result t70 coincide. Branch 5 is
the case of empty list. Branch 6 provides invariant information for branches 3
and 4: t35 is the type of recursive call with result t38 thanks to �1(t38, t39),
and t67 of call with result t70 thanks to �1(t70, t71).

3 Solving Second Order Constraints

Least Upper Bounds and Greatest Lower Bounds computations are the standard
tools for �nding unknowns involved in an order structure. In case of implicational
constraints, constraint abduction and constraint �disjunction elimination� belong
to this toolset. Simple Constraint Abduction under Quanti�er Pre�x is the task
of �nding for an implication Q:D) C, where Q is a quanti�er pre�x and D;
C are conjunctions of atoms, a weakest solved form formula 9�� :A such that
�(9�� :A)) (D)C), equivalently �(9�� :A)^D)C, �9FV(A; D;C):A^D^C
and �Q:A[�� := t�] for some t� . Joint Constraint Abduction under Q.P. handles
several implications, i.e. Q: ^i (Di) Ci), simultaneously. We need for each i:
�(9�� :A)^Di)Ci, �9FV(A;Di; Ci):A^Di^Ci and �Q:A[�� := t�] for some t� .
Constraint Disjunction Elimination answer to a disjunction _iDi of conjunctions
of atoms is a solved form formula 9�� :A such that for each i, �Di) 9�� :A.
The task of constraint disjunction elimination is simple: in case of terms, it is
anti-uni�cation, and in case of linear inequalities, it is extended convex hull
computation.

Short of enumerating all formulas, algorithms for �nding any constraint
abduction answer in the domain of (non-unary) free term algebra, and the
domain of linear equations, are not known to the author. The task becomes
easier when we restrict attention to fully maximal answers to Q:D) C: those
9�� :A for which (9�� :A ^ D), (C ^ D). The algorithms look at various com-
binations of atoms from D^C, and their �abstracted� variants.

Equipped with these tools, consider �rst solving for invariants � unary predi-
cates �(�). We want the invariants to be as weak as possible, to make the use of
the corresponding de�nitions as easy as possible: the weaker the invariant, the
more general the type of de�nition. We perform joint constraint abduction, and
divide the atoms of the answer 9�� :A into solutions to the predicate variables
A� and a remainder Ares=An [�A�, depending on the variables in the atoms
and so that the residuum holds under the quanti�ers: �Q:Ares. Note that a
predicate takes only one variable �(��) in premises. We substitute the result
Q: ^i (Di) Ci)[�� := A�[�� := �]] and repeat abduction � perform another
iteration of the main algorithm � just in case some the occurrences of 9�:�(�)^�
in conclusions, for example, bind � inside � with a term containing a universally
quanti�ed variable. It might be that the added constraints cannot all �t in next
iteration's �Q:Ares

0 and have to be part of next iteration's A�
0 . It seems to never

happen in practice.

Solving Second Order Constraints 17

For postconditions we want the strongest possible solutions, because stronger
postcondition provides more information at use sites of a de�nition. Therefore
we use disjunction elimination to initialize binary predicate variables �K(�; �)
without �hurting� the constraint. If required to make the residuum hold:�Q:Ares,
more atoms A�K can be added to a postcondition. Detailed documentation of
the algorithms can be found in [19].

4 Concluding Remarks

We have set out to develop an invariant and postcondition inference frame-
work around constraint based type inference for GADTs, utilizing a formulation
parametric w.r.t. the domain of constraints, leaving open what data properties
can be expressed. For the di�cult task of inference, rather than veri�cation, of
arbitrary invariants, we have given up decidability and principal types. Realizing
that �exibility of invariant inference requires abstract postconditions, we have
introduced implicitly generated existential types into the system.

As in traditional invariant inference, we allow the invariants be built in sev-
eral iteration steps. It turns out abduction usually �nds the invariants at once.
For technical reasons � collecting all information, we only start inference for sorts
other than terms in the second iteration. Some inference tasks, e.g.

flatten_pairs:8�; n[0�n]:List((�; �); n)!List(�; n+n)

require that our abduction algorithm, here for numerical equations, starts with
non-recursive branches only, and with the bootstrapped solution considers all
branches in the next iteration. But the reason is that our abduction algorithms
are built on fully maximal simple constraint abduction. If any maximally general
abduction answer could be considered, inference would again be solved in a
single (i.e. in the second) iteration. One could try justifying this e�ectiveness of
abduction by analysing what constraints are generated for recursive calls. On
the other hand, given an oracle for joint constraint abduction problems, a formal
argument could be made about semi-completeness of the solver (with oracle for
abduction) for unary predicate variables (i.e. without existential types) in the
single-sorted case, and correctness in general case. By correctness we mean that
when the algorithm stops iterating, if it returns �not solvable�, there is no answer,
and if it returns an answer, it is a correct answer; by semi-completeness, that it
stops if there is an answer.

In case of solving for both invariants and postconditions, the situation is
more complex. The postconditions are not guaranteed to change monotonically
between iterations. In practice, postconditions for terms are solved �at once�,
but convergence in the numerical domain has to be enforced by at some point
(e.g. in 5th iteration) dropping the atoms that change between iterations. At the
time of writing, inferring postconditions in InvarGenT is still work in progress.
Moreover, the implementation of InvarGenT leaves plenty of opportunities for
optimization.

