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Abstract

Type systems for programming languages are both a �rst line of defense against programmer
mistakes, and an aid in structuring programs around data structures and functions that
manipulate them. Type systems are a natural formalism for language extensions that express
those aspects of program speci�cations which can be automatically, statically checked. Type
inference enhances programmer e�ciency and code adaptability by providing the types of
expressions to the programmer, rather than asking the programmer for the types. There
is a long line of research on automated program analysis and veri�cation by generating
speci�cations that a program does obey, for example generating loop invariants. This thesis
extends a familiar type system for functional programming languages and provides a type
inference algorithm that generates invariants and postconditions of recursive functions.

Generalized Algebraic Data Types (GADTs) extend polymorphic type systems by intro-
ducing reasoning by cases into type-checking of de�nitions by cases. We present a GADTs
type system MMG(X) based on François Pottier and Vincent Simonet's HMG(X) but
without type annotations. We extend it to a language with existential types represented
as implicitly de�ned and used GADTs. We show that the type inference problem reduces
to satisfaction of second order constraints.

We solve the constraints by iterating: (1) constraint generalization, which �nds most
speci�c common consequences; and (2) joint constraint abduction, which �nds most general
common explanations. Abduction is used to generate invariants, infer and check types.
Generalization is used to generate existential types, which serve as postconditions. The
constraints include linear arithmetic (equations and inequalities).

We called the system implementing these techniques InvarGenT. It solves a vast
majority of inference tasks we attempted, without type annotations. InvarGenT solves
nearly all meaningful GADTs inference tasks we tried, clearly more than all earlier type
inference implementations for GADTs. It also solves clearly more invariant and postcon-
dition inference tasks than the Liquid Types approach, except for some programs with higher-
order functions. In addition, we present a selection of new inference tasks, for programs
manipulating lists with length, binary numbers and AVL trees of imbalance 2. These pro-
grams can serve as baseline tests for future research on invariant and postcondition inference.

5





Streszczenie

Systemy typów dla j¦zyków programowania s¡ zarówno pierwsz¡ lini¡ obrony przed bª¦dami
programistycznymi, jak i pomoc¡ przy strukturowaniu programów wokóª struktur danych
oraz funkcji które nimi manipuluj¡. Systemy typów to dobry formalizm do wyra»ania tych
aspektów specy�kacji programów, które mog¡ by¢ automatycznie, statycznie sprawdzone.
Inferencja typów zwi¦ksza wydajno±¢ programisty i adaptowalno±¢ kodu dostarczaj¡c pro-
grami±cie typy wyra»e«, zamiast wymaga¢ podawania typów. Badania nad automatyczn¡
analiz¡ i wery�kacj¡ programów od dawna obejmowaªy mi¦dzy innymi generowanie specy-
�kacji speªnianych przez dane programy, na przykªad generowanie niezmienników p¦tli. Ta
praca rozszerza znany system typów dla j¦zyków funkcyjnych i podaje algorytm inferencji
typów, generuj¡cy niezmienniki i warunki ko«cowe funkcji rekurencyjnych.

Generalized Algebraic Data Types (GADTs) rozszerzaj¡ systemy typów polimor�cznych
o wnioskowanie przez przypadki podczas sprawdzania typu de�nicji przez przypadki. Prezen-
tuj¦ system typów MMG(X) z GADTs, oparty o system typów HMG(X) François Pottiera i
Vincenta Simoneta ale bez annotacji typami. Rozszerzam go do j¦zyka z typami egzystencjal-
nymi reprezentowanymi jako domy±lnie de�niowane i u»ywane struktury GADTs. Pokazuj¦
redukcj¦ problemu inferencji typów do speªnialno±ci wi¦zów drugiego rz¦du.

Wi¦zy drugiego rz¦du rozwi¡zuj¦ iteruj¡c dwa algorytmy: (1) generalizacj¦ wi¦zów, zna-
jduj¡c¡ najbardziej specy�czn¡ wspóln¡ konsekwencj¦ wi¦zów; (2) ª¡czn¡ abdukcj¦ wi¦zów,
znajduj¡ca najogólniejsze wspólne obja±nienie, przesªank¦ implikuj¡c¡ wi¦zy. Abdukcji u»y-
wamy gªównie do generowania niezmienników, inferencji i sprawdzania typów. Generalizacji
u»ywamy do generowania typów egzystencjalnych, sªu»¡cych jako warunki ko«cowe. Wi¦zy
obejmuj¡ arytmetyk¦ liniow¡ (równania i nierówno±ci).

System implementuj¡cy te techniki nazwaªem InvarGenT. Rozwi¡zuje on zdecydowan¡
wi¦kszo±¢ zada« inferencji które opracowaªem lub zaadaptowaªem, bez annotacji typami.
InvarGenT rozwi¡zuje zdecydowanie wi¦cej zada« inferencji typów dla GADTs ni» doty-
chczasowe systemy. Rozwi¡zuje te» wi¦cej problemów inferencji niezmienników i warunków
ko«cowych ni» podej±cie Liquid Types , je±li ograniczymy si¦ do zada« nie potrzebuj¡cych
inferencji niezmienników dla argumentów funkcji wy»szego rz¦du. Dodatkowo, prezentuj¦
kilka programów operuj¡cych na listach z dªugo±ci¡, liczbach binarnych i drzewach AVL
o niezbalansowaniu nie przekraczaj¡cym 2. Te programy mog¡ sªu»y¢ jako cz¦±¢ testów
dla przyszªych prac nad wszechstronnymi systemami inferencji niezmienników i warunków
ko«cowych.
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Chapter 1

Introduction

Type systems are established natural deduction-style means to specify programs. Dependent
types can represent arbitrarily complex properties as they use the same language for both
types and programs. The type of the value returned by a function can itself be a function of
the argument. Generalized Algebraic Data Types (GADTs) bring some of that expressiveness
to type systems with data-types and parametric polymorphism, by introducing the ability
to reason about the return type by case analysis on the input value. Work over the past
decade (Pottier and Régis-Gianas [36], Schrijvers, Peyton Jones, Sulzmann and Vytiniotis
[45], Lin and Sheard [23]) shows that type systems with GADTs can remain tractable from
a compiler implementer's perspective if appropriately constrained, i.e. have principal typings
and e�cient type inference. Our work is based on Simonet and Pottier [47] instead, which
is the most general presentation of GADTs. Our methods are computationally intensive and
involve search with backtracking. We expect to be able to infer types for more programs than
all of the e�ciency-oriented approaches. Our work could bear the title Type Inference for
GADTs and Existentials , but we stress that we do not compete with the work of [36], [45]
in particular. We are concerned with type inference for recursive de�nitions which are not
given their type beforehand. This polymorphic recursion problem has been tackled by [23]
with GADTs, by Schrijvers and Bruynooghe [44] without GADTs. The line of work following
Unno and Kobayashi [51] also tackles reconstruction of types for recursive de�nitions, but
without ADTs and without polymorphic recursion. Our intended usage is that the generated
types of recursive de�nitions be integrated into the source code, via integration with an IDE.

Existential types hide some information conveyed in a type. We may opt to use them to
expose a more abstract interface. However, sometimes we are forced to use existential types
to hide what cannot be expressed in the type system. GADTs provide existential types by
using local type variables for the hidden parts of the type encapsulated in a GADT. With
no other way to express existential types, programmers need to introduce by hand spurious
data-types for them. For example, if we want to hide the length of a list in OCaml, we
need to de�ne type _ elist = List : ('a, 'b) llist -> 'a elist, where ('a, 'b)
llist is the type of lists of length 'b with elements of type 'a. The type system in Xi and
Pfenning [57] for a language called Dependent ML, a precursor for GADTs, has a more light-
weight approach: explicit existential types. But [57] has limited type inference, and we �nd
its type system harder to grasp than the more recent presentations of GADTs. Knowles and
Flanagan [20] and Unno and Kobayashi [51] can be seen as performing type inference for
forms of existential types. We provide full reconstruction of existential types.
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The feedback provided by type inference makes strongly typed programming more con-
venient in several ways. It softens the learning curve by enabling learning of types by
experimentation. It facilitates rapid prototyping and code refactoring by reporting the types
of functions when the programmer experiments with invariants of data-types. Besides pro-
viding certain correctness guarantees, types also serve as documentation � it is good to
keep them around. If type inference results are incorporated in the source code, type checking
might su�ce during slow evolution of a code base, while the rich types document the code.

Our type system for GADTs di�ers from others in that we do not require any type
annotations on expressions, even on recursive functions. Inference in our implementation
sometimes requires guidance by assert clauses. Our implementation InvarGenT includes
linear arithmetic in the language used to express invariants and postconditions, with the pos-
sibility to introduce more domains in the future. The arithmetic properties are conjunctions
of equations and inequalities, where a side can be either a linear combination, or a maximum
or minimum of (at most two) linear combinations.

Example 1.1. We can easily specify the data-type of AVL trees with height imbalance of
at most 2:

datatype Avl : type * num
datacons Empty : 8a. Avl (a, 0)
datacons Node : 8a,k,m,n
[k=max(m,n) ^ 06m ^ 06n ^ n6m+2 ^ m6n+2].

Avl (a, m) * a * Avl (a, n) * Num (k+1)
¡! Avl (a, k+1)

A similar de�nition can be given in the DML and ATS languages by Hongwei Xi (see
[57]). Given this type de�nition and AVL tree algorithms, InvarGenT automatically �nds
out that the height of a tree with added element can be the same as original tree or bigger
by 1, and that removing an element can decrease the height of a tree by at most 1, returning,
among others, the types:

add :
8a,n.a!Avl(a, n)!9k[k6n+1 ^ 16k ^ n6k].Avl(a, k)

remove :
8a,n.a!Avl(a, n)!9k[n6k+1 ^ 06k ^ k6n].Avl(a, k)

There are no places requiring type annotations or informative assertions in the source
code of AVL tree algorithms including the above functions and their helper functions.

We reduce the type inference task to second order constraint satisfaction, which in
addition to �nding substitutions for �rst order variables, �nds solutions to the predicate
unknowns. As the predicate-�nding techniques that we present in Chapter 4 (especially
abduction) improve, type inference will work for more programs. The downside is that
we do not specify declaratively the limitations of type inference. That is, while we provide
some guarantees that our approach to inference does not overlook solutions (completeness-
like result at the end of Section 4.5), there is no concise formulation of when type infer-
ence succeeds.
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Constraints appear in three contexts in programs and inferred signatures:

� In speci�cations of value constructors (symbolically K ::8��[D]:�1� :::� �n¡! "(��)).
We call the constraint (i.e. D) the invariant (of K).

� In type schemes, which usually are signatures of values (symbolically x:8a�[D]:�). We
call the constraint (i.e. D) the invariant or the precondition (of x), interchangeably.

� In existential types (symbolically 9��[D]:�); existential types usually occur in result
positions of function types in type schemes. We call the constraint (i.e. D) the post-
condition (of the corresponding function or computation).

1.1. Contributions

In order to implement InvarGenT, we needed to resolve several issues, leading to our
contributions:

� Design a type system that captures invariants (Section 3.2) and postconditions (Sec-
tion 3.4).

� Reduce type inference to satisfaction of second order constraints (Sections 3.3 and
3.5).

� Employ invariant-�nding abduction and postcondition-�nding generalization in an
algorithm that reconstructs correct types (Section 4.1).

� Develop constraint abduction algorithms that handle universally quanti�ed variables
(Section 4.2).

� Develop constraint generalization algorithms. Constraint generalization computes
anti-uni�cation in case of free terms and extended convex hull in case of linear inequal-
ities (Section 4.3).

To summarize, the novelty of our work lies in:

1. performing type inference for GADTs with polymorphic recursion for more programs
than in prior work ([23]),

2. introducing existentials into the GADT type system with minimal added complexity,
by using GADT encodings, and performing type inference for them,

3. implementing the type inference over a constraint domain with linear arithmetics,
thus performing numerical precondition and postcondition generation for recursive
functions (in a di�erent manner than in Rondon, Kawaguchi and Jhala [41]).

We discuss related work in Chapter 2 and Section 6.1. There remains work to be done, as
we discuss in Section 5.2 and Section 6.2.
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InvarGenT can be found at https://github.com/lukstafi/invargent. It solves a
vast majority of inference tasks we attempted, without type annotations. InvarGenT solves
all but 3 tasks from Lin [22] (2 unsolved are practical, one of them is solved after a slight
meaning-preserving modification); the system from [22] does not solve 8 of those tasks
(7 unsolved are practical). We translated into InvarGenT all but 3 tasks from Rondon,
Kawaguchi and Jhala [41] � all tasks that [41] uses for comparison with Xi and Pfenning's
DML system [57], [56]. InvarGenT solves all but 2 of these inference tasks without any
type annotation, and solves the remaining 2 tasks after a slight meaning-preserving change
to the programs (still without any type annotation). The system DSolve from [41] imple-
menting the Liquid Types approach needs a type annotation for 3 of these inference tasks.
The inference times of InvarGenT and DSolve are of the same order. Overall, the Invar-
GenT approach solves clearly more inference tasks than the Liquid Types approach, when
the programs do not have higher-order functions that require universally quanti�ed invari-
ants for arguments, including existentially quanti�ed invariants for arguments of arguments.
In addition, we present a selection of new inference tasks, for programs manipulating lists
with length, binary numbers and AVL trees of imbalance 2. They can serve as a base-
line for future research. We expect that some of them are beyond the capabilities of any
current type inference system, except InvarGenT. DSolve does not introduce new linear
combinations into generated constraints, therefore will not solve some of these inference
tasks. The recent system SpecLearn, see He Zhu, Aditya Nori and Suresh Jagannathan [60],
cannot solve tasks like the AVL trees example, without any type annotations or assertions.

1.2. Examples

To motivate the language constructs and type system rules, we start with some examples.
The concrete syntax of InvarGenT is similar to that of OCaml. The sort of a type variable
is identi�ed by the �rst letter of the variable. a,b,c,r,s,t,a1,... are in the sort of �proper�
types. i,j,k,l,m,n,i1,... are in the sort of linear arithmetic over rational numbers. Type
constructors and value constructors have the same syntax: capitalized name followed by a
tuple of arguments. They are introduced by the keywords datatype and datacons respec-
tively. The result sort of datatype is always type and is omitted. By toplevel of a source
�le we mean the environment of names available for potential code appended to the end of
the �le. Values assumed into the toplevel without InvarGenT de�nition are introduced by
the keyword external.

We can introduce existential types directly in type declarations. To have an existential
type inferred, we have to use efunction, ematch or eif expressions, which di�er from
function, match and if correspondingly only in that the (return) type is an existential
type. To use, i.e. unpack, a value of an existential type, we have to bind it with a let..in
expression. An existential type will be automatically unpacked before being �repackaged�
as another existential type. In a future version, it might be possible to use existential types
without explicit introduction (the efunction, ematch or eif syntax) and explicit elimination
(the need of let..in expressions) at a cost of longer inference times.
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datatype Z
datatype I : type
datatype O : type
datatype Binary : type
datacons BinaryZ : Binary Z
datacons BinaryO : 8a. Binary a ¡! Binary (O a)
datacons BinaryI : 8a. Binary a ¡! Binary (I a)

let rec erase_zeros = efunction
| BinaryZ -> BinaryI BinaryZ
| BinaryO x -> erase_zeros x
| BinaryI x -> let y = erase_zeros x in BinaryI y

Table 1.1. Use of existential types

Example 1.2. Table 1.1 de�nes an arti�cial example using phantom types (i.e. types
used for type information, without values), resembling binary numbers. The function
erase_zeros erases the �zeros� BinaryO and adds one BinaryI.

We get erase_zeros:8a.Binary a!9a.Binary (I a). The resulting type forgets the
shape of the content, other than the fact that it starts with a BinaryI. The �rst branch of
erase_zeros returns a value directly. The second branch directly performs the recursive call
� the existential type of the result is unpacked and �repackaged�. The third branch unpacks
the result of the recusrive call explicitly. By design, the inlined variant | BinaryI x ->
BinaryI (erase_zeros x) would not type-check. The type system does not allow passing
values of existential types as arguments.

InvarGenT commits to a type of a toplevel de�nition before proceeding to the next
one, so sometimes we need to provide more information in the program. Besides type anno-
tations, there are three means to enrich the generated constraints: assert false indicates
an unreachable code location and provides a negative constraint, assert num e1<=e2 and
assert type e1=e2 provide positive constraints, and the test syntax includes constraints
of the use cases appearing after test with the constraint of a toplevel de�nition.

Example 1.3. Table 1.2 de�nes a function equal comparing values provided representation
of their types. The value constructors TInt, TPair, TList are used to represent the types
of values compared. The function equal checks whether the second and third argument are
of the same type, and if so, whether they are equal.

We get equal: 8a,b.(TypeRepr a, TypeRepr b)!a!b!Bool. To ensure only one
maximally general type for equal, it is su�cient to provide either the two assert false
clauses, or the test clause; both are illustrated above. The �rst assertion excludes inde-
pendence of the �rst encoded type and the second argument. The second assertion excludes
independence of the second encoded type and the third argument. The test ensures that
arguments of distinct types can be given.