18 Section 4

The author wishes to thank patient anonymous reviewers of an early attempt
to present these ideas.

Bibliography

[1] Peter Bulychev, Egor Kostylev and Vladimir Zakharov. Anti-uni�cation algorithms
and their applications in program analysis. In Amir Pnueli, Irina Virbitskaite and
Andrei Voronkov, editors, Perspectives of Systems Informatics, volume 5947 of Lec-
ture Notes in Computer Science, pages 413�423. Springer Berlin / Heidelberg, 2010.
10.1007/978-3-642-11486-135.

[2] P. Cousot and R.Cousot. Automatic synthesis of optimal invariant assertions: mathemat-
ical foundations. SIGPLAN Notices, 12(8):1�12, aug 1977.

[3] Fritz Henglein. Type inference with polymorphic recursion. ACM Trans. Program. Lang.
Syst., 15(2):253�289, 1993.

[4] Kenneth W. Knowles and Cormac Flanagan. Type reconstruction for general re�nement
types. In ESOP, volume 4421 of Lecture Notes in Computer Science, pages 505�519.
Springer, 2007.

[5] Chuan-kai Lin. Practical type inference for the GADT type system. PhD dissertation,
Portland State University, Department of Computer Science, 2010.

[6] Chuan-kai Lin and Tim Sheard. Pointwise generalized algebraic data types. InProceedings
of the 5th ACM SIGPLAN workshop on Types in language design and implementation,
TLDI '10, pages 51�62. New York, NY, USA, 2010. ACM.

[7] Michael Maher. Herbrand constraint abduction. In LICS '05: Proceedings of the 20th
Annual IEEE Symposium on Logic in Computer Science, pages 397�406. Washington,
DC, USA, 2005. IEEE Computer Society.

[8] Michael Maher and Ge Huang. On computing constraint abduction answers. In
Iliano Cervesato, Helmut Veith and Andrei Voronkov, editors, Logic for Programming,
Arti�cial Intelligence, and Reasoning, volume 5330 of Lecture Notes in Computer Sci-
ence, pages 421�435. Springer Berlin / Heidelberg, 2008. 10.1007/978-3-540-89439-130.

[9] MichaelJ. Maher. Abduction of linear arithmetic constraints. In Maurizio Gabbrielli and
Gopal Gupta, editors, Logic Programming, volume 3668 of Lecture Notes in Computer
Science, pages 174�188. Springer Berlin Heidelberg, 2005.

[10] G.D. Plotkin. A note on inductive generalization. Machine Intelligence, , 1969.

[11] François Pottier and Yann Régis-Gianas. Strati�ed type inference for generalized alge-
braic data types. In Conference record of the 33rd ACM SIGPLAN-SIGACT symposium
onPrinciples of programming languages, POPL '06, pages 232�244. New York, NY, USA,
2006. ACM.

[12] Yann Regis-Gianas and Francois Pottier. A Hoare logic for call-by-value functional pro-
grams. In Proceedings of the Ninth International Conference onMathematics of Program
Construction (MPC'08), volume 5133 of Lecture Notes in Computer Science, pages 305�
335. Springer, JUL 2008.

[13] J. C.Reynolds. Transformational systems and the algebraic structure of atomic formulas.
InMachine Intelligence. 1970.

[14] Tom Schrijvers, Simon Peyton Jones, Martin Sulzmann and Dimitrios Vytiniotis. Com-
plete and decidable type inference for gadts. In Proceedings of the 14th ACM SIGPLAN
international conference onFunctional programming, ICFP'09, pages 341�352. NewYork,
NY, USA, 2009. ACM.

Bibliography 19

[15] Vincent Simonet and Francois Pottier. A constraint-based approach to guarded algebraic
data types. ACM Transactions on Programming Languages and Systems, 29(1), JAN
2007.

[16] M. Sulzmann, T. Schrijvers and P. J. Stuckey. Type inference for GADTs via Herbrand
constraint abduction. Manuscript, July 2006.

[17] Hiroshi Unno and Naoki Kobayashi. Dependent type inference with interpolants. InPro-
ceedings of the 11th ACM SIGPLAN conference on Principles and practice of declarative
programming, PPDP '09, pages 277�288. New York, NY, USA, 2009. ACM.

[18] �ukasz Sta�niak. Joint constraint abduction problems. 2011. The International Work-
shop on Uni�cation.

[19] �ukasz Sta�niak. Invargent: implementation. Manuscript, 2013.
https://github.com/luksta�/invargent/blob/master/doc/invargent.pdf

20 Section

5 Appendix

5.1 The GADT Type System

Set � := 9��[D]:Γ and �0 := 9�� 0[D 0]:Γ0 such that ��#FV(Γ0), �� 0#FV(�) and
�� 0#C. Let C � �0 6 � denote C ^ D 0 � 9�� :(D ^x2Dom(Γ) Γ(x)=_ Γ

0(x)) when
Dom(Γ)=Dom(Γ0), and otherwise a falsehood (compare lemma 3.5 of [15]). Let
���0 denote 9��� 0� [D^D 0]:Γ[_ Γ0, and 9�� 0[D 0]� denote 9��� 0� [D^D 0]:Γ.