Besides displaying types of toplevel de�nitions, InvarGenT also exports an OCaml
source �le with all the required GADT de�nitions and type annotations.
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datatype List : type
datacons Nil : 8a. List a
datacons Cons : 8a. a * List a ¡! List a
datatype TypeRepr : type
datacons TInt : TypeRepr Int
datacons TPair : 8a, b. TypeRepr a * TypeRepr b ¡! TypeRepr (a, b)
datacons TList : 8a. TypeRepr a ¡! TypeRepr (List a)
external let eq_int : Int ! Int ! Bool = "(=)"
external let b_and : Bool ! Bool ! Bool = "fun a b -> a && b"
external let b_not : Bool ! Bool = "fun b -> not b"
external let forall2 :
8a, b. (a!b!Bool) ! List a ! List b ! Bool =
"fun f a b -> List.for_all2 f a b"

external let zero : Int = "0"

let rec equal = function
| TInt, TInt -> fun x y -> eq_int x y
| TPair (t1, t2), TPair (u1, u2) ->

(fun (x1, x2) (y1, y2) ->
b_and (equal (t1, u1) x1 y1)

(equal (t2, u2) x2 y2))
| TList t, TList u -> forall2 (equal (t, u))
| _ -> fun _ _ -> False
| TInt, TList l ->

(function Nil -> assert false)
| TList l, TInt ->

(function _ -> function Nil -> assert false)
test b_not (equal (TInt, TList TInt) zero Nil)

Table 1.2. Two ways of constraining types
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Chapter 2

Background and Related Work

In this chapter, we provide background knowledge and context by taking an in-depth look
at a selection of related work. Sections 2.2 and 2.6 constitute a proper background for
later chapters. The remaining sections describe alternative approaches to type inferece for
GADTs, and more broadly to the task of automatic generation and veri�cation of program
speci�cations for functional programming languages like OCaml. Readers familiar with the
works cited below may skip directly to the subsections Relevance, where we contrast the
corresponding work with InvarGenT. The �nal chapter's Section 6.1 provides a broader
perspective on related work.

The theoretical underpinnings of type systems for program speci�cation trace back to the
work on dependent types by PerMartin-Löf, for example [30]. An early example of a practical
programming language based on dependent types is Cayenne by Lennart Augustsson, [2].
A currently popular example of such language is Idris by Edwin Brady [5], see also Brady,
Herrmann and Hammond [6]. But the family of approaches our thesis belongs to, maintains
the separation of types and values characteristic of languages like Pascal, C, OCaml and
Haskell. This separation allows to employ domain-speci�c decision procedures to reason
about types, and also to automatically infer types.

We start with Hongwei Xi and Frank Pfenning [57], which not only is a precursor of
GADTs research, but also stresses the importance of existential types and type inference. We
present the HMG(X) system from Simonet and Pottier [47], to motivate and gain familiarity
with the formalism of our constraint-based type system. We then present Schrijvers, Peyton
Jones, Sulzmann and Vytiniotis [53], and Lin and Sheard [23], to illustrate one thread of
approaches to type inference for type systems with GADTs. Then, we switch gears to dis-
cuss inference of invariants, known as liquid types from Rondon, Kawaguchi and Jhala [41],
expanded in [42] and [40]. Finally, we describe Maher and Huang [29], which provides the
basis for our constraint abduction algorithm for terms.

We take liberties with the presentation of the systems described, except HMG(X) where
we stay close to the letter of [47]. We apologize for any unfortunate resulting errors and
misunderstandings, and encourage interested readers to consult the original publications.

2.1. The DML System

The work of Hongwei Xi and Frank Pfenning [57], see also [54], was at the forefront of research
introducing type system features modeled on dependent types into practical programming
languages of the ML family. These features mediate the dependence of types on terms by
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the use of strongly constrained types, including singleton types, i.e. types inhabited by single
terms. They were later simpli�ed and further developed to �t within the polymorphic (non-
dependent) type systems. Together with an independent work at the time by Christoph
Zenger [58], and an earlier work by Konstantin Läufer and Martin Odersky [24], these e�orts
are the origins of Generalized Algebraic Data Types.

Hongwei Xi's DML(X) is parameterized by a constraint domain X, and, like Invar-
GenT, the implementation includes linear arithmetics. We will discuss a small selection of
type system rules and then the approach to type inference taken by the DML system. The
reader should not expect to gain understanding of DML from this short exposition, in part
because it is a complex system.

2.1.1. The Type System

Type judgments in DML(X) have naturally a di�erent form for patterns than for expressions.
For pattern p, type � , formula ', and environment assigning expression variables to types ¡,
we write p#� B (';¡) to mean that pattern p, when matched against an expression of type � ,
allows us to type-check its corresponding branch in the context of an environment enriched
by ¡ and under a constraint enriched by '. In our notation: p#� ¡!9��[']¡. The fresh type
variables �� are in fact introduced inside ' in DML(X). For expression e, type � , formula
', type environment � assigning sorts to type variables, and environment ¡ assigning types
to expression variables, we write '; �; ¡ ` e: � to mean that expression e has type � in the
context of the environments �;¡ and the constraint formula '. In our notation: '; ¡` e: � ,
because we discriminate the sorts of type variables by the names of the variables.

One of the most interesting rules of DML(X) connects these two forms of judgments:

p#�1B ('0; ¡0) '^ '0; �; ¡¡0` e: �
'; �; ¡` p) e: �1) �2

The notation �1) �2 is used instead of a function type �1! �2 to indicate an �internal� use
of a pattern matching branch: it is always a part of a pattern matching syntactic construct.
The premise '^'0;�;¡¡0`e:� means that for type-checking the body of a pattern matching
branch, we have available not only the pattern variables from ¡ 0, but also properties ' 0 of
their types.

Another interesting aspect of DML(X) is the presence of both universal and existential
types. Universal types are as in system F. Rules for existential types:

'; �; ¡` e: � [� := i] '` i: 
'; �; ¡` hijei: 9�: :� introduction

'; �; ¡` e1: 9�: :�1 '^�: ; ¡fx: �1g` e2: �2
'; �; ¡` let h�jxi= e1 in e2: �2

elimination

where  is a sort in the multisorted logic of X . The hijei construct pairs an expression e
with a witness i for the existential type 9�: :� . In fact, the concrete language of DML does
not have this construct. Rather, it is introduced by type inference, as discussed below.

22 Background and Related Work



2.1.2. Bidirectional Type Inference
To facilitate type inference for the concrete language of DML, the system is equipped with
two mutually recursive kinds of judgements called elaboration judgments: the synthesizing
judgment '; ¡ � e"� ) e�, and the checking judgment '; ¡ � e#� ) e�. The synthesizing
judgments introduce fresh type variables when needed, which are solved from the constraints
'. The types for lambda expressions and recursive de�nition expressions are not synthesized.
To see the interaction between synthesizing and checking judgments, consider the rule for
function application:

'; ¡` e1"�1! �2) e1
� '; ¡` e2#�1) e2

�

'; ¡` e1 e2"�2) e1
� e2
�

Since �1 is synthesized as part of the function type by '; ¡ ` e1"�1! �2) e1, subsequently
it only needs to be checked for the argument e2. Synthesis for variables is done by referring
to the environment, and for data constructors by referring to the respective datatype de�n-
ition. Checking for variables and data constructors refers back to synthesis, and we employ
constraint solving to decide whether the types agree:

'; ¡` x"�1) e� '� �1=_ �2
'; ¡`x#�2) e�

With existential types, the situation is further complicated by the need to introduce, during
elaboration, �witnesses� i into expressions of existential type. DML relies on a judgment
coerce, whose one of most interesting rules is:

'` coerce(�1; � [� := i]))E '` i: 
'` coerce(�1;�(�: ):�))hijE i

where we see existential witness introduced when an existential type is encountered. The
coerce judgment is connected to synthesizing judgments via checking rules. Let us look at
the other rule for function application:

'; ¡` e1 e2"�1) e� '` coerce(�1; �2))E
'; ¡` e1 e2#�2)E[e�]

where E is an expression context with a single hole.

2.1.3. Relevance
The work on DML(X) is foundational to InvarGenT. While we chose to build on the more
elegant formalism of HMG(X), we share some of the goals of DML, diverging on one:

1. The formalism behind InvarGenT is parametrized by the domain of constraints,
just as DML(X). The implementation handles linear arithmetic constraints, and can
be extended to other domains, similarly to DML.

2. Both DML and InvarGenT place emphasis on the seamless use of existential types,
aided by type inference. However, existential types are not synthesized by DML.

3. DML and InvarGenT share concern with covering a su�cient portion of ML-family
language features, in particular pattern matching with deep patterns.
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4. DML requires type annotations on all functions that cannot be typed in the Hindley-
Milner type system. In exchange, DML(X) has the principal type property and type
inference in DML is e�cient. InvarGenT takes the opposite stance, not requiring
any type annotations.

Unlike DML, InvarGenT does not currently support �rst-class universal types, i.e. func-
tion arguments which can be used polymorphically, with di�erent types within a function.
Introducing inferred universal types to InvarGenT is left as future work. The type inference
for universal types of function arguments would work similarly to how type inference for
recursive de�nitions (which admits polymorphic recursion) works currently.

DML performs A-transformation, which is a source level transformation introducing
let bindings for subexpressions. In this way, all occurrences of expressions with existen-
tial types are unpacked, with the existential type eliminated. In interests of type inference
times, InvarGenT does not perform A-transformation. However, passing expressions of
an existential type as arguments to functions is prohibited in InvarGenT's type system,
therefore A-transformation would be a conservative extension. This captures errors where
the programmer forgets to unpack the existential type, without limiting expressivity.

In InvarGenT, introductions of existential types need to be marked in the source by
adding a single character to the corresponding concrete syntax keywords: function, match
and if. In DML, existential type introductions do not �gure in the concrete syntax, but
existential types need to be spelled out in type annotations. In InvarGenT, inference of
existential types will �nd out how many existential parameters are needed, including the case
when none are needed, i.e. the type is not in fact existential. Therefore, a more sophisticated
approach might introduce existential types automatically, at cost of increased type inference
times.

2.2. The HMG(X) Formalization

In parallel to the development of DML, Martin Odersky, Martin Sulzmann and Martin Wehr
in [34] developed a general framework HM(X) for expressing type systems extending the
Hindley-Milner type system and parameterized by a constraint domain. Hongwei Xi and
collaborators further developed the ideas behind DML into an extension of type systems for
languages in the ML family � Standard ML, Haskell, OCaml � they originally called Guarded
Recursive Data Types , see [55], later to become known as Generalized Algebraic Data Types
or GADTs. GADTs were independently investigated at that time by James Cheney and
Ralf Hinze as �rst-class phantom types in [8], and by Tim Sheard as equality quali�ed types
in [46]. Vincent Simonet and François Pottier in [47] brought these two lines of research,
HM(X) and GADTs, together, by designing an elegant type system HMG(X).

2.2.1. The Untyped Calculus

While the indexed types of Christoph Zenger [58] and dependent types of DML re�ne ML
but do not make more ML programs typeable, GADTs extend ML, i.e. make some programs
typeable � provided appropriate datatype de�nitions � that would not type-check otherwise.
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p := x j 0 j 1 j p^ p j p_ p jKp�
c := p:e
e := x jKe� j letx= e in e j ee j �(c�) j �x:v
v :=Kv� j �(c�)
Table 2.1. Syntax of the calculus for HMG(X)

[0 := v] = unde�ned
[1 := v] = ?

[p1^ p2 := v] = [p1 := v]
 [p2 := v]
[p1_ p2 := v] = [p1 := v]� [p2 := v]

[Kp1���pn :=Kv1���vn] = [p1 := v1]
 ���
 [pn := vn]

Table 2.2. Extended substitution for HMG(X)

We present the call-by-value �-calculus behind HMG(X) since we will defer the semantics
of InvarGenT to HMG(X). The rest of this section follows closely [47], starting with pages
12-14.

Let x and K range over disjoint denumerable sets of variables and data constructors,
respectively. For every data constructor K, we assume a �xed nonnegative arity. The syntax
of patterns, expressions, clauses, and values is given in Figure 2.1. Patterns include the empty
pattern 0, the wildcard pattern 1, variables, conjunction and disjunction patterns, and data
constructor applications. De�ned program variables dpv(p) are the unique variables in p.
The pattern p is considered ill-formed for nonlinear patterns (i.e. patterns with repeating
variables). Expressions include variables, functions, data constructor or function applica-
tions, recursive de�nitions, and local variable de�nitions. Functions are de�ned by cases: a
�-abstraction, written �(c1; :::; cn), consists of a sequence of clauses. A clause c is made up of
a pattern p and an expression e and is written p:e; the variables in dpv(p) are bound within
e. We occasionally use ce to stand for a clause or an expression. Values include functions
and applications of a data constructor to values. Within patterns, expressions, and values,
all applications of a data constructor must respect its arity: data constructors cannot be
partially applied.

Whether a pattern p matches a value v is de�ned by an extended substitution [p := v]
that is either unde�ned, which means that p does not match v, or a mapping of dpv(p) to
values, which means that p does match v and describes how its variables become bound. Of
course, when p is a variable x, the extended substitution [x := v] coincides with the ordinary
substitution [x := v], which justi�es our abuse of notation. Extended substitution for other
pattern forms is de�ned in Figure 2.2. Let us brie�y review the de�nition. The pattern 0
matches no value, so [0 := v] is always unde�ned. Conversely, the pattern 1 matches every
value, but binds no variables, so [1 := v] is the empty substitution. In the case of conjunction
patterns, 
 stands for (disjoint) set-theoretic union, so that the bindings produced by p1^ p2
are the union of those independently produced by p1 and p2. The operator 
 is strict�that is,
its result is unde�ned if either of its operands is unde�ned�which means that a conjunction
pattern matches a value if and only if both of its members do. In the case of disjunction
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patterns, � stands for a nonstrict, angelic choice operator with left bias: when o1 and o2 are
two possibly unde�ned mathematical objects that belong to the same space when de�ned,
o1� o2 stands for o1 if it is de�ned and for o2 otherwise. As a result, a disjunction pattern
matches a value if and only if either of its members does. The set of bindings thus produced
is that produced by p1, if de�ned, otherwise that produced by p2. Last, the pattern Kp1���pn
matches values of the form Kv1���vn only; it matches such a value if and only if pi matches
vi for every i2f1; :::; ng.

The call-by-value small-step semantics, written!, is de�ned by the rules of Figure 2.3. It
is standard. The �rst rule governs function application and pattern-matching:�(p1:e1���pn:en)
reduces to ei[pi := vi], where i is the least element of f1; :::; ng such that pi matches v. Note
that this expression is stuck (does not reduce) when no such i exists. The last rule lifts
reduction to arbitrary evaluation contexts.

2.2.2. The HMG(X) Type System

HMG(X) supports subtyping. The language of constraints is as follows:

� := � j �! � j "(� ; :::; �)
� := 4 j :::

C ;D := � �� jC ^C jC _C j 9�:C j 8�:C jC)C

where � are types, � are constraint relations and 4 is a subtyping relation, C; D are con-
straint formulas. Environments ¡ assign variables to type schemes, e.g. fx 7!�g, where type
schemes are triples:

� := 8��[C]:�

indicating a value of type � polymorphic wrt. variables ��, constrained by formula C. A novel
concept is that of an environment fragment , a triple:

�:= 9��[D]¡

where ¡ is a simple environment which assigns variables to types (not type schemes). Envi-
ronment fragments are used to describe the static knowledge that is gained by successfully
matching a value against a pattern. We write 9��[C]� for 9����[C ^D]¡, and �1��2 for:

9��1��2[D1^D2](¡1[¡2)

Structures in which types can be interpreted have to meet three requirements, see [47] pages
18-19, of which we give two. Every constraint of the form �1! �24 "(��) or "(��)4 �1! �2 or
"(��)4 "0(��0) for "=/ "0, is unsatis�able. �1! �24 �10! �2

0 entails �104 �1^ �24 �20.
Judgments about expressions retain the same form as in HM(X): they are written

C; ¡ ` e: �, where C represents an assumption about the judgment's free type variables,
¡ assigns type schemes to variables, and � is the type scheme assigned to e.

26 Background and Related Work



�(p1:e1���pn:en) v !
M
i=1

n

ei[pi := v]

�x:v ! v[x := �x:v]
letx= v in e ! e[x := v]

E[e] ! E[e0] if e! e0

E := Kv�[] e� j [] e j v [] j letx= [] in e

Table 2.3. Operational semantics for HMG(X)

Judgments about patterns are written C ` p: �  9��[D]¡, where the domain of ¡ is
dpv(p). Such a judgment can be read: under assumption C, it is legal to match a value of
type � against p; furthermore, if successful, this test guarantees that there exist types �� that
satisfy D such that ¡ is a valid description of the values that the variables in dpv(p) receive.
D carries the information unpacked from guarded data constructors K:

8i C ^D ` pi: �i �i K ::8����[D]:�1� ���� �n! "(��) ��#FV(C)
C `Kp1���pn: "(��) 9��[D](�1� �����n)

Subsequently, the unpacked information is available when type-checking the expression in
the corresponding branch:

C ` p: � 0 9��[D]¡0 C ^D;¡¡0` e: � ��#FV(C;¡; �)
C;¡` p:e: � 0! �

(2.1)

The type judgments involving clauses are used to derive types of �-abstractions, i.e. anony-
mous functions de�ned by cases:

8i C ;¡` ci: �
C;¡`�(c1���cn): �

where � is always of the form �1! �2.
Let us look at a selection of remaining rules. Patterns in a disjunction need to agree on

the information they bring about:
8i C ` pi: � �
C ` p1_ p2: � �

However, we can make them agree by discarding irrelevant information:

C ` p: � �0 C �06�
C ` p: � �

where C�06� is de�ned in terms of interpreting environment fragments as sets of ground
environments. Fortunately, we can equivalently de�ne C�06� as C ^D 09��:D^¡ 04¡,
where ¡04¡ is a shorthand for Dom(¡0)=Dom(¡)^x2Dom(¡0)¡0(x)4¡(x) and �=9��[D]¡,
�0=9� 0� [D 0]¡0. Note that CD is de�ned as �C)D, i.e. holding in the model, rather than
`C)D, i.e. provability.
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To construct a value of a GADT, we need to check that the guard, or invariant, holds:

8i C ;¡` ei: �i K ::8����[D]:�1����n! "(��) C D
C;¡`Ke1���en: "(��)

The use of a variable is type-checked in the same manner, the variable is looked up in the
environment ¡. The following rule can be derived in HMG(X) and is a bit more clear than
the original:

¡(x)=8��[D]:� C  9��:D
C;¡`x: � (2.2)

The rule for recursive de�nition is initially given in the Milner-Mycroft style to simplify
proofs related to semantics rather than type inference:

C;¡fx 7!�g` v:�
C;¡` �x:v: �

A v instead of an e is used to prevent diverging de�nitions. The �nal form of HMG(X), as
employed in proofs of equivalence with the constraint derivation-based presentation, enforces
the type annotation: e := ::: j � (x: 9��:�):v, where ftv(�)� ��.