Proposition 6. Properties of environment fragments (see [15] lemma 3.15).

f-Hide. ��6 9�� :�.

f-Imply. C1)C2� [C1]�6 [C2]�.

f-Enrich. C)�16�2� [C]�16 [C]�2.

f-Ex. 8�� :�16�2� (9�� :�1)6 (9�� :�2).

f-And. �16�2����16���2.

Proposition 7. Constructor K ::8����[D]:�1� :::� �n! "(��) where D=9�� 0:A,
is equivalent to K ::8��i�[9���� 0:i�=_ �i� ^A]:1� :::� n! "(��).

Proposition 8. Constructors of the form K ::8�i���[D]:�1 � ::: � �n !
"(�i�) where D = 9�� 0:A, are equivalent to constructors of the form
K ::8���[9�i��� 0:�=_ �1 ! ::: ! �m ^ A]:1 � ::: � n ! "(�) when all uses
of "(�1; :::; �m) are translated to "(�1! :::! �m).

Lemma 9. Weakening (patterns and expressions). Assume C1�C2. If C2` p:
� −! � (resp. C2; Γ ` ce: �, C2; Γ ` ce: �) is derivable, then there exists a
derivation of C1 ` p: � −! � (resp. C1; Γ ` ce: �, C1; Γ ` ce: �) of the same
structure.

The lemma follows from transitivity of � (A�B and B �C imply A�C) by
induction on the structure of the derivation.

Lemma 10. If �� �0 and C ` p: � −!� (resp. C; Γ ` ce: �, C; Γ ` ce: �) is
derivable with constructors �, then the same derivation works with constructors
�0.

Lemma 11. Correctness (patterns). J`p#�K` p: � −! J`p"�K.

Proof. By induction on the structure of p.

� Cases 0, 1 and x: follow directly from p-Empty, p-Wild and p-Var respec-
tively.

� Case p1^ p2.
1. By the induction hypothesis, J`pi#�K` pi:� −! J`pi"�K for i=1;2.
2. By weakening and p-And we have the goal.

Appendix 21

� Case Kp1:::pn.

1. Let �3K ::8����[D]:�1� :::� �n! "(��).

2. By the induction hypothesis, J`pi#�iK ` pi: �i −! J`pi"�iK for
i=1; :::; n.

3. The p-Cstr rule says 8i (C ^ D ` pi: �i −! �i)/p-CstrC ` p:
"(��) −! 9��[D](�1 � ::: � �n), where �i := J`pi"�iK. Applying
it to (2) we get C ` p: "(��) −! 9��[D](�1 � ::: ��n) as long as
C ^D � J`pi#�iK.

4. Let �� 0�� 0#FV(�; �) and �i0 := �i[���� :=�� 0��
0];D 0 :=D[���� :=�� 0�� 0].

Let �i
0 be �i with unbound occurrences of ���� renamed to �� 0�� 0.

5. By weakening and p-EqIn, (3) gives ����=_ �� 0�� 0^ "(�� 0)=_ � ^C ` p:
� −!9��[D](�1� :::��n).

6. By proposition 6, transitivity of 6, and p-SubOut, we get
����=_ �� 0��

0^ "(�� 0)=_ � ^C ` p: � −!9�� 0�� 0[D 0](�1
0 � :::��n

0).

7. By applying p-Hide to (6) with C =��=_ �� 0^8�� 0:D 0)^iJ`pi#�i0K
and weakening, since w.l.o.g. ���� do not appear unbound in the
goal, and C ^ D � J`pi#�iK, we get the goal 9�� 0:"(�� 0)=_ � ^
8�� 0:D 0)^iJ`pi#�i0K` p: � −!9�� 0�� 0[D 0](�1

0 � :::��n
0). �

Proof of theorem 1.

Proof. By induction on the structure of ce.

� Case ce is x.

1. If x2/Dom(Γ), then the goal follows by applying FElim. Otherwise,
let Γ(x) be 8�[9�� :D]:�. By Var, D;Γ`x: �.

2. Let � 0�� 0#FV(Γ; �). By (1), weakening and Equ, ���=_ � 0�� 0^D 0^
� 0=_ � ;Γ`x: � , where D 0 :=D[��� := � 0�� 0].

3. By Hide and weakening, since w.l.o.g. ��� do not appear
unbounded in the goal, this implies the goal 9� 0�� 0:(D 0 ^ � 0=_ �);
Γ`x: � .

� Case ce is �c� where c� = (c1; :::; cn).

1. Let �1�2#FV(Γ; �).

2. Induction hypothesis yelds JΓ` ci:�1!�2K;Γ` ci:�1!�2.

3. By (2), weakening and Abs, JΓ` c�:�1!�2K;Γ`�c�:�1!�2.

4. By weakening and Equ, (3) implies JΓ` c�:�1!�2K^�1!�2=_ � ;
Γ`�c�: � .

5. By (1) and Hide, this implies JΓ`�c�: �K;Γ`�c�: � .
� Case ce is e1 e2.

1. Let �#FV(Γ; �).

22 Section 5

2. By the induction hypothesis, we have JΓ` e1:�! �K;Γ` e1:�! �
and JΓ` e2:�K;Γ` e2:�.

3. By weakening and App, this yields JΓ ` e1: �! �K ^ JΓ ` e2: �K;
Γ` e1 e2: � .

4. By Hide using (1), JΓ` e1 e2: �K;Γ` e1 e2: � .
� Case ce is Ke1 ::: en.

1. Let �3K ::8����[D]:�1� :::� �n! "(��).

2. By induction hypothesis and weakening for each i=1; :::; n

^jJΓ` ej: �jK^D^ "(��)=_ � ;Γ` ei: �i

3. Applying Cstr to (1) and (3) we obtain

^iJΓ` ei: �iK^D^ "(��)=_ � ;Γ`Ke1 ::: en: "(��)

4. Let �� 0�� 0#FV(Γ; �) and �i0 := �i[���� :=�� 0�� 0], D 0 :=D[��� := � 0�� 0].

����=_ �� 0��
0^i JΓ` ei: �i0K^D^ "(�� 0)=_ � ;Γ`Ke1 ::: en: "(�� 0)

5. By Equ, (1) Hide and weakening, since w.l.o.g. ���� do not appear
unbounded in the goal, JΓ`Ke1 ::: en: �K;Γ`Ke1 ::: en: � .

� Case ce is letrec x= e1 in e2.

1. Let ��#FV(Γ; �) and �#PV(Γ).

2. Let �= 8�[�(�)]:�, Γ0=Γfx 7! �g. By the induction hypothesis,
JΓ0` e1: �K;Γ0` e1: � and JΓ0` e2: �K;Γ0` e2: � .

3. Let D = 8�:(�(�)) JΓ0 ` e1: �K). Since D ^ �(�) implies
JΓ0 ` e1: �K, by weakening of (2), we have D ^ �(�); Γ0 ` e1: �.
From (1) we have �#FV(D; Γ0; �), by Gen we have D ^ 9�:�(�);
Γ0` e1: 8�[�(�)]:�, by (1) and renaming we have

D ^9�:�(�);Γ0` e1:�:

4. By weakening of both (2) and (3), and by LetRec, we have
JΓ` letrec x= e1 in e2: �K;Γ` letrec x= e1 in e2: � .

� Case ce is p:e.

1. � is of the form �1 ! �2. Write J`p"�1K as 9��[D]Γ0, where
��#FV(Γ; �1; �2).

2. By induction hypothesis, JΓΓ0` e: �2K;ΓΓ0` e: �2.
3. By lemma 11 and (1), we have J`p#�1K` p: �1−!9��[D]Γ0.

4. By instantiation of �� and weakening, (2) implies

JΓ` p:e: �K^D;ΓΓ0` e: �2

Appendix 23

5. By weakening, (3) implies JΓ` p:e: �K` p: �1−!9��[D]Γ0.
6. By (4), (5), (1), and Clause, we obtain JΓ` p:e: �K;Γ` p:e: � . �

Γ0=_ Γ00 stands for 8x 2 Dom(Γ0) [Dom(Γ00):Γ0(x)=_ Γ00(x) and is false when
Dom(Γ0) =/ Dom(Γ00). Recall that for � := 9��[D]:Γ and �0 := 9�� 0[D 0]:Γ0 such
that ��#FV(Γ0), �� 0#FV(�) and �� 0#C, C ��06� denotes C ^D 0 � 9�� :D ^
Γ=_ Γ0. Observe, that C ��06� i� C � 8�� 0:D 0)9�� :D^Γ=_ Γ0.

Lemma 12. Completeness (patterns). Let � = 9�� 0[D 0]Γ0 and J`p"�K =

9�� 00[D 00]Γ00 = �0. C ` p: � −! � implies C � J`p#�K and C � 8�� 00:D 00)
9�� 0:(D 0^Γ00=_ Γ0), i.e. C ��06�.

Proof. By induction on the derivation of C ` p:� −!�. To slightly simplify the
proof, the induction is actually on the lexicographic ordering: (# of applications
of p-Cstr, # of other rules applications).

� Cases p-Empty, p-Wild, p-Var. J`p#�K = T . J`p"�K and � coincide:
Γ00=Γ0, D 0=D 00=T and �9�� :Γ0=_ Γ0 holds because sorts are nonempty.

� Case p-And. In this case � = �1 � �2; ��
0 = ��1

0��2
0; D 0 = D1

0 ^ D2
0 ;

Γ0=Γ1
0[_ Γ20 .

1. p-And's premises are C ` pi: � −!�i, which by induction hypoth-
esis gives C � J`pi#�K and C � 8��i00:Di

00) 9��i0:(Di
0 ^ Γi00=_ Γi0) for

i=1; 2.

2. (1) gives C � J`p1^ p2#�K as J`p1^ p2#�K=J`p1#�K^ J`p2#�K.
3. J`p1^ p2"�K=J`p1"�K�J`p2"�K=9��100��200[D1

00^D2
00]Γ1

00[_ Γ200. We will
show C �8��100��200:D1

00^D2
00)9��10��20:(D1

0 ^D2
0 ^Γ100[_ Γ200=_ Γ10[_ Γ20).