A closed (i.e. without unbound variables) expression e is well-typed if and only if C;
?`e:� holds for some satis�able constraint C. We have the following type soundness results:

Theorem 2.1. (Subject reduction). C;?` e: � and e! e0 imply C;?` e0:�.

Theorem 2.2. (Progress). If e is well-typed and contains exhaustive case analyses only, then
it is either reducible or a value.

Theorem 2.3. (Type soundness). If e is well-typed and contains exhaustive case analyses
only, then it does not reduce to a stuck expression.

2.2.3. Constraint Derivation

The type inference for HMG(X), as well as for InvarGenT, starts by generating a constraint
for an expression, whose satis�ability determines whether the expression is well-typed. The
rules, or equations, for deriving the constraints form an alternative speci�cation of the type
system. Both speci�cations are readable, the speci�cation by constraint derivation is actually
more concise. As with the type system rules, we have constraint derivation equations for
patterns, expressions, and pattern matching clauses.

The constraint Jp#�K asserts that it is legal to match a value of type � against p, while
the environment fragment Jp"�K represents knowledge about the bindings that arise when
such a test succeeds. (Note that our use of # and " has nothing to do with bidirectional type
inference.) The rules for Jp#�K and Jp"�K are the same in InvarGenT as in HMG(X). They
are described in [47] on pages 32-33.
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J¡`x: �K = ¡(x)4 �

J¡`�c�: �K = 9�1�2:^c J¡` c:�1!�2K^�1!�24 �

J¡` e1 e2: �K = 9�:J¡` e1:�! �K^ Je2:�K

JKe1���en: �K = 9����:^i J¡` ei: �iK^D^ "(��)4 �
where K ::8����[D]:�1� ���� �n! "(��)

J¡` �(x: 9��:�):e: �K = 9��:J¡fx 7!�g` e:�K^�4 �

J¡` e:8�[C]:�K = 8�:C) J¡` e: �K

Jletx= e1 in e2: �K = J¡fx 7! 8�[C]:�g ` e2: �K^9�:C
where C is J¡` e1:�K

J¡` p:e: �1! �2K = Jp#�1K^8��:D) J¡¡0` e: �2K
where 9��[D]¡0 is Jp"�1K

Table 2.4. Constraint derivation for HMG(X): expressions and clauses

We provide the HMG(X) constraint derivation rules for expressions and clauses in full in
Table 2.4, because they are analogous to those in InvarGenT, but more concise. The novelty
of HMG(X) compared to HM(X) resides in the last rule, which deals with clauses. The
following description comes from [47] page 35. First, the function's domain type is required
to match the pattern's type, via the constraint Jp#�1K. Then, the clause's right-hand side e
is required to have type �2 under a context extended with new abstract types �� and a new
typing hypothesis D and under an extended environment ¡, all three of which are obtained
by evaluating Jp"�1K.

2.2.4. Relevance

The speci�cation of the type system in terms of constraints can be seen as even more
declarative than the speci�cation by natural deduction rules. Instead of requiring that the
reader builds understanding by analysing the possible derivations, the constraint derivation
rules reduce the meaning of type judgments to that of formulas, whose semantics is already
known.

There are three major di�erences between HMG(X) and InvarGenT. To simplify the
already daunting task, InvarGenT does not support subtyping. Recursive de�nitions do
not carry type annotations � we perform type inference for polymorphic recursion. The third
di�erence is the requirement in InvarGenT that the guards, or invariants, in type schemes
and in value constructor de�nitions are existentially quanti�ed conjunctions of atoms rather
than arbitrary formulas. This is necessary to limit the space of candidate solutions to pred-
icate variables in the task of synthesizing types and invariants of recursive de�nitions. But
the restriction is also motivated by the need that the invariants be readily understandable
to the programmer. Logically complex formulas, especially involving implications, are likely
to not be su�ciently self-explanatory.
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As a consequence of restricting type scheme invariants to conjunctive formulas, we cannot
use the approach from Table 2.4 to let-polymorphism. Instead, we perform �division of
labor�: we have monomorphic bindings with a pattern on the left-hand-side let p= e ine, and
polymorphic bindings, possibly recursive let recx= e in e.

2.3. The OutsideIn(X) System

The design of the Schrijvers, Peyton Jones, Sulzmann and Vytiniotis OutsideIn(X) [53]
type system is a follow-up to the OutsideIn algorithm from [45] in a broader context
parameterized by a constraint logic. The type judgments in OutsideIn(X) are similar to
HMG(X). C; ¡ ` e: � means that in a context where the constraint C is available, and
in type environment ¡, the term e has type � . The important di�erence is that C is a
conjunction of atoms rather than an arbitrary formula. Therefore, we cannot formulate an
alternative, constraint derivation based speci�cation of the type system, with the elegant
connection expressed by results like Theorem 3.1. Another di�erence between OutsideIn(X)
and HMG(X) is that OutsideIn(X) is de�ned against a background of a proof system for
checking satis�ability of formulas rather than against an abstract model. The relevance
is that having a model gives more �exibility for the implementer of type inference, while
having a proof system (i.e. a logic) gives more �exibility for the designer of the type system.
The third, related di�erence is that OutsideIn(X) uses quanti�ers sparingly. Instead, it
introduces a distinction into skolem type variables and uni�cation type variables.

OutsideIn(X) has rules for type checking programs as well as single expressions. Notably,
the rule for un-annotated bindings makes use of abduction:

C1;¡` e: � ��=FV(C; �) C ^C C1 C ;¡ff 7! 8��[C]:� g`prog
C ;¡` f = e; prog

We determine the constraint C1 which is required to make e typeable with type � in ¡. Next,
we allow the invariant of f be a simpli�ed version of C1, namely C. Intuitively, C is the
�extra information�, not deducible from C, that is needed to show the required constraint C1
(see [53] page 15). In our terms, C is an answer to an abduction problem C)C1.

Constraint generation in OutsideIn(X) is similar to that in HMG(X), but the formulation
is less concise, and the generated constraint does not have alternating quanti�ers. In our
opinion, it makes the semantics of the constraints less clear. The constraints are also more
restrictive than if quanti�er scope was used to determine which solutions are consistent, even
for programs without type families or GADTs.

2.3.1. Type Inference
[53] page 20 de�nes a sound solution, which is equivalent to our notion of an answer to a
simple abduction problem, and a guess-free solution, which is equivalent to our notion of
a fully maximal answer to a simple abduction problem. Type inference in OutsideIn(X)
uses a solver of simple abduction problems, but the abduction answers are not allowed
to participate in the inferred types. Instead, for type inference to succeed, the abduction
answers to implications have to be limited to substitutions of local variables, which are
subsequently ignored.
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To make the exposition more concrete, we rewrite the solver infrastructure speci�cation
from [53] page 41. Let A;Di; Ci be conjunctions of atoms. Let A2AbdC(Di; Ci) mean that
A is an answer to the simple abduction problem Di)Ci under theory C, i.e. C ^Di^ACi.
Let C � Simple(C)^ Implic(C) be a decomposition of a constraint C into a conjunction of
atoms Simple(C) and a conjunction of existentially quanti�ed implications Implic(C). For
a substitution R= [�� := ��] = [�1 := �1; :::; �n := �n], let R_ = ��=_ ��= �1=_ �1 ^ ::: ^ �n=_ �n. We
de�ne the solver recursively:

Cr^R_ 2AbdC(Cg; Simple(C)) Dom(R)���
8(9��i:Di)Ci2 Implic(C)):Solve(C;Cg^Cr^Di;��i;Ci) (?; Ri)

Solve(C;Cg;��i;Cw) (Cr; R)

While it appears that the type inference solution is built out of abduction answers (Cr; R),
the interesting simple abduction problems Di) Ci are required to have abduction answer
(Ri
_ ) limited to variables ��i, which can be subsequently ignored.
Motivated by considerations of e�ciency and avoiding ambiguity, [53] restricts the abduc-

tion algorithms to those only searching for fully maximal answers. [53] conjectures that the
algorithm they provide is complete wrt. fully maximal answers to simple abduction problems.
OutsideIn(X) might not be able to use the abduction algorithm complete wrt. fully maximal
answers to simple constraint abduction problems from [29], even when limited to GADTs,
because the OutsideIn(X) type system is based on a logic instead of on �xed models like
Herbrand structures.

2.3.2. Relevance

The OutsideIn(X) project exposition [53] lists multiple challenges as being in its focus. Of
these, InvarGenT addresses GADTs, and is open to address units of measure , although
the corresponding sort has not been implemented. The other challenges fall outside of the
scope of InvarGenT: type-class constraints, multi-parameter type classes with functional
dependencies, and type families with type family axioms. Some of these type system features,
when implemented directly, violate the requirement on the interpretation of types that we
preserve from HMG(X): �Every constraint of the form �1! �2 4 "(��) or "(��) 4 �1! �2 or
"(��) 4 "0(��0) for " =/ "0, is unsatis�able.� (In InvarGenT, we have equality =_ instead of
subtyping 4.)

[53] argues strongly against selecting an arbitrary correct type when a de�nition does not
have a most general type. InvarGenT does select an arbitrary type without guarantees,
although the implementation is designed to pick useful types; e.g. if possible, with the return
type of a function sharing a parameter with an argument type. InvarGenT is intended to
provide type signatures for toplevel de�nitions to the programmer. The programmer would
then either accept the signature, modify the program and re-generate the signature, or
modify the signature directly.

OutsideIn(X) shares with InvarGenT the restriction of type scheme invariants, and
guards of data constructors, to conjunctions of atoms. On other points of di�erence between
OutsideIn(X) and HMG(X), InvarGenT follows HMG(X). Both OutsideIn(X) and
InvarGenT infer types for toplevel de�nitions one at a time.
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Finally, the type inference algorithm of OutsideIn(X) is much weaker than that of Invar-
GenT, as illustrated in our presentation of the central step of the algorithm in terms of
abduction. While our algorithm uses abduction to search for the solution of the type inference
problem, OutsideIn(X) only uses abduction to verify a partial solution found by uni�cation.

2.4. Pointwise GADTs

Chuan-kai Lin in [22], see also Lin and Sheard [23], presents a type inference algorithm for
GADTs. Just as InvarGenT, the type system Pointwise GADTs and the algorithm P from
[22] does not require type annotations. The Pointwise GADTs is not a constraint-based type
system. Also, it does not support deep patterns. Let us look at the two most important type
system rules. The recursive de�nition rule captures polymorphic recursion:

¡fx 7! 8��:� 0g ` e1: � 0 ��#FV(¡) ¡fx 7!�g` e2: �
¡` let recx= e1 in e2: �

The rule for pattern matching expressions is straightforward, nearly the same as the corre-
sponding derived rule in HMG(X). We turn to the pattern matching branch rule:

K ::8��:r�¡! " s� ��#FV(¡; u�; �)
S=PU (" u�=_ " s�) S(¡fx� := r�g)` e:S(� )

¡`pKx�:e: " u�! �

PU stands for pointwise uni�cation . It is a limited form of uni�cation. If U = PU(s=_ t),
then U(s) = U(t), but also: for � 2Dom(U), if s �p=�, i.e. s has variable � at position p,
then t �p=U(�); similarly, if t �p=�, then s �p=U(�).

The type inference algorithm P is deliberately more restrictive than the type system
Pointwise GADTs. In particular, it uses anti-uni�cation to infer a tight type for the pattern-
matched expression, so that the pattern matching has a better chance of being exhaustive
given the type.

2.4.1. Type Inference
Algorithm P is based on Robin Milner's algorithm W as in [32], and its modi�cation by
Alan Mycroft to handle polymorphic recursion as in [33]. See [22] pages 152-184 for detailed
presentation. We reproduce details of the algorithm P , because algorithm P provides a base-
line wrt. which type inference for GADTs not relying on type annotations can be compared.
We defer the reader who �nds the current section cryptic to Chuan-kai Lin [22].

It might be worthwhile to collect the major pieces of algorithm P together:

infer(¡; e1 e2) =

(S1; �1) = infer(¡; e1)
(S2; �2) = infer(¡; e2)

S3 = U (�1=_ �2! �), � fresh
S = C(S1; S2; S3)

(S; S(�))
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infer(¡; let recx= e) = polyrec(fg; 8�:�)
polyrec(S1; �) =

(S2; � ) = infer(¡fu 7!�g; e)
�� = FV(�)nFV(¡fu 7!�g)
� 0 = 8��:�
if S2(�)=� 0

then (S2S1; � 0)

else polyrec(S2S1; � 0)

infer(¡; case e of pi:ei) =

(S0; u0) = infer(¡; e)
(Si; ui; �i) = inferALT(¡; � ; pi:ei), � fresh

u = LUB(�1; :::; �n)
S = U ((u; :::; u)=_ (u0; u1; :::; un))

s = S(u)

Ri = C(S; S0; Si;U (ui=_ �i))

�� = FV(s)\ ([iDom(Ri))

�� = FV(s)n��
trt = tabulate(��; Ri

� )

btt = tabulate(�FV(¡); Ri
� )

R = reconcile(��; trt; btt)
(R;R(�))

inferALT(¡; � ;Kx�:e) =

8��:r�¡! " s� = lookup(K) where �� fresh
(S; �) = infer(¡fx 7! rg; e)

�� 0 = ��\ (Dom(S)[FV(Rng(S))[FV(� ))
� = f j 2��^ retain(��; S ; )g
if �� 0*FV(s�)

then ?
else if �=?
then ([� := � ]S; " �0; " s�) where �0 fresh
else ([� := � ]S; S(transcb(�; " s�)); " s�)

retain(��; S ; ) =

S()= "0 r� ! T
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S()=� ! 9� 2��:�=/  ^�2FV(S(�))

transcb(�; � ) =

if �#FV(� )
then � where � fresh
else

� = "0 r� ! "0 transcb(�; r)
� =� ! �

The operation C is a combination of substitutions having the e�ect of uni�cation of the
corresponding equations:

C(S1; :::; Sn)=U
¡
^iS_i

�
=U((a1� ; :::; �n)=_ (S1(�1� ); :::; Sn(�n))) where �i� =Dom(Si)

The algorithm is designed after algorithmW . However, it is made more modular by the use
of C. This can be seen as a �concealed� form of constraint derivation based type inference,
where the partial constraints are solved during collection. The case infer(¡; let recx= e) is
the Mycroft's modi�cation of algorithm W to handle polymorphic recursion. It introduces
iteration of type inference, for each recursive de�nition separately, till the de�nition's type
converges. The LUB(�1; :::; �n) subroutine used in infer(¡; case e of pi:ei) is anti-uni�cation ,
a special case of what we will call constraint generalization. It computes the type u for the
expression e as speci�c as possible while agreeing with all types imposed by the pattern
matching branches. The complications in handling variables in inferALT(¡; � ; K x�:e), in
particular the failure condition �� 0 * FV(s�), are analogous to the fact that the variables ��
would be universally quanti�ed by HMG(X), and thus cannot be part of, for example, the
domain of the resulting substitution.

The aspect of algorithm P that is closest to the intricacies of term constraint abduction
is the joint use of the tabulate and reconcile subroutines (not presented above). They decom-
pose respectively the pattern-matched expression type, and the pattern-matching branch
body type, when the types start with the same type constructor " across branches. When
the types across branches do not agree, but a btt column corresponding to a subterm of the
result type, i.e. branch bodies type, is uni�able (branch-wise) with exactly one trt column,
then the subterm of the result type is replaced by the corresponding subterm of the pattern-
matched expression type.

2.4.2. Relevance
Algorithm P is designed to infer types for GADT programs without relying on type annota-
tions. This is the major goal of InvarGenT, alongside inference of existential types and ease
of extension with novel sorts. The type system behind algorithm P is not constraint based,
and in particular, it has no mechanism for extension with, for example, numerical invariants.
The Pointwise GADTs type system is much more restrictive than the plain GADTs type
system around which InvarGenT is designed. Algorithm P is very e�cient compared to
InvarGenT, but still quite capable. Some inspirations for InvarGenT can be drawn from
algorithm P .
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The examples from [22] motivated the extension of simple constraint abduction algorithm
for terms in InvarGenT to non-fully-maximal answers. The extension allows guessing equa-
tions between invariant parameters. The use of anti-uni�cation in algorithm P is interesting
and the prospect of using constraint generalization in InvarGenT to infer a tighter type
when otherwise a pattern matching expression would not be exhaustive, is intriguing, but we
leave it as future work. Finally, table-based approach to GADT type re�nements in algorithm
P, via the tabulate and reconcile subroutines, might inspire future work on augmenting the
sequential approaches to joint constraint abduction, by �simultaneous� stages, operating
jointly on all branches.

2.5. Liquid Types

Tim Freeman and Frank Pfenning's Re�nement Types for ML [15] predates even the Odersky,
Sulzmann and Wehr [34]. Refinement types are so called because they refine the ML
type system, rather than extending it as GADTs do � they do not make new programs
typeable. Re�nement types became the universally and existentially quanti�ed types of
DML. More recently, they were independently developed in an inference-friendly way by
Cormac Flanagan [13] and Knowles and Flanagan [20]. The work was continued by Ranjit
Jhala, Patrick Rondon and collaborators, and their systems DSolve [41] and HSolve [52]
have become more popular. They are fully focused on automatic invariant inference. The
work behind DSolve ([41], expanded in [42] and [40]) is the topic of this section. [41]
cites the work on predicate abstraction [1], [17] as precursory for this kind of invariant infer-
ence; and Je�rey Scott Foster on Type Quali�ers [14], as inspiring some aspects of inference.