4. Assume w.l.o.g. ��1
0#��2

0, ��1
00#��2

00. Applying (1) for i= 1; 2 gives
C �8��100��200:D1

00^D2
00)9��10��20:(D1

0 ^D2
0 ^Γ100=_ Γ10 ^Γ200=_ Γ20), which

completes the goal.

� Case p-Cstr. In this case � = 9��0[D0](�1 � ::: � �n), and � = "(��0),
where D0 :=DK[���� :=��0��0] for �3K ::8����[DK]:�1� :::��n!"(��) and
��0#FV(C).

1. p-Cstr's premises are C ^D0` pi: �i[���� :=��0��0]−!�i.

2. Let ��00��0
0#FV(� ; ���� ; ��0��0; C).

3. Let �i0 := �i[���� := ��0
0��0
0]. By weakening and p-EqIn, (1) gives

C ^D0^��0��0=_ ��00��00` pi: �i0−!�i.

4. By induction hypothesis we have C ^D0 ^ ��0��0=_ ��00��00 � J`pi#�i0K
and C ^ D0 ^ ��0��0=_ ��0

0��0
0 � 8��i00:Di

00) 9��i0:(Di
0 ^ Γi

00=_ Γi
0) for

i=1; :::; n.

5. Let D0
0 := DK[���� := ��0

0��0
0]. From (4) follows C ^

��0��0=_ ��0
0��0
0�D0

0)^iJ`pi#�i0K.

24 Section 5

6. W.l.o.g. ��0��0#FV(D0
0) ^iJ`pi#�i0K). (5) gives C ^

��0=_ ��0
0 � 8��00:D0

0) ^iJ`pi#�i0K because we can drop ��0=_ ��0
0 from

premises.

7. (6) is equivalent to C ^ ��0=_ ��0
0 � "(��0)=_ "(��0

0) ^ 8��00:D0
0)

^iJpi#�i0K which by the nonempty domain property implies C ^
��0=_ ��0

0� 9��00:"(��0)=_ "(��00)^8��00:D0
0)^iJ`pi#�i0K.

8. Because by (6) we can drop ��0=_ ��00 from premises, (7) is equivalent
to C � 9��00:"(��0)=_ "(��00) ^ 8��00:D0

0)^iJ`pi#�i0K, which is the �rst
part of the goal.

9. From (4), C ^ ��0��0=_ ��0
0��0
0 � D0

0) 8��100:::��n00: ^i Di
00)

9��10:::��n0:^i (Di
0^Γi00=_ Γi0).

10. From (9) by (2) and (6), C � 8��00��00:��0��0=_ ��00��00 ^ D0
0)

8��100:::��n00: ^i Di
00) 9��10:::��n0: ^i (Di

0 ^ Γi
00=_ Γi

0), which is equiv-
alent to

C �8��00��00��100:::��n00:��0��0=_ ��00��00^D0
0 ^iDi

00)
9��10:::��n0:^i (Di

0^Γi00=_ Γi0)

11. Observe, that w.l.o.g. �� 00 := ��0
0��0
0��1
00:::��n

00. Note by de�nition of
J`p"�K, that D 00= "(��0)=_ "(��00)^D0

0 ^iDi
00. By the free generation

property, �D 00)��0=_ ��0
0.

12. Observe, that Γ00=_ Γ0�^i(Γi00=_ Γi0) and D 0=D0^iDi
0. (10) and (11)

imply

C � 8�� 00:��0=_ ��00^D 00)9��10:::��n0:D 0^Γ00=_ Γ0

13. Also, �� 0 = ��0��1
0:::��n

0. Because ��0#FV(D 00), because sorts are
nonempty (12) gives C � 8�� 00:��0=_ ��00^D 00)9�� 0:D 0^Γ00=_ Γ0, the
other part of the goal.

� Case p-EqIn.

1. p-EqIn's premises are: C ` p:� 0−!�, which by induction hypoth-
esis gives C � J`p#� 0K and C ��1

0 6�, for �1
0 = 9��100[D1

00]Γ1
00

2. and C � �=_ � 0.
3. Observe by induction on p, that C ^ �=_ � 0 � J`p#� 0K i� C ^

�=_ � 0� J`p#�K, which by (1) and (2) gives the �rst part of the goal.

4. Observe by induction on p, that C ^ �=_ � 0� J`p"�K6 J`p"� 0K, i.e.
C ^ �=_ � 0��06�1

0 , which by (1), (2) and transitivity of 6, proves
the second part of the goal.

� Case p-SubOut follows by transitivity of 6.
� Case p-Hide.

1. p-Hide's premises are C 0 ` p: � −! � and ��0#FV(� ; �) for
C = 9��0:C 0.

Appendix 25

2. By inductive hypothesis, C 0� J`p#�K and C 0��06�.

3. By induction on p, FV(J`p#�K)=FV(�).

4. By (1), (2) and (3) we have C � J`p#�K.
5. By induction on p, FV(D 00;Γ00)�FV(�)[�� 00.

6. By (1), (2) and (3) we have C ��06�.

�

Lemma 13. Let Γ be an environment and Γ0;Γ00 be simple (i.e. monomorphic)
environments. For any e; �, C ^Γ0=_ Γ00;ΓΓ0` e: � i� C ^Γ0=_ Γ00;ΓΓ00` e: �.

Proof. Consider a derivation of C ^Γ0=_ Γ00;ΓΓ0` e:� . The only case where Γ0 is
referred to, is in the Var rule, which for a monomorphic environment simpli�es
to: Γ0(x) = � 0/C; ΓΓ0 ` x: � 0. Replace Γ0 with Γ00 in judgements throughout
the derivation. Γ0(x) = � 0/VarC ^ Γ0=_ Γ00; ΓΓ00 ` x: � 0 is not valid, correct it as
Γ00(x) = � 00/VarC ^ Γ0=_ Γ00; ΓΓ00 ` x: � 00/EquC ^ Γ0=_ Γ00; ΓΓ00 ` x: � 0. Analogically
follows the other direction of the equivalence of C ^ Γ0=_ Γ00; ΓΓ0 ` e: � and
C ^Γ0=_ Γ00;ΓΓ00` e: � . �

Proof of theorem 2.

Proof. We proceed by induction on the derivation of C; Γ ` ce: � . To slightly
simplify the proof, the induction is actually on the lexicographic ordering: (#
of structural rule applications Var, Cstr, Abs, App, LetRec, Clause; # of non-
structural rule applications Equ, Hide, FElim, DisjElim). (The rules FElim and
DisjElim are not needed when deriving the syntax-directed rules.)

� Case Var.

1. Var's �rst premise is Γ(x)=8�[9�� :D]:�.

2. Var's second premise is C �D.

3. The goal is: I ; C � 9� 0�� 0:(D[��� := � 0�� 0] ^ � 0=_ �), where w.l.o.g.
� 0�� 0#FV(C;Γ; � ; �; ��).

4. (3) follows from (2) by instantiating � to � , because we assume
that all sorts in M are non-empty. We can take an empty inter-
pretation I = �.

� Case Cstr.

1. Cstr's premises are C; Γ ` ei: �i, i = 1; :::; n, C � D and
K ::8����[D]:�1:::�n! "(��). � = "(��).

2. Let w.l.o.g. �� 0�� 0#FV(C; Γ; �). By weakening and Equ, (1) gives
C ^�� 0�� 0=_ ���� ;Γ` ei: �i[���� := �� 0�� 0].

3. Let �i = JΓ ` ei: �i[���� := �� 0�� 0]K. By induction hypothesis, Ii;
C ^�� 0�� 0=_ ���� ��i, i=1; :::; n.

26 Section 5

4. Observe, that (1) and (3) imply Ii; C ^ �� 0�� 0=_ ���� � ^i�i ^
D[���� := �� 0�� 0]^ "(�� 0)=_ "(��).

5. By non-emptiness of sorts and because the premise PV(C;Γ)=?
gives disjoint domains for the Ii, (4) and (2) imply I1:::In;
C � 9�� 0�� 0:^i�i^D[���� :=�� 0�� 0]^ "(�� 0)=_ "(��).

6. By (1) and (5), I ; C � JΓ`Ke1:::en: �K for I =I1:::In.
� Case Abs. In this case, � := �1! �2.

1. Abs' premise is C; Γ ` c�: �1! �2, which by induction hypothesis
implies Ii; C ��i for �i= JΓ` pi:ei: �1! �2K, i=1; :::; n.

2. Let �1�2#FV(C; �1; �2). Then, because sorts are nonempty,
C � 9�1�2:(C ^�1=_ �1^�2=_ �2).

3. (1) and the premise implies I1I2; C ^ �1=_ �1 ^ �2=_ �2 � ^i�i ^
�1!�2=_ �1! �2.

4. Combining (2) and (3), I1I2; C �9�1�2:(^i�i^�1!�2=_ �1! �2).

5. By (1) and (4), I1I2; C � JΓ`�c�: �K.
� Case App.

1. App's premises are C;Γ` e1: � 0! � and C;Γ` e2: � 0.
2. Pick w.l.o.g. �2/ FV(C;� 0;Γ; �). By rule Equ, (1) implies C ^�=_ � 0;

Γ` e1:�! � and C ^�=_ � 0;Γ` e2:�.
3. By induction hypothesis, (2) implies Ii; C ^ �=_ � 0 � �i for �i =
JΓ` ei: �iK, i=1; 2; �1 := � 0! � ; �2 := � 0.

4. By (2) and nonemptiness of sorts, we have C � 9�:(C ^�=_ � 0).
5. By (3), the premise and because C �D implies 9�:C � 9�:D, we

have I1I2; 9�:(C ^�=_ � 0)� 9�:(�1^�2).
6. By (4) and (5), we have the goal I ;C � JΓ` e1 e2: �K with I=I1I2.

� Case LetRec. Let Γ0 := Γfx 7!�g.
1. LetRec's premises are C; Γ0 ` e1: �, which can only be derived

by Gen from C 0 ^ D; Γ0 ` e1: �, where � = 8�[9�� :D]:� and
C = C 0 ^ 9��� :D; by induction hypothesis we get I1; C 0 ^D � �1
for �1= JΓ0` e1: �K;

2. and C; Γ0 ` e2: � ; by induction hypothesis we get I2; C � �2 for
�2= JΓ0` e2: �K.