2.5.1. The Type System

Type re�nements can be seen as preconditions (or postconditions) when they re�ne the
argument type (or the result type) of a function. The term Liquid Types introduced by
[41] comes from �logically quali�ed types�, a restriction of an otherwise more depent-types-
like type system, limiting type re�nements to conjuctions of atoms from a sort of linear
inequalities and uninterpreted functions. The re�nements are over base (i.e. non-function)
types, and are written: f�:B jeg, where B is a base type like int, e is a conjunction of atoms,
and � is a singled-out variable constrained by e. (In the formalism used by InvarGenT,
the letter � will play the role of � here.) Recall the typing judgment form C; ¡ ` e: � we
encountered in systems described earlier: assuming constraint C holds, in environment ¡,
expression e has type � . Although the Liquid Types typing judgment ¡ ` e: T (where T
stands for a liquid type or type scheme) seems simpler, here C is a part of ¡. The assumed
constraint is:

J¡K�^e2¡e^x:f�:B jeg2¡ e[� := x]

The Liquid Types type system is based on subtyping rather than type equality. Here,
subtyping implicitly captures the requirements on the assumed constraint. The subtyping
judgment has the form ¡`T1<:T2, which means: J¡K implies that T1 is a subtype of T2.
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The function type arguments are indexed by the variable corresponding to the �-abstrac-
tion introducing the type: ¡`�x:e: (x:Tx!T ). Together with the following rules:

¡(x)= f�:B jeg
¡`x: f�:B j�=_ xg

¡` e1:S ¡;x:S ` e2:T
¡` letx= e1 in e2

this avoids the use of existential quati�cation in inference constraints. The crucial rules
relevant for invariants are:

¡` e1:Bool ¡; e1` e2:T ¡;:e1` e3:T
¡` if e1 then e2 elsee3:T

Valid(J¡K^ e1) e2)
¡` f�:B je1g<: f�:B je2g

In the �rst rule, the expressions e1 are limited to well-formed formulas of the constraint
domain. Note how the former rule resembles the HMG(X) Rule 2.1 in that the local con-
straint is enhanced by the information pertaining to the conditional branch. The latter rule
resembles the Rule 2.2 in that the local constraint is used as a premise to ensure the validity
of the use of a value.

2.5.2. Liquid Types Inference
Similarly to InvarGenT, the DSolve system �rst generates the inference constraint for
the whole toplevel expression, and then proceeds to solve the constraint. DSolve uses an
oracle to solve the Hindley-Milner polymorphic type inference subproblems, and the resulting
type shapes guide the construction of the constraint. In this way, the constraint describes
purely the subtyping issues, rather than both the typing and subtyping issues. Each sub-
typing requirement contributes what would be an implication in a normalized InvarGenT
constraint. The Liquid Type Inference Algorithm, including constraint generation, can be
found in [41], page 9, Figure 4. Liquid Types inference introduces liquid type variables �,
standing for unknown invariants. (In InvarGenT, we call them predicate variables �.)
The inference task is to �nd a substitution for the liquid type variables such that all the
implications corresponding to subtyping constraints are valid. We present the liquid type
variable solving part of the inference algorithm:

Weaken (¡` f�:B j� ��g)A = A� [� :=
fq 2A(�)j¡; �:B ` �(q):Boolg] (2.3)

Weaken (¡` f�:B j�g<: f�:B j� ��g)A = A� [� :=
fq 2A(�)jJA(¡)K^A(�)) �(q)g] (2.4)

Weaken_A = ? (2.5)

SolveCA when 9c2C
where A(c) is not valid = SolveC (Weaken cA)

Solve_A = A
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The pair � � � of a substitution � and liquid type variable � is a delayed substitution,
see Knowles and Flanagan [20]. Entry 2.3 above ensures that the solution formulas are
well-formed. Entry 2.4 �lters out the atoms which are not implied by the premise of the
implication considered. Entry 2.5 is the failure case: the o�ending implication cannot be
made valid. It cannot be weakened, as it does not contain a liquid type variable in the
conclusion, and the premise is already as strong as possible. The initial call to Solve passes
as the initial solution A, for each liquid type variable �, a conjunction of all atoms over the
potential parameters of invariants appearing in constraints.

2.5.3. Relevance

It will be illuminating for Chapter 4 to compare the solver of DSolve with that of Invar-
GenT. In a single iteration of the main algorithm of: DSolve, a single invariant (i.e. �
substitution) is updated; InvarGenT, all invariants (i.e. � substitutions) are updated. This
makes: in DSolve, a single implication valid, given before-update substitution of liquid
type variables in premises; in InvarGenT, all implications valid, given before-update sub-
stitution of �liquid type�, i.e. predicate variables in conclusions. DSolve focuses on the role
liquid type variables play in conclusions, and ignores their role in premises, other than to
verify validity of implications. InvarGenT focuses on the role all predicate variables play
in premises, but also, using a di�erent mechanism, on postcondition predicate variables in
conclusions. DSolve starts with a full initial solution (a conjuction of all atoms, trivially
contradictory); InvarGenT starts with an empty initial solution (an empty conjunction,
trivially satis�able). DSolve �nds the most speci�c (least general) solution for all invariants.
InvarGenT �nds the least speci�c (most general) solution for preconditions, and the most
speci�c solution for postconditions given these preconditions.

Here are three arguments in favor of InvarGenT over DSolve. The major limitation
of DSolve is the need to generate all the atoms as the initial solution; in InvarGenT, the
addition of atoms to the solution is driven by the conclusions that need to be explained.
Least general preconditions are less useful than most general preconditions. Furthermore, in
principle, there can be solutions that are overlooked by solving one invariant at a time.

There are two shortcomings of InvarGenT relative toDSolve that should inspire future
work; we start with the major one. InvarGenT prohibits passing values of an existentially
quanti�ed type as arguments, and it does not allow type schemes as argument types. Thus
functions like ffor from the fft example, see Appendix C Subsection C.8.13, require manual
packing and unpacking for the argument of the function passed to the higher-order function.
DSolve manages to infer types for such higher-order functions, and this ability is further
improved in Abstract Re�nement Types: Vazou, Rondon and Jhala [52].

The other shortcoming is that, while InvarGenT is faster with simple input programs,
DSolve is faster with more complex programs for which it is able to �nd a solution. There
are two reasons. One is that DSolve entirely eliminates variables which cannot be invariant
parameters before starting the solution process, i.e. intermediate variables of the Hindley-
Milner inference process. InvarGenT deploys the general mechanism of abduction to solve
for all variables. The other reason is that DSolve only checks all constraints for contradic-
tion once every update of an invariant �. InvarGenT checks all constraints for contradiction
for every candidate atom to be added during an update of invariants.
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2.6. Herbrand Constraint Abduction

We have invoked �abduction� multiple times already, it is time to de�ne the term. Abduction
is a form of inference where we �nd an explanation of a target formula (often referred to
as an observation) given background knowledge. Given a signature � and a set of variables
Vars, a constraint domain is a pair (D;L) where D is a �-structure and L (the language of
constraints) is a set of �-formulas closed under conjunction and renaming of free variables.
Constraint abduction is a formalization of abduction in the context of a constraint domain.
Simple Constraint Abduction is the task of solving an implication B)C, where B;C 2L are
conjunctions of atoms. The constraint abduction answerA2L is a solution to the implication
B)C if and only if D� (A^B))C and D�9FV(A;B):A^B, where FV(�) �nds the free
variables of an expression. D and B play the role of background knowledge � D general,
and B context speci�c. C plays the role of observation, and A of explanation. If B ) C
is a conjunct in a type inference constraint, then B contains the background information
about a particular location in a program's source code, coming from the pattern matching
patterns that �are the case� � the location is in their scope. C contains the requirements
imposed by the source at that location, for example the preconditions of the functions that
are called. The answer A explains what needs to be the case for the requirements to be
met. Joint Constraint Abduction is the task of solving implications ^i(Bi)Ci), where Bi;
Ci 2 L are conjunctions of atoms and ^i'i stands for '1 ^ ::: ^ 'n. The answer A 2 L to
this Joint Constraint Abduction problem has to meet the conditions: D� (A^Bi))Ci and
D � 9FV(A; Bi):A ^ Bi, for all i. The suitability of joint constraint abduction for GADTs
type inference was probably �rst observed by Martin Sulzmann, Tom Schrijvers and Peter
J. Stuckey, see [50] (originally [48]) and [49].

Michael Maher has studied constraint abduction for terms ([27], [29]) and linear arith-
metic ([26]). Michael Maher and Ge Huang [29] provided the basis for our Simple Constraint
Abduction algorithm for terms, which we describe in this section. An abduction answer
A is maximally general , when for every other abduction answer A0, if D � A) A0, then
D�A0)A. An abduction answerA to B)C is fully maximal , when it is maximally general
and D � (A^B), (B ^C). A fully maximal answer does not �guess� any fact not entailed
by the formulas considered.

Let D=T =T (�;Vars) be the free algebra of terms over signature � with variables Vars
and L=FT9 be existentially quanti�ed conjunctions of equations. In Table 2.5 we quote the
fully maximal abduction algorithm from [29], Figure 4, page 13. The following theorem is
Theorem 6 from [29], page 14.

Theorem 2.4. Algorithm FMA outputs all fully maximal answers to the SCA problem over
FT9 and terminates.

Now let us turn to the joint problem. The following proposition is Proposition 8 from
[27], page 9. In Table 2.5 we quote the corresponding algorithm JCA-Solve.

Proposition 2.5. Consider a joint constraint abduction problem composed of n SCA compo-
nent problems. Let A=f^i=1n AijAi is a maximally general answer of the i'th SCA problemg.
If A is a maximally general answer to the JCA problem then A2A. The JCA problem has
no answers i� no constraint in A is an answer.
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pos(t; A) returns the set of positions of the term t in the right-hand-side of A
repl(S;A) replaces all terms in the right-hand-side of A occurring at a position

in S by a new variable (that is existentially quanti�ed)
next(A) is the set frepl(S;A)j?(S� pos(t; A); t2/ Varsg

algorithm FMA(B;C)
if �B)C then return >
let A be the standard form of B ^C
do

let A be next(A)
if (8A02A:2A0^B)C) then return A
choose A2A such that �A^B)C

algorithm JCA-Solve
M := f^i=1n AijAi is a maximally general answer of the i'th SCA problemg
while exist A2M and i s.t. A^Bi is unsatis�able in D, M :=MnfAg
if M=? then return ?
while exist A;A02M s.t. D �A)A0 and A=/ A0, M :=MnfAg
return M

Table 2.5. SCA algorithm for computing fully maximal answers, JCA algorithm

2.6.1. Relevance
Sulzmann, Schrijvers and Stuckey [48] and [49] inspired the approach taken by the Invar-
GenT project. Maher and Huang [29] forms a basis of our simple constraint abduction solver
for the Herbrand domain. It turns out however, that fully maximal answers are insu�cient
for type and invariant inference. We go beyond the algorithms from Table 2.5 as follows.

We extend the FMA(B;C) algorithm by considering atoms x=_ y, where x; y2Vars, x=_ tx
and y=_ ty belong to the solved form of B^C, tx2/ Vars and ty2/ Vars, and tx=_ ty is satis�able.
These conditions limit the number of pairs of variables to consider. There are many potential
SCA problems where we still will not be able to �nd an answer, but they appear not to
be relevant: we have not encountered a practical example where the algorithm would need
further extension.

We extend the JCA-Solve algorithm by using the partial solution, i.e. starting from
B ^C ^i=1k¡1Ai instead of B ^C, when solving the kth component SCA problem.

We propose a novel algorithm (not based on [26]) for constraint abduction for the linear
arithmetic domain.
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Chapter 3
The Type System

The main idea of this work is that useful properties of functions can be generated by solving
ordinary-looking constraints under a quanti�er pre�x (without resorting to Herbrandiza-
tion), derived via a GADTs-based type system. The content of Sections 3.2 and 3.3 is based
on Simonet and Pottier [47]. To our knowledge, the idea behind the NegClause rule is
novel. The content of Sections 3.4 and 3.5 is novel.

We start by introducing notation. By the bar e�we denote a sequence (or a set, depending
on context) of elements e, by# we mean disjointedness. With a free index i, ei� means (e1; :::;
en) for some n associated with the index i; i.e. ei� or e� is a sequence (e1; :::; en) and ei is an
ith element of the sequence. Similarly, ^i�i denotes �1^ :::^�n. For convenience, we treat a
conjunction of atoms ^ici as a set of atoms fc1; :::; cng. Sometimes we write v� for a sequence
of variables related to but distinct from a variable v.

In some contexts, for a quanti�er pre�x Q we write Q to denote the set of variables
quanti�ed by Q. Let FV be a generic function returning the free variables of any expression.
For a quanti�er pre�x Q and variables x; y in Q, by x<Q y we denote that x is to the left of
y in Q and they are separated by a quanti�er alternation, by x6Q y that it is not the case
that y <Qx.

By �[�� := t�], �[� := t], or �[�1 := t1; :::; �n := tn], we denote a substitution of terms
t� for corresponding variables �� in the formula � (where �� and t� are �nite sequences of
the same length). Equality with a dot =_ is an object-level equality, i.e. a relation in the
language L introduced below. Equality = is a meta-level equality, usually syntactic equality
on terms or formulas. By s�=_ t� we denote ^isi=_ ti, where s� = (s1; :::; sn) and t� = (t1; :::; tn)
for some n. We use letters R; S; U to denote substitutions. For a substitution S = [�� := t�],
we write substitution application as S(�)=�[�� := t�]; we write S_ =��=_ t�; and we denote the
substitution S corresponding to a formula A= S_ = ��=_ t� by A~. We say that a substitution
[�� := t�] agrees with a quanti�er pre�x Q, when �Q:��=_ t� and in case of �1=_ �2 2 ��=_ t� for
variables �1; �2, we have �2 6Q �1. Syntactically, this means that �i is not to the right of
variables in ti: 8� 2 FV(ti), �i �Q �. We use letters � ; r; s; t; u to denote terms and letters
�; �; v; x; y; z to denote variables.

3.1. The Language of Constraints
We are interested in a multi-sorted �rst order language L1 with equality, interpreted in a
given, �xed modelM. Even when we write ��, it is usually a shortcut notation for validity of
a formula � in the modelM:M��. The sort of terms or �types proper�, denoted stype and
type in the concrete syntax of InvarGenT, plays a special role. In the current presentation,
we abstract from details of the language, posing the necessary properties as assumptions.

In Appendix A, we introduce a Henkin semantics for existential second order logic L
extending L1 by predicate symbols �(�) that we call predicate variables. L is tailored to our
needs of invariant and postcondition inference. Let PV(�) be the set of predicate variables in
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�type := vtype j �type! �type j "(��) jNum(�num)
�num := vnum j k �num j �num+ �num j k
k := 0 j 1 j ¡ 1 j 2 j ¡ 2 j :::
� := �type j �num
atype := �type=_ �type
anum := �num=_ �num j �num� �num

j vnum=_ max(�num; �num) j vnum=_min(�num; �num)
j vnum�max (�num; �num) jmin(�num; �num)� vnum

a := atype j anumj�(�type)j�K(�type; �type)
v := vtype j vnum=�i j �i j :::
� := 8vtype1 [9v�:a�]:vtype1 j 8v�[a�]:�type

Table 3.1. Abstract syntax of types and type schemes

any expression. We de�ne solved form formulas to be existentially quanti�ed conjunctions
of atoms 9��:A without predicate variables. An interpretation of predicate variables I sub-
stitutes predicate variables by solved form formulas.

In Table 3.1, we present a particular instance of L1, introducing a numerical constraint
domain. The terms of L1 are � , and a are the atomic formulas, as currently implemented in
InvarGenT. There are two sorts: stype with terms �type and relations atype, and snum with
terms �num and relations anum. Variables of distinct sorts are disjoint; vs stands for variables
of sort s. The remaining entry � is built on top of L1 rather than part of it. The notation
vtype
1 stands for the same variable of sort stype in both occurrences. Besides � , we also use the

letter t for terms of L1. Rarely, in interests of readability we use the letters x; y; z besides
�; � to denote variables of L1.

3.2. The Type System with GADTs

By types � we mean terms of sort stype. De�ne type schemes � as 8�[D]:�, where D is either
a solved form formula 9��:E or a predicate variable �(�), and � is a variable of sort stype.
A simple environment (or monomorphic environment) maps variables x to types � . An
environment (or polymorphic environment) maps variables x to type schemes �. When a
simple environment is appended to an environment, we identify � and 8�[�=_ � ]:� for � 2/
FV(� ). When operations pertaining to formulas are applied to a type scheme 8�[9��:E]:� or
8�[�(�)]:�, they are performed on the formula 9��:E or �(�). 8���[b=_ � ^E]:� is a notational
variant of 8�[9��:E]:�. When operations pertaining to type schemes (types) are applied
to (simple) environments ¡, they are performed on the image of ¡. De�ne environment
fragments � to be triples 9��[D]:¡ of variables ��, atomic conjunctions D in L and simple
environment ¡.