3. ���#FV(Γ; C 0). W.l.o.g., assume additionally that ���#FV(�).

4. I1; C 0 � 8�:(9�� :D)) �1 i� I1; C 0 � (9�� :D)) �1 i� I1;
C 0 � 8�� :D) �1 i� I1; C 0 � D) �1 i� I1; C 0 ^ D � �1,
which is exactly (1).

5. I2; C 0 ^ 9��� :D � 8�:(9�� :D)) �1 follows from (5), I2; C 0 ^
9��� :D � 9�:9�� :D, and I2; C ��2 is exactly (2).

Appendix 27

6. From (4), (5) and the premise, I1I2; C � (8�:(9�� :D)) �1) ^
(9�:9�� :D)^�2.

7. Let I = I1I2; � := 9�� :D[� := �], where �#PV(Γ; �1; �2).
(6) gives I ; C � (8�:�(�)) �1) ^ (9�:�(�)) ^ �2, which is
I ; C � JΓ` letrec x= e1 in e2: �K.

� Case Clause.

1. Clause's premises are: C ` p: �1−!9��[D]Γ0,
2. C ^D;ΓΓ0` e: �2,

3. and ��#FV(C;Γ; �2).

4. Assume w.l.o.g. that ��#FV(�1).

5. Let J`p"�1K= 9� 0� [D 0]Γ00, where � 0�#FV(Γ; C; �1; �2; ��).

6. By lemma 12, (1) and (5) gives C � J`p#�1K
7. and C � 8� 0� :D 0) 9�� :D ^ Γ00=_ Γ0, which is equivalent to C ^

D 0� 9�� :D ^Γ00=_ Γ0.
8. By lemma 13, (2) implies C ^D^Γ00=_ Γ0;ΓΓ00` e: �2.
9. By (3) and Hide, (8) implies C ^9�� :D^Γ00=_ Γ0;ΓΓ00` e: �2.

10. (7) and (9) imply C ^D 0;ΓΓ00` e: �2.
11. Which by induction hypothesis implies I ; C ^ D 0 � �1 for �1 =

JΓΓ00` e: �2K.
12. (6) and (11) give I ; C � J`p#�1K^8� 0� :D 0)�1.

� Case Equ.

1. Equ's premises are C;Γ`ce:� 0, which by induction hypothesis gives
I ; C � JΓ` e: � 0K,

2. and C � � 0=_ � .
3. Let �� := JΓ`e:�K. Observe, that � occurs in �� only as a subterm

in a side of equation: =_ � , =_ :::! � , =_ (:::! (:::! �):::). Therefore,
� 0=_ � ��� 0,��.

4. (1), (2) and (3) imply that I ; C � JΓ` e: �K.
� Case Hide.

1. Hide's premises are C;Γ` e: � , that by induction hypothesis gives
I ; C � JΓ` e: �K,

2. and ��#FV(Γ; �).

3. By (2), w.l.o.g. ��#FV(JΓ` e: �K).
4. (1) implies that I � 8�� :(C)�1) which by (3) is equivalent to I ;
9�� :C � JΓ` e: �K.

28 Section 5

� Case FElim. I ;F �� holds for any �.

� Case DisjElim.

1. DisjElim premises are C; Γ ` e: � and D; Γ ` e: � . Induction
hypothesis gives I1; C � JΓ` ce: �K and I2; D � JΓ` ce: �K for some
interpretations of predicate variables I1; I2.

2. Therefore, we have I ; C _ D � JΓ ` ce: �K, for both I = I1 and
I = I2. �

Proof of corollary 3.

Proof. C; Γ ` ce: 8��[D]:� can only be derived by the Gen rule, therefore we
have C 0^D;Γ` e: � for ��#FV(Γ; C 0) and C =C 0^9�� :D. By theorem 2, there
exists an interpretation I such that I ;C 0^D� JΓ` e: �K. I ;C 0^D� JΓ` e: �K i�
I �C 0^D) JΓ` e: �K i� I �8�� :C 0^D) JΓ` e: �K i� I ; C 0�8�� :D) JΓ` e: �K.
Therefore I ; C � 8�� :D) JΓ` e: �K. �

5.2 Existential Types

Proof of theorem 5.

Proof. By inspecting table 5, note that �[K]e subexpressions are absent from
n(e). Thus Ie is empty in all cases other than ExIntro. We therefore shorten
these cases by not mentioning Ie and �. Below we extend the inductive proofs
with the cases for expressions introduced by, or rule applications of, ExIntro,
LetIn and ExLetIn.

� Theorem 1 (Correctness) JΓ;�0` ce: �K;Γ;�0` ce: � . Case: E(ce)=/ ?.
1. Induction hypothesis states JΓ;�`n(e): �K;Γ;�`n(e): � .
2. The goal follows by ExIntro.

� Theorem 1 (Correctness) Case: ce is let p= e1 in e2.