Table 3.2 presents expressions currently in InvarGenT, more domain-speci�c assert and
when clauses can be added. The table de�nes several expression languages, underlying the
corresponding type systems: MMG(X), its supersets � in terms of expressions e and system
rules � MMG(num) and MMG9(X), and MMG9(num) which is a union of MMG(num)
and MMG9(X). The domain-independent languages MMG(X) and MMG9(X) are extended
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p := x j 0 j 1 j p^ p jKp�
c :=
MMG(X):

p:e
MMG(num):
j pwhen e6 e:e

e :=
MMG(X):

x jKe� j let p= e in e j ee j �(c�) j let recx= e in e
j assert false
j assert type e= e; e
j runtime failure e

MMG(num):
j assert num e6 e; e

MMG9(X):
j �[K]c�
j �Kc�

Table 3.2. Abstract syntax of expressions

Syntax-directed:
p-Empty p-Wild p-Var
C ` 0: � ¡!9?[F ]fg C ` 1: � ¡!9?[T ]fg C `x: � ¡!9?[T ]fx 7! � g

p-Cstr p-And
8i C ^D ` pi: �i¡!�i K ::8����[D]:�1� :::� �n! "(��) ��#FV(C)

C `Kp1:::pn: "(��)¡!9��[D](�1� :::��n)

8i C ` pi: � ¡!�i

C ` p1^ p2: � ¡!�1��2

Non-syntax-directed:
p-EqIn p-SubOut p-Hide
C ` p: � 0¡!�
C � �=_ � 0
C ` p: � ¡!�

C ` p: � ¡!�0

C �� 06�
C ` p: � ¡!�

C ` p: � ¡!�
��#FV(� ;�)
9��:C ` p: � ¡!�

Table 3.3. Typing rules for MMG(X): patterns

with some expressions speci�c to the numerical sort in MMG(num) and MMG9(num). The
language L1 and model M for MMG(X) and MMG9(X) are arbitrary. We �x the language
L1 for MMG(num) and MMG9(num) as having besides stype only a linear arithmetic sort.
We discuss the type system MMG(num) shortly, and extend it to MMG9(num) in Section
3.4. Disjunctive patterns are not yet implemented in InvarGenT, we omit them in the
presentation for brevity.

First, we present the type system in the standard, natural deduction style. The type
judgment C;¡` e: � or C;¡`e:� is composed of a formula C without predicate variables, an
environment ¡, an expression e and a type � or type scheme �. Not mentioned explicitly is
a set of data constructors �, which is �xed when typing an expression. If alternative sets of
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Syntax-directed:
Var Cstr

¡(x)= 8�[9��:D]:� C �D
C;¡`x: �

8iC;¡` ei: �i C �D
K ::8����[D]:�1:::�n! "(��)

C;¡`Ke1:::en: "(��)

App Abs
C;¡` e1: � 0! �
C;¡` e2: � 0

C;¡` e1 e2: �
8iC;¡` ci: �1! �2

C;¡`�(c1:::cn): �1! �2

LetIn LetRec

C;¡`�(p:e2) e1: �
C;¡` let p= e1 in e2: �

C;¡ 0` e1:� C;¡ 0` e2: �
�= 8�[9��:D]:� ¡ 0=¡fx 7! �g
C;¡` let recx= e1 in e2: �

AssertLeq AssertEqty
C;¡` e1:Num(�1) C � �1� �2
C;¡` e2:Num(�2) C;¡` e3: �
C;¡` assert num e16 e2; e3: �

C;¡` e1: �1 C � �1=_ �2
C;¡` e2: �2 C;¡` e3: �

C;¡` assert type e1= e2; e3: �

AssertFalse RuntimeFailure
C �F

C;¡` assert false: �
C;¡` s: String

C;¡` runtime failure s: �

Non-syntax-directed:
Gen Inst Hide Equ

C ^D;¡` e: �
���#FV(¡; C)

C ^9���:D;¡` e: 8�[9��:D]:�

C;¡` e: 8��[D]:� 0
C �D[�� := ��]

C;¡` e: � 0[�� := ��]

C;¡` e: �
��#FV(¡; �)
9��:C ;¡` e: �

C;¡` e: �
C � �=_ � 0
C;¡` e: � 0

DisjElim FElim
C;¡` e: � D;¡` e: �

C _D;¡` e: � F ;¡` e: �

Table 3.4. Typing rules for MMG(num): expressions

constructors are considered, we make them explicit by writing C;¡;�` e: � . By I we denote
substitutions of predicate variables �. By interpretations we mean substitutions leading to
ground formulas, which have truth value in the model. The intended meaning of the type
judgment C;¡;�` e: � is: for every interpretation I ;R, if I ;R�C, then the expression e has
a ground type R(� ) in a ground environment R(I(¡)); and with constructors I(�) but this
only becomes relevant starting from Section 3.4. We de�ne derivability of type judgments in
Tables 3.4 and 3.5, where we use pattern-related derivations from Table 3.3. For example,

the rule Var: ¡(x)= 8�[9��:D]:� C �D
C;¡`x: � means that we can derive a type � for x, with properties
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Clauses
Clause
C ^D;¡¡ 0`mi:Num(�mi) e=/ runtime failure^ e=/ assert false^::: ^
C ^D;¡¡ 0`ni:Num(�ni) e=/ �(p 0:::�(p00:assert false))
C ` p: �1¡!9��[D]¡ 0 ��#FV(C;¡; �2) C ^D^i �mi� �ni;¡¡ 0` e: �2

C;¡` pwhen^imi6ni:e: �1! �2

NegClause
C ^D;¡¡ 0`mi:Num(�mi) e= assert false_::: _
C ^D;¡¡ 0`ni:Num(�ni) e=�(p 0:::�(p00:assert false))
C ` p: �3¡!9��[D]¡ 0 ��#FV(C;¡; �2) C ^D^ �1=_ �3^i �mi� �ni;¡¡ 0` e: �2

C;¡` pwhen^imi6ni:e: �1! �2

FailClause
C ^D;¡¡ 0`mi:Num(�mi) C ` p: �3¡!9��[D]¡ 0 ��#FV(C;¡)
C ^D;¡¡ 0`ni:Num(�ni) C ^D^ �1=_ �3^i �mi� �ni;¡¡ 0` s: String

C;¡` pwhen^imi6ni:runtime failure s: �1! �2

Table 3.5. Typing rules for MMG(num): clauses

D, if the properties D of � are implied by the judgement constraint C. And the standard
rule App: C;¡` e1: � 0! � C;¡` e2: � 0

C;¡` e1 e2: �
means that a type for an application e1 e2 can be derived if

a function type can be derived for e1 and the corresponding argument type can be derived
for e2. The type String is a datatype; we denote datatypes in general by the label ".

Top-level de�nitions introduce new entries into a global value constructor environment �
or a global variable environment ¡. Here we present the most interesting case of a recursive
de�nition with a test clause. The type information �ow from the test e2 to the de�nition e1
is through the shared type scheme � in ¡0. Other cases are analogous. In particular, toplevel
let de�nitions, unlike let:::in expressions, are polymorphic, and, like let:::in expressions,
allow binding to a pattern.

C;¡0` e1: � C;¡ 0` e2:Bool
�= 8�[9��:D]:� ¡0=¡fx 7!�g M�C

C;¡` let recx= e1 teste2¡!¡ 0

A data constructor K for a datatype " (recall that the sort stype holds two categories of
elements: datatypes and function types) has de�nition K ::8����[D]:�1� :::� �n! "(��) where
FV(D; �1; :::; �n)�����. D is a conjunction of atoms.

At this point the construction LetIn is a syntactic sugar for single branch patterns
� if polymorphic let is needed, use LetRec. We identify clauses p:e of MMG(X) with
pwhen :e where the type system rules are like the rules for pwhen^imi6 ni, only with the
subformula ^i�mi � �ni removed (i.e. replaced by T ). Note that Gen and DisjElim are
unrelated to Constraint Generalization we introduce in the next chapter. Most of the rules
in Tables 3.3 and 3.4 are close to HMG(X) rules well described in Simonet and Pottier
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[47]. A salient di�erence is the rule NegClause for clauses whose right-hand-side is an
assert false expression. Rather than unifying the type of the function argument with
the type of the pattern, we want the discrepancy between these types be a possible reason
of unreachability of the pattern matching clause. Without the distinct treatment of clauses
with assert false as right-hand-side, the assert-based variant of the equal example would
fail. The notation using ::: in the rules Clause and NegClause represents a check whether
an expression is a cascade of function abstractions with a single case (i.e. a single pattern
matching branch), the last function abstraction having a function body assert false. The
similar rule FailClause is an �escape hatch� for cases which cannot be ruled out by the
type system.

An expression e is well typed given ¡;� when PV(¡;�)=? and C;¡;�` e: � holds for
some satis�able constraint C. For simplicity, InvarGenT only admits type and invariant
annotations from the user on toplevel de�nitions.

3.3. Type Inference Constraints

In Tables 3.6, 3.7 and 3.8, we present type judgments declaratively by reducing them to
constraints. The presentation is a little bit heavy due to explicit capture-avoidance con-
ditions. For example, J¡ ` x: �K = 9� 0�� 0:D[��� := � 0�� 0] ^ � 0=_ � where ¡(x) = 8�[9��:D]:� ;
� 0�� 0#FV(¡; �) introduces a constraint over the type � required by the properties of x stored
in the environment ¡. The constraint J¡`e1e2:�K=9�:J¡`e1:�!�K^ J¡`e2:�K; �#FV(¡;
�) for typing the result of application of e1 to e2, imposes a function type on e1, and a type
on e2 � represented by the fresh variable � � that matches the argument type of e1. The
constraint for a pattern matching clause without the when guard becomes more readable:
J¡` p:e: �1! �2K= J`p#�1K^8��:D) J¡¡0` e: �2K where 9��[D]¡0= J`p"�3K. The premise D
derived from the pattern p provides context-speci�c information for typing the expression e.

The two presentations are equivalent, in the sense of the correctness and completeness
theorems. The proofs are in Section A.1.2.

Theorem 3.1. Correctness (expressions). For all environments ¡, expressions e and types
�, J¡` e: �K;¡` e: � is derivable.

Theorem 3.2. Completeness (expressions). Let L1 be a �rst order language with equality
=_ and a model M. Let L be an extension of L1 with predicate variables �(�). Let ¡ be an
environment, C a formula in L, e an expression and � a type. If PV(C; ¡) = ? and C;
¡` e: � is derivable, then there exists an interpretation of predicate variables I such that M;
I �C) J¡` e: �K.

In Theorem 3.2, we explicitly introduce all symbols used. We often state propositions
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Constraint generation:
J`0#�K = T

J`1#�K = T

J`x#�K = T

J`p1^ p2#�K = J`p1#�K^J`p2#�K

J`Kp1:::pn#�K = 9�� 0:"(�� 0)=_ � ^8��0:D[���� := �� 0��0])^iJpi#�i[���� := �� 0��0]K

where K ::8����[D]:�1� :::� �n! "(��); �� 0��0#FV(�; �)
Environment fragment generation:

J`0"�K = 9?[F ]fg

J`1"�K = 9?[T ]fg

J`x"�K = 9?[T ]fx 7! � g

J`p1^ p2"�K = J`p1"�K�J`p2"�K

J`Kp1:::pn"�K = 9�� 0��0["(�� 0)=_ � ^D[���� := �� 0��0]](�iJpi"�i[���� := �� 0��0]K)

where K ::8����[D]:�1� :::� �n! "(��); �� 0��0#FV(�; �)

Table 3.6. Type inference for patterns

and theorems in a more compact manner, with symbols introduced implicitly.

Corollary 3.3. If C;¡` e:8��[D]:� and ��#FV(¡), then there is an interpretation I such
that M; I �C) (8��:D) J¡` e: �K).
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J¡`x: �K = F when x2/ Dom(¡)

J¡`x: �K = 9� 0�� 0:D[��� := � 0�� 0] ^ � 0=_ � where ¡(x) = 8�[9��:D]:� ;
� 0�� 0#FV(¡; �)

J¡` assert false: �K = F

J¡` runtime failure s: �K = J¡` s: StringK

J¡` assert num e16 e2; e3: �K = 9�1�2:J¡ ` e1: Num(�1)K ^ J¡ ` e2: Num(�2)K ^ �1 � �2 ^
J¡` e3: �K; �1�2#FV(¡; �)

J¡` assert type e1= e2; e3: �K = 9�1�2:J¡ ` e1: �1K ^ J¡ ` e2: �2K ^ �1=_ �2 ^ J¡ ` e3: �K;
�1�2#FV(¡; �)

J¡`�c�: �K = 9�1�2:J¡` c�:�1!�2K^�1!�2=_ � ; �1�2#FV(¡; � )

J¡` e1 e2: �K = 9�:J¡` e1:�! �K^ J¡` e2:�K; �#FV(¡; �)

J¡`Ke1:::en: �K = 9�� 0��0:(^iJ¡` ei: �i[���� := �� 0��0]K^D[���� := �� 0��0]^ "(�� 0)=_ � )
where �3K ::8����[D]:�1� :::� �n! "(��); �� 0��0#FV(¡; �)

J¡` let recx= e1in e2: �K = (8�(�(�)) J¡fx 7! 8�[�(�)]:�g ` e1: �K))^
(9�:�(�))^ J¡fx 7! 8�[�(�)]:�g` e2: �K
where �#FV(¡; � ); �#PV(¡)

J¡` ci�: �1! �2K = ^iJ¡` ci: �1! �2K

J¡` e:8��[D]:�K = 8�� 0:D[�� := �� 0]) J¡` e: � [�� := �� 0]K; �� 0#FV(¡)

Table 3.7. Type inference for expressions
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J¡` pwhen^imi6ni:e: �1! �2K = J`p#�1K^8��:9�i1�i2:D)
^iJ¡¡0`mi:Num(�i1)K^i J¡¡ 0`ni:Num(�i2)K

when e=/ runtime failure^ ^(^i�i1��i2) J¡¡ 0` e: �2K)
e=/ assert false^:::^

e=/ �(p0:::�(p 00:assert false))
where 9��[D]¡0 is J`p"�1K; ���i1�i2#FV(¡; �1; �2)

J¡` pwhen^imi6ni:e: �1! �2K = 9�3:J`p#�3K^8��:9�i1�i2:D)
^iJ¡¡0`mi:Num(�i1)K^i J¡¡ 0`ni:Num(�i2)K

when e= assert false_:::_ ^(�3=_ �1^i�i1��i2) J¡¡0` e: �2K)
e=�(p0:::�(p 00:assert false))

where 9��[D]¡0 is J`p"�3K; ���3�i1�i2#FV(¡; �1; �2)

J¡` pwhen^imi6ni:e: �1! �2K = 9�3:J`p#�3K^8��:9�i1�i2:D)
^iJ¡¡0`mi:Num(�i1)K^i J¡¡ 0`ni:Num(�i2)K

when e= runtime failure s ^(�3=_ �1^i�i1��i2) J¡¡0` s: StringK)
where 9��[D]¡0 is J`p"�3K; ���3�i1�i2#FV(¡; �1; �2)

Table 3.8. Type inference for clauses

l(x) = F
l(�c�) = F

l(e1 e2) = l(e1)
l(Ke1:::en) = F

l(let recx= e1 in e2) = l(e2)
l(�[K]pi:ei) = T

l(let p= e1 in e2) = T
l(assert num e16 e2; e3) = l(e3)
l(assert type e1= e2; e3) = l(e3)

l(runtime failure s) = T
l(assert false) = T

Table 3.9. Expressions that directly handle an existential type
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E(x; v) = ?
E(�c�; v) = [E(c;F )
E(e1 e2; v) = E(e1; v)[E(e2;F )

E(Ke1:::en; v) = [iE(ei;F )
E(let recx= e1 in e2; v) = E(e1;F )[E(e2; v)

E(pwhenmi6ni:e; v) = [iE(mi;F )[i E(ni;F )
[E(e; v)

E(�[K]c�;F ) = fKg[E(c;T )
E(�[K]c�;T ) = [E(c;T )

E(let p= e1 in e2; v) = E(e1;F )[E(e2; v)
E(assert num e16 e2; e3;K 0) = E(e1;F )[E(e2;F )[E(e3; v)
E(assert type e1= e2; e3;K 0) = E(e1;F )[E(e2;F )[E(e3; v)

Table 3.10. Collect introduced value constructors

In De�nition 3.5, we describe a class of type judgments that is a better target for type
inference. First, we introduce a normal form of constraints that simpli�es formal considera-
tions.

Proposition 3.4. For any ¡; e; �, the formula J¡` e: �K is equivalent to a prenex-normal,
normalized form: there is a quanti�er pre�x Q and pairs of conjunctions of atoms Di; Ci,
such that

M� J¡` e: �K,Q:^i (Di)Ci)

We put NF(J¡` e: �K)=Q:^i (Di)Ci).

Definition 3.5. We call the formula J¡` e: �K the type inference problem for environment
¡, expression e and type �. Let M � J¡ ` e: �K , Q:�N with �N = ^i(Di ) Ci) as in
Proposition 3.4. Let Fres be a conjunction of atoms without predicate variables. We call
9��res:Fres; I a solution to the type inference problem J¡` e: �K when I ;M�Fres)�N (i.e.
M�Fres)I(�N)),M�Q:Fres[��res := t�] for some t�, and for every implication in �N, ifM;
I �9FV(Di):Di then M; I �9FV(Di; Fres):Di^Fres.

We are more interested in �nding an unambiguous, directly given solution to a type
inference problem, as introduced in De�nition 3.5, than in derivability of a judgement C;
¡` e: � for some satis�able C. By Theorems 3.1 and 3.2, these notions are close. Therefore,
unlike in HMG(X), we say that an expression e is well-typed in MMG(X) under environment
¡ with type � , when the type inference problem J¡ ` e: �K has a solution. The class of
programs admitting a solution to the type inference problem can sometimes be expanded by
enriching the languages of constraint domains.

Note that both the derivability of C;¡` e: � and the existence of a solution to the type
inference problem J¡ ` e: �K allows for dead code in e, i.e. unreachable cases of pattern
matching. We o�er an option to reject programs with dead code, according to the following
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de�nition: We call 9��res:Fres; I a solution without dead code to the type inference problem
J¡` e: �K when I ;M�Fres)�N (i.e. M�Fres)I(�N)), M�Q:Fres[��res := t�] for some t�,
and for every implication in �N, if Ci=/ F thenM;I �9FV(Di;Fres):Di^Fres. However, some
datatype-related dead code cases are rejected regardless of this option, due to constraints
introduced by J`p#�K for patterns p.

3.4. Existential Types

In context of GADTs, existential types play a prominent role, beyond the traditional role
of abstraction in software engineering. Without existential types, computations would need
to express parameters of the output datatype invariant as a function of parameters of the
input datatype invariant. Since GADTs are introduced to curtail the expressiveness of types
compared to full dependent type systems, opportunities for such functional dependency are
rare by design.

We need the capacity in the type system to express whatever relations it can of the
resulting datatype parameters to the input datatype parameters. Traditionally in GADTs
we package the result into a custom datatype. This is tedious and contrary to the bene�ts
of type inference. We automate this process, in e�ect introducing inferred existential types
to our type system. Since the modi�cation of the type system is minimal, formal guarantees
carry over to it and it will be familiar to users of GADTs.

Existential quanti�ers in (contravariant) argument positions of function types are redun-
dant: they can be lifted to be traditional, polymorphic variables constrained by the invariant
of the function. However, they may sometimes be needed in nested positions of higher-order
function types. We prohibit the use of inferred existential types in argument positions in the
current version of the type system.

We introduce a new expression construct �[K]c�, where K is a value constructor, but is
not available in concrete syntax, and c� are pattern matching clauses. In the implementation,
the parser introduces a fresh K and forms �[K]c� for efunction c�. We also introduce a
corresponding construct �Kc�. �[K]c� is either eliminated or replaced by �Kc� in a normaliza-
tion step. When K ::8����[E]:! "K(��)2� is such a data constructor absent from concrete
syntax, the pretty-printer for types prints "K(��) as 9��[E[�� := ��]]:, or 9��[E[�� := ��]]:�e
when E implies =_ �e. We also parse 9��[E]:�e generating a fresh K ::8����[E]:�e! "K(��)2�
in the toplevel �, where ��=FV(�e)n��.

Let l(e) de�ned in Table 3.9 determine whether an expression introduces or eliminates
an existential type. It is used in the normalization process described below.

Let all occurrences of �[K] in e use distinct K. Let n(e) := n(e; ?), de�ned in Table
3.11, �atten nested introductions of existential types. Let E(e) := E(e;F ), de�ned in Table
3.10, collect value constructors introduced for existential types. The normalization-related
functions n(�; v) and E(�; v) are de�ned for both expressions and clauses.

The MMG9(X) typing rules that di�er from MMG(X) are provided in Table 3.12. We
put the normalization step into the type system as a rule ExIntro. W.l.o.g. ExIntro
can be used once at the beginning of a derivation. ExIntro performs a normalization of
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n(e;K 0) = letx=n(e;?) inK 0 x
when K 0=/ ?^ l(e)=F

n(x;?) = x
n(�c�;?) = �(n(c;?))

n(e1 e2;K 0) = n(e1;K 0)n(e2;?)
n(Ke1:::en;?) = Kn(e1;?):::n(en;?)

n(let recx= e1 in e2;K 0) = let recx=n(e1;?) inn(e2;K 0)
n(pwhenmi6ni:e;K 0) = pwhenn(mi;?)6n(ni;?):runtime failuren(s;?)

when e= runtime failure s
n(pwhenmi6ni:e;K 0) = pwhenn(mi;?)6n(ni;?):n(e;K 0)

when e=/ runtime failure s
n(�[K]c�;?) = �K(n(c;K))
n(�[K]c�;K 0) = �(n(c;K 0))
when K 0=/ ?

n(let p= e1 in e2;K 0) = let p=n(e1;?) inn(e2;K 0)
n(assert num e16 e2; e3;K 0) = assert numn(e1;?)6n(e2;?);n(e3;K 0)
n(assert type e1= e2; e3;K 0) = assert type n(e1;?)=n(e2;?);n(e3;K 0)

Table 3.11. Flatten nested introductions of existential types

the expression and shares the job of introducing existential types with the rule ExAbs.
The RetType relation can be introduced into the model M by induction on the struc-
ture of the �rst argument: RetType(�1 ! �2; �3) , RetType(�2; �3) and RetType("(��);
� 0), "(��)=_ � 0. ExLetIn is the elimination rule for existential types. Although LetIn and
ExLetIn resemble �syntactic sugar�, their application is non-deterministic. We include value
constructor environment in judgments to facilitate the completeness proof. We modify the
rule App to exclude function arguments that have existential types. We achieve that by
introducing a new atomic predicate E to the sort stype: E(�) i� ^K:9��:�=_ "K(��), i.e. � is
not an existential type.

Definition 3.6. Let �=�0 [�e and �0=�0 [�e
0 be sets of value constructors related to

each other as follows:

� PV2(�0)=?,

� �e=K ::8�KK[�K(K ; �K)]:K! "K(�K),

� and �e
0 =K ::8��K0 ��K0 K[EK]:K! "K(��K

0 )

where 9��K0 ��K0 K:EK are solved form formulas. De�ne �0/� = Ie= [�K := 9��K:FK], where
FK=EK ^�K=_ �K 0 and ��K=��K

0 ��K
0 .

Note that we do not lose generality by using single-argument datatypes "K(�) rather
than the general form "K(��). Multiple parameters can be captured by providing a constraint
9�1:::�n:�=_ �1 ! ::: ! �n, with existential variables �1:::�n, as part of the constraints of
constructors of "K(�). The single parameter � 0 in condition C �RetType(� ; "K(� 0)) of the
rule ExAbs is not consequential. In the implementation of InvarGenT, we recover the
multiple parameter representation "K(��) of existential types, at the end of inference.
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App ExLetIn
C;¡;�` e1: � 0! �

C;¡;�` e2: � 0 C �E(� 0)
C;¡;�` e1 e2: �

"K(��) in � C;¡;�` e1: � 0
C;¡;�`Kp:e2: � 0! �

C;¡;�` let p= e1 in e2: �

ExIntro ExAbs
Dom(�0)nDom(�)= E(e)
C;¡;� 0`n(e): �

C;¡;�` e: �

C �RetType(� ; "K(� 0))
C;¡`�c�: �

C;¡`�Kc�: �

Table 3.12. Typing rules added by MMG9(X)

J¡` e1 e2: �K = 9�:J¡` e1:�! �K^ J¡` e2:�K^E(�); �#FV(¡; �)

J¡;�0` e: �K = J¡;�`n(e): �K
when E(e)=/ ? where �=�0K ::8�KK[�K(K ; �K)]:K! "K(�K)K2E (e)

J¡` let p= e1 in e2: �K = 9�0:J¡` e1:�0K^ (J¡` p:e2:�0! �K^E(�0)
_EJ¡`Kp:e2:�0! �K)

where E = fK jK ::8����[E]:�! "K(��)2�g

J¡`�Kc�: �K = 9�0:RetType(� ; �0) ^ (9�1:�0=_ "K(�1) ^ �K(�1)) ^ J¡ ` �c�: �K;
�0�1#FV(¡; �)

Table 3.13. Type inference for the added expressions

Normalization de�ned in Table 3.11 is responsible for introduction of existential types,
but it also ensures that existential types never directly wrap around other existential types.
This �attening enables the use of all information available to derive the postcondition, i.e.
the existential type. To �atten nested existential types, we rename constructors K to K 0

in n(�[K]c�; K 0), and eliminate potential existential type before introducing one in n(e; K 0)
when K 0 =/ ? ^ l(e) = F . Note the frequent need to use efunction (and its syntax sugar
forms ematch and eif) for all branches of a de�nition, as for example in function bsearch2
in Section C.8.4. The branches bound by match or if would be required to have the exact
same type, e.g. the same number Num, height of a tree or length of a list.

3.5. Type Inference Constraints for Existential
Types

The type inference uses predicate variables to determine the information bundled inside
existential types. The constraint derivation rules related to existential types are provided in
Table 3.13. For the initial call to J�K (i.e. case E(e) =/ ?), we normalize the expression. We
shorten J¡;�` �: �K to J¡` �: �K.
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Our tools for solving second order constraints only handle conjunctions of implications.
We solve disjunctions early, which is problematic as selecting a disjunct may require informa-
tion hidden in other disjunctions or in predicate variables. For example, in the normalization
of constraints we need to associate each unary predicate variable with at most one inferred
existential type that can occur as return type in its solution. The pragmatics we adopt in
InvarGenT is that whenever the J¡ ` p:e2: �0! �K disjunct coming from the LetIn rule
is satis�able with the rest of the constraint, we select it for the solution. One can turn the
pragmatics into semantics by adding the premise C;¡;�0�(p:e2)e1: � to the ExLetIn rule,
but it would make the formalism more complex. The proof of the following theorem is in
Section A.1.3.

Theorem 3.7. Theorems 3.1 (Correctness) and 3.2 (Completeness) hold for the type system
extended with ExIntro and ExLetIn in the following sense. Recall the notation from
Theorem 3.2.

Correctness: For all ¡;�; e and �, J¡;�` e: �K;¡;�` e: � is derivable.
Completeness: For all ¡; �; e and �, if PV(C; ¡; �) = ? and C; ¡; � ` e: �, then there

exist interpretations of predicate variables Iu; Ie such that Dom(Iu) are unary, Dom(Ie) =
f�K jK 2E(e)g, and M;Iu�C)Ie(J¡;�` e: �K)["K(�~) := "K(��)].

The set of value constructors is updated in InvarGenT after a toplevel de�nition with
a well typed body: from �0 to �0, using the notation from De�nition 3.6.

Example 3.8. Consider the function filter for lists with length. The eif:::then:::else
syntax is a syntactic sugar for the ematch:::with True ->::: | False ->::: syntax, which
in turn is a syntactic sugar for (efunction True ->::: | False ->:::)::: expressions.

datatype List : type * num
datacons LNil : 8a. List(a, 0)
datacons LCons :
8n, a [06n]. a * List(a, n) ¡! List(a, n+1)

let rec filter = fun f ->
efunction LNil -> LNil
| LCons (x, xs) ->

eif f x
then let ys = filter f xs in LCons (x,ys)
else filter f xs

As an aside, an example interaction with InvarGenT might look as follows:

$ ./invargent -inform examples/filter.gadt
val filter :
8n, a.
(a ! Bool) ! List (a, n) ! 9k[0 6 k ^ k 6 n].List (a, k)

InvarGenT: Generated file examples/filter.gadti
InvarGenT: Generated file examples/filter.ml
InvarGenT: Command "ocamlc -w -25 -c examples/filter.ml" exited with code 0
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Below we show the corresponding type inference constraint, slightly simpli�ed by hand
for readability. Constructors such as "K2(�6) identify an occurrence of an existential type,
here 9�:�1(�; �6) in a constructor environment with K2 ::8��[�1(�; �)]:�! "K2(�).

9�0:8�0:9n1�1�2�3:8k1�1�2:9�5�6�7�8�9:8�3�4�5�6:9n2�10�11�12�13:
�2(�0) (3.1)

^
�2(�) =) �2=_ List(�4; n1)^ �=_ �1!List(�4; n1)!�3 (3.2)

^
List(�1; 0)=_ List(�4; n1)^ �2(�) =) �3=_ "K2(�6)^ �1(List(�5; 0); �6) (3.3)

^
List(�2; k1+1)=_ List(�4; n1)^ =) �1=_ �2!Bool^ (3.4)

0� k1^ �2(�) �2(�1!List(�2; k1)! "K2(�8))^
�2(�1!List(�2; k1)! "K2(�9))

^
"K2(�4)=_ "K2(�8)^ �1(�3; �4)^ =) �3=_ "K2(�8)^ �1(�10; �11)^ �3=_ List(�2; n2)^
List(�2; k1+1)=_ List(�4; n1)^ �10=_ List(�2; n2+1)^ 0�n2 (3.5)

0� k1^ �2(�)
^

"K2(�6)=_ "K2(�9)^ �1(�5; �6)^ =) �12=_ �5^�3=_ "K2(�13)^ �1(�12; �13) (3.6)
List(�2; k1+1)=_ List(�4; n1)^

0� k1^ �2(�)

Branch 3.1 ensures that the invariant is satis�able. Branch 3.2 decomposes the type of the
recursive de�nition and ensures that the second argument is a list. Branch 3.3 is the case of
empty list. Branch 3.4 handles the two recursive calls. Branch 3.5 is the case of kept element:
the recursive call result �3 has length one-shorter than the result �10. Branch 3.6 is the case
of a dropped element: the recursive call result �5 and the function result �12 are the same.

3.6. Semantics by Reduction to HMG(X)

The typing rules that importantly di�er between HMG(X) and MMG9(X) are:NegClause,
FailClause, App, LetIn, ExLetIn, ExIntro, ExAbs. The remaining, crucial di�erence
lies in having predicate variables among constraints. However:

� ExIntro, LetIn and ExLetIn can be seen as �desugaring� a program to a core
language,

� pattern matching branches that invoke NegClause are unreachable and so can be
dropped,

� pattern matching branches that invoke FailClause can be dropped, because they
lead to runtime failure, computationally equivalent to a match failure,

� App in MMG9(X) is a restricted form of its variant from HMG(X).
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Therefore, if an inference problem constraint J¡;�` e: �K holds, then we can build environ-
ment ¡ 0, constructor environment �0 and an expression e0 such that C 0;¡0` e0: � is derivable
in HMG(X) for a satis�able constraint C 0. For the reduction to be a convincing argument
for soundness of the type system, we also need to show that the �desugared� expression e0

preserves the intended meaning of e. For the details of the HMG(X) type system, we refer
the reader to Simonet and Pottier [47].

Definition 3.9. Consider a constructor environment � and an HMG(X) expression e. A
tag erasure of e w.r.t. � is an expression achieved by iteratively replacing each subpattern
Kp1 of e with K 2/ Dom(�) by p1 and each subexpression Ke1 of e with K 2/ Dom(�) by e1.

Consider an MMG9(X) expression e. An HMG-form of e is an HMG(X) expression
achieved by iteratively replacing each subexpression �[K]c� and �Kc� of e by �c�, each subex-
pression assert type e1= e2; e3 of e by e3, each subexpression runtime failure s by a function
call failwith s, and each subexpression let recx= e1 in e2 in e by letx= �x:e1 in e2.

The HMG-form from De�nition 3.9 captures the intended meaning of programs. We
provide semantics for the �-calculus underlying MMG9(X), by reducing each expression
to its HMG-form and referring to the semantics for HMG(X) provided in [47]. In terms
of concrete syntax, the HMG-form of a program is the program with assert type clauses
dropped, keywords efunction replaced by function, and ematch replaced by match.

Definition 3.10. For our purposes, let computational equivalence be the smallest con-
gruence relation �C such that let x = e1 in e2 �C (�x:e2) e1 for any expressions e1; e2, and
�(pi:ei) �C �

¡
pi:eii::unreach(ei)^:failure(ei)

�
for any sequences of clauses pi:ei. The condition

is de�ned by: unreach(e) := e = assert false_(e = �(p1:e1) ^ unreach(e1)) and failure(e) :=
e= runtime failure s_ (e=�(p1:e1)^ failure(e1)).

Expressions letx= e1 in e2 and (�x:e2) e1 have the same result of reduction at the outer-
most context: e2[x := e1]. Subexpressions assert false in a well-typed program are guaranteed
to be unreachable in both MMG9(X) and HMG(X) type systems. Subexpressions runtime
failures are intended to halt a program, so we assume they are computationally equivalent
to match failures (matching against a value not covered by any pattern matching case). The
proof of the follwing theorem is in Section A.1.4.

Theorem 3.11. Let ¡; � ` e: � be a typing judgment in MMG9(X). If J¡; � ` e: �K
is satis�able, we can construct a satis�able constraint C 0, an HMG(X) environment ¡0,
constructor environment �0 and an expression e0 such that C 0; ¡0 ` e0: � is derivable in
HMG(X), and the tag erasure of e0 w.r.t. � is computationally equivalent to the HMG-form
of e (see De�nitions 3.9, 3.10).

An expression is closed when it does not contain variables not bound by a let- or let rec-
expression, or a pattern. A closed expression is stuck if it is neither reducible nor a value,
as de�ned in [47].

Corollary 3.12. Type soundness. If a closed expression e is well-typed under some con-
structor environment, then its HMG-form does not reduce to a stuck expression.
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Chapter 4

Solving Second Order Constraints

Least Upper Bounds and Greatest Lower Bounds computations are the standard tools for
�nding unknowns involved in an order structure, see e.g. Knowles and Flanagan [20] Section
6.3. In case of implicational constraints, constraint abduction (see Maher and Huang [29],
Sulzmann, Schrijvers and Stuckey [49]) and constraint generalization belong to this tool-set.
Simple Constraint Abduction under Quanti�er Pre�x is the task of �nding for an implication
Q:D)C, where Q is a quanti�er pre�x andD;C are conjunctions of atoms, a weakest solved
form formula 9��:A such that M � (9��:A)) (D) C), equivalently M � (9��:A) ^D) C,
M � 9FV(A; D; C):A ^ D and M � Q:A[�� := t�] for some t�. Joint Constraint Abduction
under Quanti�er Pre�x handles several implications, i.e. Q: ^i (Di) Ci), simultaneously:
each condition holds for eachDi;Ci pair. It is used to solve for a predicate variable appearing
in multiple premises � where we are interested in the GLB of the corresponding conclusions,
�modulo� the corresponding premises. Constraint Generalization answer to a disjunction
_iDi of conjunctions of atoms is a solved form formula 9��:A such that for each i,M�Di)
9��:A. It is used to solve for a predicate variable appearing in multiple conclusions � where
we are interested in the LUB of the corresponding premises.