1. Induction hypothesis yields JΓ`Kp:e2:�0! �K;Γ`Kp:e2:�0! � ,
JΓ` p:e2:�0! �K;Γ` p:e2:�0! � and JΓ` e1:�0K;Γ` e1:�0.

2. By weakening, (1), Abs and App, we get JΓ ` e1: �0K ^ JΓ ` p:e2:
�0! �K^E(�0);Γ`�(p:e2)e1: � .

3. By ExLetIn we get JΓ ` e1: �0K ^ JΓ `Kp:e2: �0! �K; Γ ` let p=
e1 in e2: � , and by LetIn: JΓ ` e1:�0K^ JΓ ` p:e2:�0! �K^E(�0);
Γ` let p= e1 in e2: � .

4. By (3) and DisjElim we get (JΓ ` e1: �0K ^ JΓ ` p:e2: �0! �K ^
E(�0))_E (JΓ` e1:�0K^ JΓ`Kp:e2:�0! �K);Γ` let p= e1 in e2: �
for E = fK jK ::8�K��[E]:�! "K(�K)g.

5. By (4), weakening and Hide, we get the goal.

Appendix 29

� Theorem 1 (Correctness) Case: ce is e1 e2.

1. Let �#FV(Γ; �).

2. By the induction hypothesis, we have JΓ` e1:�! �K;Γ` e1:�! �
and JΓ` e2:�K;Γ` e2:�.

3. By weakening and App, this yields JΓ ` e1: �! �K ^ JΓ ` e2: �K ^
E(�);Γ` e1 e2: � .

4. By Hide using (1), JΓ` e1 e2: �K;Γ` e1 e2: � .
� Theorem 2 (Completeness) Case ExIntro: premise C; Γ; �0 ` n(e): � for

Dom(�0)nDom(�)= E(e).

1. By induction hypothesis we have Iu; C � JΓ;�0`n(e): �K.
2. Let �1=�K ::8�KK[�K(K ; �K)]:K! "K(�K). The goal is Iu;

C � Ie(JΓ;�1`n(e): �K)["K(�~) := "K(��)].

3. The goal follows by setting Ie=�0/�.

� Theorem 2 (Completeness) Case App.

1. App's premises are C;Γ` e1: � 0! � , C;Γ` e2: � 0 and C �E(� 0).
2. Pick w.l.o.g. �2/ FV(C; � 0;Γ; �). (1) implies C ^�=_ � 0�E(�). By

rule Equ, (1) implies C^�=_ � 0;Γ`e1:�!� and C^�=_ � 0;Γ`e2:�.

3. By induction hypothesis, (2) implies Ii; C ^ �=_ � 0 � �i for �i =
JΓ` ei: �iK, i=1; 2; �1 := � 0! � ; �2 := � 0.

4. By (2) and nonemptiness of sorts, we have C � 9�:(C ^�=_ � 0).
5. By (2), (3), and because C �D implies 9�:C �9�:D, we have I1I2;
9�:(C ^�=_ � 0)� 9�:(�1^�2^E(�)).

6. By (4) and (5), we have the goal I ;C � JΓ` e1 e2: �K with I=I1I2.
� Theorem 2 (Completeness) Case LetIn: premise C;Γ` let p= e1 in e2: � .

1. LetIn's premise is: C;Γ`�(p:e2) e1: � ,

2. derived by App and Abs from C; Γ ` p:e2: � 0! � , C; Γ` e1: � 0 and
C �E(� 0).

3. Inductive hypothesis gives I1; C � JΓ ` p:e2: � 0 ! �K and I2;
C � JΓ` e1: � 0K.

4. (1) and (3) imply I1; C � JΓ ` p:e2: � 0! �K^E(� 0) _E JΓ `Kp:e2:
�0! �K as the �rst disjunct holds.

5. As the premise PV(C;Γ)=? gives disjoint domains for the Ii, we
have I ; C � JΓ ` e1: � 0K^ (JΓ ` p:e2: � 0! �K^E(� 0) _E JΓ `Kp:e2:
� 0! �K) for I = I1I2.

6. I ; C � 9�0:JΓ ` e1:�0K^ (JΓ ` p:e2:�0! �K^E(�0)_E JΓ `Kp:e2:
�0! �K) by abstracting �0= � 0.

30 Section 5

� Theorem 2 (Completeness) Case ExLetIn:
premise C;Γ` let p= e1 in e2: � .

1. ExLetIn's premises are: C;Γ`Kp:e2: �
0! � and C;Γ` e1: � 0,

2. Inductive hypothesis gives I1; C � JΓ ` Kp:e2: � 0 ! �K and I2;
C � JΓ` e1: � 0K.

3. (3) implies I1; C � JΓ` p:e2: � 0! �K^E(� 0)_E JΓ`Kp:e2: �
0! �K

as one of the _E disjuncts holds. The proof concludes as in the
LetIn case. �

Appendix 31

	1 Introduction
	1.1 Demonstration
	1.2 Contributions
	1.3 Related work

	2 The Type System
	2.1 The Language of Constraints
	2.2 The GADT Type System
	2.3 Example: eval
	2.4 Existential Types
	2.5 Type Inference Constraints for Existential Types
	2.6 Example: filter

	3 Solving Second Order Constraints
	4 Concluding Remarks
	Bibliography
	5 Appendix
	5.1 The GADT Type System
	5.2 Existential Types