4.1. Overview of Solving for Predicate Variables

Equipped with these tools, consider �rst solving an un-normalized constraint � for invariants
� unary predicates �(�). We want the invariants to be as weak as possible, to make the
use of the corresponding MMG(X) de�nitions (toplevel expressions) as easy as possible:
the weaker the invariant, the more general the type of the de�nition. We solve for the
predicate variables in multiple steps, maintaining partial solutions 9���k:F�k and iterating till
the solutions converge (see e.g. Cousot and Cousot [10]). We start with k=0, ���0=?, F�0=T
for � 2 PV(�). In each step, we solve the �rst order constraint Qk: ^i (Di

k) Ci
k) achieved

by reducing �
h
�� := 9���k:F�k

i
to prenex-normal form and duplicating shared premises. Let

��k = ���
k. We perform joint constraint abduction under pre�x Qk (with parameters ��k),

let 9��k:Ak be one of the abduction answers. We divide the atoms of the answer 9��k:Ak

into solutions to predicate variables A�
k and a remainder, or residuum, Ares

k = Akn [� A�
k ,

depending on the variables in the atoms and so that the residuum holds under the quanti�ers:
�Qk:Ares

k . Let 9���k+1:F�k+1=9���k��k:F�k^A�
k [�� := �].

If in kth iteration, Ares
k = Ak, we are done. From �Qk:Ak and �Ak) ^i(Di

k) Ci
k), it

follows that the constraint holds: I �� for I =
h
�� := 9��k:F�k

i
.
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When A�
k =/ T for some �, we need to perform another iteration. It might be that the

constraints added by a positive occurrence of � � a recursive call � cannot all �t in next
iteration's �Q:Ares

k+1 and have to be a part of next iteration's A�
k+1.

For postconditions, we want the strongest possible solutions, because a stronger postcon-
dition provides more information at use sites of a de�nition. Therefore, in each iteration, we
use constraint generalization to solve for binary predicate variables �K(�; �) without �hurting�
the constraint. The generalization results 9���Kk :G�K

k are used to get the �rst order constraints
for abduction

�
�� := 9���k:F�k; �K := 9���Kk :G�K

k
�
. However, we have more work when due

to recursive calls of functions returning values of existential types, A�K
k =/ T . Note that

postconditions of each iteration are constructed from scratch, they do not accumulate. The
way we utilize answers A�K

k is by performing second-stage abduction. Let _iDi
k;�K be the

constraint generalization problem resulting in the postcondition G�K
k . We form the joint

constraint abduction problem Qk:^i (Di
k;�K)A�K

k ), and split its answer Ak;�K in the same
way as for the �rst-stage abduction described above. We include the result in the partial
solutions: 9���k+1:F�k+1=9���k��k:F�k^ (A�

k ^KA�
k;�K)[�� := �]. This way, Di

k+1;�K may be strong
enough to imply A�K

k , and hopefully A�K
k+1=T .

But we are still in trouble. Without the postcondition already in place, branches with
recursive calls have too little information to imply what the postcondition should be. There-
fore, during initial iterations (k = 0 and k = 1), we only include non-recursive branches in
the constraint generalization process. This leads to �overshooting�: the initial postconditions
may re�ect properties speci�c to base cases. These properties get relaxed during successive
iterations, and we only end with success after reaching a �x-point.

The termination condition of the iteration might not be met. Actually, InvarGenT
reports type inference failure if the solutions F�k not converge after a �xed number of itera-
tions. We have only observed diverging solutions due to numerical constraints.

4.2. Constraint Abduction

Abduction is a reasoning technique concerned with the search for explanations. An abduc-
tion problem is usually given by a background theory � and a formula C, and the answer
is a formula A such that � [ fAg � C (relevance), � 2 :A (consistency), and A has
some restricted syntactical form, see Marta Mayer and Fiora Pirri [31]. We are however
interested in constraint abduction problems, with constraints expressed over a �xed model
M. A constraint abduction problem is then given by a pair of formulas D; C, and A
is its answer when (at least) M � (D ^ A) ) C (relevance) and M � 9FV(D; A):D ^
A (consistency), see Michael Maher Herbrand constraint abduction [27]. We extend the
formulation of joint constraint abduction (see [27]) to constraints with quanti�ers. In general
abduction, where a model is built as a solution, the quanti�ers could be eliminated by
Herbrandization. However, Herbrandization (and Skolemization) are operations on the level
of a logic, not within a model � they do not return equivalent formulas and do not work in
a �xed model. The introduced functions are uninterpreted. We opt to keep the model M
and handle quanti�cation explicitly. We develop a combination procedure for abduction
algorithms when their domains of constraints are combined in a very simple way (yet su�cing
for type-inference-driven invariant generation).
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4.2.1. Formulating the Joint Constraint Abduction Problem
In joint, also called simultaneous, problems, we expect a single answer to solve several
problems, here: to solve a conjunction of implications.

A solved form is a syntactically speci�ed class of formulas, associated with a class of
problems, for which satis�ability is trivial to check. We restrict solved forms to existentially
quanti�ed conjunctions of atoms, 9��:A. The variables �� of a solved form 9��:A that is
an abduction problem answer, are �free parameters� of the answer, they are required to
be �unconstrained�.

Due to the iterative nature of the main algorithm, we need to account for prior parameters
�� similar to the new parameters ��.

The constraints that we need to solve form a Joint Constraint Abduction under a Quanti-
�er Pre�x problem (JCAQP problem for short) of the form Q:^i (Di)Ci), where Di and Ci

are conjunctions of atomic formulas, and Q is an arbitrary quanti�er pre�x. We assume that
FV(^i(Di)Ci))�Q. We also have a set �� of parameters of the invariants. The conditions
on abduction answers 9��:A are as follows:

1. relevance condition: M�^i(Di^A)Ci),

2. validity condition: M�Q:A[���� := t�] for some t�,

3. consistency condition: M�^i9FV(Di^A):Di^A,
4. no escaping variables condition: for all atoms c2A such thatM2Q:c and FV(c)\��=/
?, and for all �12FV(c) such that (8�1)2Q, there exists �22FV(c)\ �� such that
�16Q�2.

a. Strong no escaping variables condition is a stronger variant we use for sorts
whose solved forms are substitutions. For all atoms �2=_ t2A such that �22 ��,
if �12FV(c) such that (8�1)2Q, then �16Q�2.

Definition 4.1. 9��:A is an answer to a JCAQP problem Q:^i (Di)Ci) with parameters
�� for model M, written 9��:A 2 Abd(Q; ��; Di; Ci), when A is a conjunction of atoms,
��#FV(^i(Di ) Ci); ��), meeting the relevance condition, validity condition, consistency
condition and no escaping variables condition.

We can also consider Joint Abduction under a Quanti�er Pre�x problems for a logic,
checking relevance condition: �^i(Di^A)Ci) and validity condition: �Q:A[���� := t�]. The
consistency conditions: for all i, Di2:A, are always met.

The natural setting for constraint abduction problems is with a �xed model. Above we
extend the de�nition to the case where instead of a model just a logic is given, just to shed
light on relations between constraint abduction, general abduction, and decision (i.e. validity
or satis�ability) problems.

We call a JCAQP problem Q:D) C (i.e. a non-simultaneous problem) a simple con-
straint abduction under a quanti�er pre�x problem SCAQP. We write JCAQPM to indicate
the model.

Proposition 4.2. If the JCAQPM problem Q: ^i (Di ) Ci) without parameters has an
answer, then M�Q:^i (Di)Ci).
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We say that JCAQPM answer 9��:A is more general than 9��:B, when there exist terms
t� such that M�B)A[�� := t�].

Example 4.3. For a free term algebra T (F ) over signature F containing binary functors f ; g
and constants a; b, and JCAQPT (F ) problem 9x; y;z:(y=_ f(a;x))z=_ a)^ (y=_ f(b;x))z=_ b),
the most general answer is 9�:y=_ f(z; �). Indeed, 8�9x; y; z:y=_ f(z; �) ^ y=_ f(a; x) holds
with x=�; y= f(a;�); z=a and 8�9x; y; z:y=_ f(z;�)^ y=_ f(b; x) holds with x=�; y= f(b;
�); z = b. For the SCAQPT (F ) problem 9x; y; z:(y=_ f(a; x)) z=_ a), the set of maximally
general answers is f9�:y=_ f(z; �); z=_ ag.

Consider a conjunction of atoms C interpreted in any free term algebra T (F ) over a
signature F . If C is satis�able, let U (C) be a conjunction of equations whose left-hand-
sides are variables not occurring in any of the right-hand-sides, such that T (F )�C,U(C),
otherwise let U (C) =?. Let U(Q:C) in case T (F )�Q:C be ?, and otherwise be as before
but with equations directed so that variables later in the pre�x are on the left. U (Q:C) can
be computed by uni�cation with linear constant restrictions, see Baader and Schulz [3]. In
e�ect: if for some x=_ t2U(C) such that (9t)2/ Q (e.g. t is not a variable) and (8x)2Q, then
U(Q:C)=?; if for some x=_ t2U(C) such that (9x)2Q, there is a y2FV(t), (8y)2Q and
x6Qy, thenU (Q:C)=?; otherwiseU(Q:C)=U(C). LetU��(Q:C) be U��((Qnf8��g)9��:C),
i.e. U��(Q:C) =U(Q0:C) where variables �� are existentially quanti�ed in Q0 and otherwise
Q0 is like Q. Computing U����(Q:A) decides the validity condition for M=T (F ).

Definition 4.4. An abduction algorithm for JCAQPM with parameters ��, Abd(Q; ��;
Di; Ci), generates a sequence of quanti�ed conjunctions of atoms 9��j:Aj, possibly in�nite.
The algorithm is correct if for every j, 9��j:Aj is an answer to the JCAQPM problem
Q: ^i (Di ) Ci) with parameters ��. It is complete if for every JCAQPM answer 9��:A,
there is a j and some t� such that M � A) Aj[��j := t�] (with variables renamed so that
��#FV(Aj)). If the sequence is empty, we write Abd(Q; ��; Di; Ci)=?.

Note that we do not require that only maximally general answers are returned. Although
this would be preferrable, it is costly to guarantee in many constraint domains even with
incomplete algorithms.

4.2.2. Abduction Algorithm for The Combination of Domains
We provide a plug-in architecture where to add a new sort to the logic it is enough to give
an algorithm solving the JCAQP problem. De�ne an alien subterm (cf. [3]) of a term � of
sort stype to be a maximally large subterm t of � of sort s=/ stype: a subterm t that is not a
subterm of a subterm of sort s0=/ stype. Let usorts= sortsnfstypeg.

Let Lty=T (F ;[s2sortsXs) be a language interpreted in a multi-sorted free term algebra
T = T (F [s2usortsDs) which, besides the term variables Xstype, has alien subterm variables
[s2usortsXs.

Let Q be a quanti�er pre�x and Di; Ci be atomic conjunctions in L that form a joint
abduction problem Q:^i (Di)Ci). For the purpose of Theorem 4.5, let Abds be complete
JCAQP algorithms for s2usorts and AbdT be a complete JCAQP algorithm for the free term
algebra T . We start the multi-sorted abduction procedure Abd(Q; ��;Di; Ci) by performing
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AbdT on the stype part of constraints with alien subterms replaced by variables. For each
JCAQP solution 9��j:Aj, we replace the stype part of the ith premise by the �residual� formula
Ap
i
j
and of ith conclusion by �residual� formula Ac

i
j, de�ned in Table 4.1. We split the

resulting JCAQP problem into single-sort problems for each sort s 2 usorts, and we solve
them using Abds algorithms. Finally, we build answers as conjunctions of answers for each
sort.

Let Q be a quanti�er pre�x and Di; Ci be atomic conjunctions in L that form a joint
abduction problem Q: ^i (Di) Ci) with parameters ��, and 8� � Q. Let Abds be correct
and complete JCAQP algorithms for s2usorts and AbdT be a correct and complete JCAQP
algorithm for language Lty= T (F ; [s2sortsXs) and model T (F [s2usortsDs). We de�ne the
algorithm Abd(Q; ��;Di; Ci) in Table 4.1. In this algorithm, we separate formulas into single-
sorted formulas, we perform abduction for terms, and we perform abduction for other sorts
with additional equations due to abduction for terms. The proof of the following theorem is
in Section A.2.2.

Theorem 4.5. Assume the conditions listed above. Then Abd meets De�nition 4.4 correct
and complete algorithm conditions.

Introducing new variables ��r
j puts additional burden on abduction in other sorts. In the

current implementation of InvarGenT, we only replace AT
j with AT

j 0 in the �rst iteration,
when abduction in other sorts is not performed.

For the details of the implementation, see Section B.2.1.

4.2.3. Joint Constraint Abduction
In Table 4.1, we assumed abduction algorithms are returning sequences of answers, from
which the answers of interest are extracted. We implement abduction algorithms di�erently.
We maintain a discard list � a list of answers to avoid, and the algorithms return the �rst
answer they �nd which does not imply any answer in the discard list.

Besides the discard list, the simple abduction algorithms take another argument: the
partial answer. By starting the search for an answer to an implication from the joint solution
to already solved implications, we ensure by construction that the �nal answer to the joint
constraint abduction problem meets validity and consistency conditions. The relevance and
no escaping variables conditions would be met regardless of starting from the partial answer.
However, the search is greatly facilitated, because simple constraint abduction does not need
to rediscover relevant parts of the answers to already solved implications.

Sometimes such rediscovery is not possible. Abduction answer 9��:A to D) C is fully
maximal whenM� (9��:D^A),D^C. The notion was introduced by Michael Maher, see
e.g. [27], to curb the di�culty of �nding all abduction answers. Even equipped only with
fully maximal abduction algorithms, by accumulating answers across implications we can
still solve problems where some implications do not have fully maximal answers. To this
e�ect, we vary the order in which implications are solved, so that when an implication D)C
without fully maximal answers is encountered, the answer 9��p:Ap to previous implications is
such that D^Ap)C has a fully maximal answer. In fact, our simple constraint abduction
algorithms go beyond fully maximal answers.
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let Di�^sDi
s and Ci�^sCi

s, where, for s2 sorts, Di
s; Ci

s are atomic conjunctions in Ls.
let Di

t; Ci
t be formulas Di

stype; Ci
stype with subterms r�i replaced with fresh variables �ri

(such that �r2Xs for r of sort s)
where r�i are all alien subterms in Di

stype; Ci
stype

let r��= r1� :::rn� , �r�� =�r1:::�rn
if Di

t is not satis�able for some i, then Abd(Q; ��; Di; Ci) :=Abd(Q; ��; Dj ; Cjj=/ i)

else if Ci
t is not satis�able for some i, then return Abd(Q; ��; Di; Ci) :=?

else let ^sDi;s
t =U(Di

t), ^sCi;s
t =U(Ci

t) be solved forms of Di
t, Ci

t

Similarly, discard branches i for which Di;s
t ^Di

s is not satis�able for some s2 usorts.
if AbdT(Q; �r����; Di;stype

t ; Ci;stype
t )=?, then Abd(Q; ��; Di; Ci) :=?

else let 9�jT :AT
j =AbdT(Q; �r����; Di;stype

t ; Ci;stype
t )

let AT
j 0 be AT

j with alien subterms replaced by distinct fresh variables ��r
j, �jT

0
=�j

T��r
j

let Ap
i
j
= fx=_ t2U(Di;stype

t ^AT
j 0)jx2Xs; s=/ stypeg

let Ac
i
j= fx=_ t2U(Di;stype

t ^Ci;stype
t ^AT

j 0)jx2Xs; s=/ stypeg
let Ap/c; j

i =^sAp/c; j;s
i , Ap/c; j;s

i 2Ls
let Js=

�
j
��Abds(Q; ��r

j��; Di
s^ (Di;s

t ^Ap; j;s
i )[�r�� := r��]; Ci

s^ (Ci;s
t ^Ac; j;s

i )[�r�� := r��])=/ ?
	

let 9�s
kj
s

:As
kj
s

=Abds(Q; ��r
j��; Di

s^ (Di;s
t ^Ap; j;s

i )[�r�� := r��]; Ci
s^ (Ci;s

t ^Ac; j;s
i )[�r�� := r��]),

j 2\s2usortsJs
if for some s2 usorts, Js=?, then Abd(Q; ��; Di; Ci) :=?
return Abd(Q; ��; Di; Ci) := 9�kjs:AT

j 0^sAs
kj
s

kj
s:j2\sJs

,

where �kjs are �j
T 0�s

kj
s

\FV
¡
AT
j 0^sAs

kj
s�
,

�s
kj
s

is a concatenation of �s
kj
s

for s2 usorts,
for j 2\sJs, kjs� span the cartesian product �s2usortsAbds of solutions for �xed j

Table 4.1. Complete multi-sorted abduction Abd(Q; ��; Di; Ci)

Rather than testing permutations blindly, we use a search scheme which might not
capture all opportunities to solve a JCA problem, but detects unsolvable JCA problems
earlier. We set aside branches that do not have any answer extending the partial answer so
far. After all branches have been tried and the partial answer is not an empty conjunction
(i.e. not T ), we retry the set-aside branches. If during the retry, any of the set-aside branches
fails, we add the partial answer to discarded answers � which are avoided during simple
abduction � and restart. Restart puts the set-aside branches to be tried �rst. If, when left
with set-aside branches only, the partial answer is an empty conjunction, i.e. all the answer-
contributing branches have been set aside, we fail � return ? from the joint abduction.

Before starting joint constraint abduction, we separate out negative constraints, as
explained in Section 4.3. To ensure the overall consistency and validity conditions without
needless backtracking, we pass a validation suite to SCA algorithms. The validation ensures
that the partial answers are consistent with all implications of the constraint. That is,
we reject the partial answers A such that M2^i9FV(Di^Ci^A):Di^Ci^A.
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For the details of the algorithm, see Section B.2.2.

4.2.4. Simple Constraint Abduction
JCA problems for most interesting domains are unknown to be decidable, because the cor-
responding SCA problems are not known to have e�ective characterizations of the sets of
answers. Maher [27] introduces subsets of answers which are more amenable to search:
abduction answer 9��:A to SCA problem D ) C is fully maximal when M � (9��:D ^
A),D ^C. We can search for fully maximal answers using various forms of a brute-force
approach: starting from an initial candidate D^C and generalizing until we �nd a formula,
implied by D ^ C, which meets all conditions for a correct SCA answer and all its further
generalizations do not imply C. It turns out that fully maximal answers are insu�cient. We
have come up with two additional ways to introduce initial candidates. One is to add � guess
� atoms constraining variables which are already signi�cantly constrained by the premise D.
The �signi�cant constraint� condition limits the number of guesses to try. The other way is
to decompose the SCA problem D)C into subproblems d) c for atoms d2D; c2C and
add their answers to initial candidates. In many domains, all maximally general answers
to d) c can be easily enumerated. Even considering all initial candidates described in this
paragraph does not ensure �nding all maximally general answers.

We preprocess the initial SCA answer candidate Ca by trying to eliminate universally
quanti�ed variables, using the premise of the SCA problem. We de�ne this preprocessing,
separately for the di�erent sorts, as Rev8(Q; ��; D; Ca). It makes the valididty condition of
the resulting answer,M �Q:A, easier to meet. See Dillig, Dillig, Li and McMillan [12] for
a similar approach.

4.2.4.1. Abduction for Terms

The JAQP problem for �rst order logic with function symbols and equality is undecid-
able, because it is equivalent, by Herbrandization, to simultaneous rigid E-uni�cation (see
Degtyarev and Voronkov [11]): the substitution that is a solution to simultaneous rigid E-
uni�cation when expressed as a conjunction of equations has the same properties as a JCAQP
answer (therefore the existence of JCAQP answers coincides with intuitionistic satis�ability).
Remember that outside of De�nition 4.1, we use �� as a shorthand for M��.

The decision problem T (F ) � Q: ^i (Di ) Ci) is decidable, see Comon [9]. Actually,
[9] provides a disjunction as a solution, each disjunct meeting the relevance and validity
conditions of the JCAQPT (F ) problem. It is often the case though that each disjunct does not
meet the consistency condition, despite the JCAQPT (F ) problem considered having answers.

The JCAQP problem for free term algebra T (F ) is unknown to be decidable. A limited
form of JCA is to �nd the fully maximal answers, introduced in [27], using non-simultaneous
abduction algorithm from Maher and Huang [29]. [27] refers to [25] as establishing that
there are �nitely many fully maximal answers. [29] gives an algorithm �nding fully maximal
answers for simple (i.e. non-simultaneous) constraint abduction problems.

Let us recall why Herbrandization is insu�cient and therefore we cannot apply the
algorithm from [29] without some adjustments. Take a formula 9x:(a=_ b(x) ) x=_ b(x)) ^
'(x). In the original model T (F ), the formula is equivalent to 9x:'(x), because a=_ b(x) is
equivalent to falsehood. However, it is a Herbrandization of 9x:(8b:a=_ b)x=_ b)^'(x), which
is equivalent to '(a).
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Fully maximal answers are not su�cient for the practical application of joint constraint
abduction. Consider a constructor Pair: 8��:Term(�) � Term(�) ¡! Term((�; �)) and a
pattern matching branch that we could add to our eval function: | Pair (y1, y2) ->
(eval y1, eval y2). It leads to an implication:

�=_ Term((� 0; � 0))) �=_ (� 00; � 00)

where � 0; � 0 are universally quanti�ed and � 00; � 00 are existentially quanti�ed. The expected
abduction answer �=_ Term(�)^� 00=_ �0^ � 00=_ � 0 is not fully maximal because:

�=_ Term((� 0; � 0))^ �=_ (� 00; � 00);� 0=_ � 00^ � 0=_ � 00

In the case of eval, the inference problem is solved by our JCA scheme even based on fully
maximal abduction. But examples from Chuan-kai Lin [22] (for example the zip2 and
zip1 functions) motivated a development that goes beyond fully maximal answers: guessing
equations between variables.

To show how we eliminate universally quanti�ed variables, we slightly abuse notation:

S = [tu� := tu
0�] for FV(tu)\ �u� =/ ?; 8�u�Q such that M�D)S_ ;

S 0 = [u� := tu
0�] for u�� �u� ; 8�u�Q such that M�D^C)S_

0
;

Rev8(Q; ��; D;C) = fc0jc= x=_ t2C; if x=S 0(t) then c0=S(c) else c0=SS 0(c)g

S is a substitution of subterms rather than a regular substitution of variables.
To solve D ) C the algorithm from [29] page 13, reproduced in Table 2.5, starts

with U (D ^ C) and iteratively replaces subterms by fresh variables � 2 �� for a �nal
solution 9��:A. If the same subterm occurs at multiple positions, we try replacing by the
same variable at subsets of these positions. We start from Rev8(Q; ��;U(D ^ Ap);U (Ap ^
D ^ C)), where 9��p:Ap is the solution to previous problems solved by the joint abduction
algorithm. Optionally, we also substitute-out in the initial candidates, constants � :=� when
�=_ � 2 U (D ^ Ap). The modi�cation going beyond fully maximal answers, is to consider
candidate atoms not implied by D ^ C, even in the case without an initial partial answer:
Ap=T . A natural choice is to consider equations �1=_ �2 for parameters �1�2� ��. To curtail
the search space, we limit the choices of pairs �1; �2 to cases Ap ^D ^ C) �1=_ �1 ^ �2=_ �2
where �1 and �2 are not variables but are uni�able.

For the details of the algorithm, see Section B.2.3.

4.2.4.2. Abduction for Linear Arithmetic

We start with some insights into abduction for linear arithmetic, and then discuss our
algorithm. Unlike in term abduction, there is no need to introduce variables.

Proposition 4.6. The domain of linear arithmetic has the following quanti�er elimination
property: for every constraint (i.e. conjunction of atoms) A and variables �� there exists a
constraint A0 such that M� (9��:A),A0.

With inequalities, it can happen that there are no maximally general answers, there can
also be in�nitely many maximally general answers outside of fully maximal answers.
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The implicit equalities E of a conjunction C is a conjunction of equations of biggest rank
such that M�C)E and E are linearly independent of equations in C.

Proposition 4.7. ([26] p. 14 Lemma 10) Suppose D^C has implicit equalities E. Then
�A^D)C i� �A^D)E and �E~(A^D))E~(C).

Consider the SCA problem x=_ 2r ^ y=_ 2s ) z=_ 2t and a maximally general answer
A= x+ y=_ z ^ r+ s=_ t. It is not fully maximal, because C ^D does not imply any relation
between x; y and z.

To simplify the search in presence of a quanti�er pre�x, we preprocess the initial candi-
dates by trying to eliminate universally quanti�ed variables:

S = [�u� := tu�] for 8�u�Q such that M�D)S_ ;

Rev8(Q; ��; D;C) = fc0jc2C; if M�Q:c[�� := t�] for some t� then c 0= c else c0=S(c)g

We approach solving for equations c= t1=_ t22C and inequalities c= t16 t22C di�erently. For
equations, we construct initial candidates as linear combinations of c and selected equations
fromD. For inequalities, we construct the initial candidates by �nding the abudction answers
to d) c for each inequality d2D.

To �nd the abduction answers to d) c, pick a common variable � 2 FV(d) \ FV(c) or
the constant �=1. We have four possibilities:

1. d,�6 d� and c,�6 c�: the abduction answers are c and d�6 c�,

2. d,�6 d� and c, c�6�: the abduction answer is only c,

3. d, d�6� and c,�6 c�: the abduction answer is only c,

4. d, d�6� and c, c�6�: the abduction answers are c and c�6 d�.

Thanks to cases (1) and (4) above, the abduction algorithm can �nd some answers which
are not fully maximal.

To check whether A)B, we check for each b2B:

� if b = x=_ y, that A(x) = A(y), where A(�) is the substitution corresponding to
equations and implicit equalities in A;

� if b= x6_ y, that A^ y<_ x is not satis�able.

For more details of the algorithm, see Section B.2.4.

4.3. Constraint Generalization

We de�ne constraint generalization as the task of �nding common consequences, as speci�c
as possible, of conjunctions of atomic formulas. Notice that there is at most one maximally
speci�c constraint generalization answer. Therefore the completeness condition for constraint
generalization reduces to requiring most speci�c answers.
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Definition 4.8. A quanti�ed conjunction of atoms 9��:A2F is a constraint generalization
answer to _iDi, where Di are conjunctions of atoms in L, when M � ^i(Di ) 9��:A).
A constraint generalization answer is most speci�c when: for every solution 9��s:As with
M � ^i(Di) 9��s:As), M � A) 9��s:As (with variables renamed so that ��s#FV(A)). By
LUB(Di) we denote the most general constraint generalization answer to _iDi, by LUB(�)
an algorithm that computes it.

Consider an eval-like example, where the disjuncts include the conjunctions of premises
and conclusions of a type inference constraint. We are interested in �nding

LUB(Di^Ci) = LUB (�=_ �! �1^�=_ Term(Int)^ �1=_ Int;
�=_ �! �1^�=_ Term(Bool)^ �1=_ Bool;
�=_ �! �1^�=_ Term()^ �1=_ )

for which the solution is 9�1:�=_ �! �1^�=_ Term(�1)^ �1=_ �1.
We discuss issues speci�c to postcondition inference in Section B.3.

4.3.1. Algorithm for Combining Domains

First order most speci�c anti-uni�ers are closely related to constraint generalization.

Definition 4.9. A sequence of substitutions Si� is an anti-uni�er of a same-length sequence
of terms ti� when there is a term tG such that 8i; Si(tG)= ti. The term tG is called a common
generalization of ti�.

An anti-uni�er Si� is a most general anti-uni�er of ti� when given any other anti-uni�er
�i� there exists a substitution � such that �i= Si�. We call tG such that Si(tG) = ti the most
speci�c generalization (MSG) of ti�. We require, without loss of generality, that variables used
by anti-uni�cation are fresh: fx2X jSi(x)=/ xg#FV(ti�).

We de�ne an alien subterm (cf. Baader and Schulz [3]) of a term � of sort stype to be a
maximally large subterm t of � of sort s=/ stype. Let LUBs(Di

s) give most speci�c constraint
generalization answers to _iDi

s for conjunctions of atoms of sort s for s =/ stype. We de�ne
LUB(Di)=9��:A in Table 4.2. The algorithm separates formulas into single-sorted formulas,
computes anti-uni�cation of terms equal to the same variable in each disjunct, and calls
constraint generalization for other sorts. It adds to the disjuncts passed to generalization for
other sorts, equations binding the generalization variables (introduced by anti-uni�cation) of
the particular sort. To �nd the anti-uni�ers, we adapt the anti-uni�cation algorithm provided
in Østvold [61], �g. 2. The proof of the following theorem is in Section A.3.

Theorem 4.10. LUB(Di) from Table 4.2 meets the De�nition 4.8 conditions for most
speci�c constraint generalization answer to _iDi.

In our actual implementation, we do not separate alien subterms, i.e. we do not compute
Di
t andDi

a. Rather, we rely on our implementation of uni�cation U to separate out equations
in sorts other than stype.
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let ^sDi
s�Di where Di

s is of sort s
let Di

t be Di
stype with all alien subterms ai

j� replaced by fresh variables �i
j� of corresp. sorts

let Di
a=�i

j�=_ ai
j� and ^sDi

t;s�Di
a where Di

t;s is in sort s
let ^sDi;s

t �U(Di
t) where Di;s

t is of sort s
For the sort stype:
let V = fxj ; ti; j j8i9ti; j:xj=_ ti; j 2Di;stype

t g
let G= f��j ; gj ; Si; j jSi; j= [��j := g�j

i]; Si; j(gj)= ti; jg
be the most speci�c anti-uni�ers of fti; j j(xj ; ti; j)2V g for each j

let Di
u=^j��j=_ g�ji and Di

g=Di;stype
t ^Di

u

let Di
v= fx=_ y jx=_ t12Di

g; y=_ t22Di
g;M�Di

g) t1=_ t2g
let Astype=^jxj=_ gj ^

T
i
(Di

g^Di
v)

where equations are ordered so that only one of a=_ b; b=_ a appears anywhere
let ��stype=��j�

let ^sDi;s
u �Di

u for Di;s
u of sort s

For sorts s=/ stype:
let 9��s:As=LUBs

¡
Di
s^Di

a(Di;s
t ^Di;s

u )
�

return 9�i
j����s� :^sAs

Table 4.2. LUB algorithm LUB(Di) =9��:A

4.3.2. Linear Arithmetic

Equality under premises within linear arithmetic: D � �=_ � can be decided by checking
whether the polytopes D^�< � and D ^ � <� are empty, which can be done by Fourier-
Motzkin elimination.

In contrast to the free term algebra, for the logic of linear inequalities over real or rational
numbers we have the following quanti�er elimination property. For all 9��:A2F , there is a
conjunction of atoms A0 such that M �A0,9��:A. Therefore, we need not introduce new
variables.

A system of linear inequalities is full-dimensional when the set of solutions is not con-
tained in an a�ne subspace of dimension smaller than the number of variables. In other
words, a full-dimensional system of inequalities does not have implicit equalities. The task
of constraint generalization LUB(Di) for full-dimensional inequalities is equivalent to �nding
the convex hull of the half-space represented, possibly unbounded polytopes Di. Fukuda,
Liebling and Lütolf [16] provide a polynomial-time algorithm to �nd the half-space repre-
sented convex hull of closed polytopes. The algorithm can be generalized to unbounded
polytopes.

When all variables of an equation a=_ b appear in all branchesDi, we can turn the equation
a=_ b into pair of inequalities a6 b^ b6a. We eliminate all equations and implicit equalities
which contain a variable not shared by all Di, by substituting out such variables. We con-
jecture that the resulting algorithm meets the correctness and completeness conditions.

More details of the algorithm implemented in InvarGenT can be found in Section B.3.1.
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4.3.3. Abductive Constraint Generalization
It turns out that constraint generalization as we de�ned it is insu�cient. Consider replacing
function by efunction in a function of type �1! �2 for which type inference works �ne.
We expect the resulting type to have the form �1 ! 9:�2, i.e. without existential type
variables. But while uni�cation reconstructs �2 from the result types of the branches, con-
straint generalization will fail to generate �2 when a branch under-constrains the result, does
not �care� about the speci�c type. To mitigate this problem we introduce abductive constraint
generalization and modify our anti-uni�cation algorithm. Constraint generalization in the
numerical domain does not need such modi�cation.

We extend the notion of constraint generalization:

Definition 4.11. Substitution U and solved form formula 9��:A are an answer to abductive
constraint generalization problem Di given a quanti�er pre�x Q when:

1. (8i)M�U(Di))9��nFV(U):A;

2. If �2Dom(U), then (9�)2Q � variables substituted by U are existentially quanti�ed;

3. (8i)M�8(Dom(U))9(FV(Di)nDom(U)):Di.

The sort-integrating algorithm changes only minimally. We adapt the anti-uni�cation
algorithm to compute the substitution U from De�nition 4.11. For details of the algorithms,
see Section B.3.3.

4.4. Negative Constraints

We collect implication branches with conclusion Ci=F and do not pass them to abduction
or constraint generalization.

For the numerical sort, optionally but by default, we try to turn the negative constraint
Di
k ) F into a positive contribution to constraints under assumption that the numerical

domain is integer numbers rather than rationals. We convert :Di
k into disjunctive normal

form, and replace strict inequalities w>0 with weak inequalities ¡w�¡1, assuming w.l.o.g.
integer coe�cients in w. We eliminate each disjunct inconsistent with some branch Dj

k^Cj
k.

If exactly one disjunct remains, it is the solution to the negative constraint Di
k)F .

After a joint constraint abduction answer has been found, we check whether all negated
constraints, i.e. Di

k for Ci
k=F , are inconsistent. If not, we backtrack: redo abduction with

Ak put into the discard list. Moreover, we include in simple constraint abduction a heuristic
to prefer partial answers which make more negated constraints inconsistent.

For details of the algorithm, see Section B.4.

4.5. Details of Solving for Predicate Variables

Faced with an inference problem �, we solve it using iterated abduction. Let

9���9�Q:^i (Di)Ci)=9�NF(�)
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where Di; Ci are conjunctions of atoms, be quanti�er alternation-minimizing normalization
of � (the variable � is used just to bring existentially quanti�ed variables to the front, if
possible). Using the prenex-normal form simpli�es formal presentation.

Definition 4.12. We will say that a quanti�er pre�x and a solved form formula 9��:A are
in atomized form with respect to parameters ��, when: variables �� are in the same quanti�er
alternation in Q, M�Q:A[���� := t�] for some t�, and the following two conditions hold:

1. there are no properties expressed in A in a way constraining parameters ���� that can
also be expressed without constraining them: if there are conjunctions of atoms C;D
such that M �D ^ C) A and M � Q:D, then there exists a conjunction of atoms
B such that B �A, M �Q:B and M�C) (AnB), where AnB is a conjunction of
atoms in A that are not in B;

2. all properties expressed in A in a way constraining parameters ���� are also expressed
using only variables Q<� (for any � 2 ��) and ����: if there is a conjunction of atoms
C�A such thatM2Q[(8��) := (8����)]:C, then there is a conjunction of atoms D�A
such that FV(D)�Q<����� and M�Q[(8��) := (8����)]:D)C.

The atomized form is with respect to parameters ��� when it is an atomized form with respect
to parameters ��� for all ���2 ���.

Proposition 4.13. Let Q:��1=_ t�1^ ��2=_ t�2 be a formula in L with sorts stype and the linear
arithmetic sort. If [��1 := t�1;��2 := t�2] is a substitution, [��1 := t�1] agrees with quanti�er pre�x
Q and ��2�����, then 9��:��1=_ t�1^��2=_ t�2 is in atomized form w.r.t. parameters ��.

Symbolically we denote an atomized form that is equivalent to A by Atomized(A). For
inequalities, Atomized(A) can be recovered during the Fourier-Motzkin procedure by keeping
some of the inequalities implied by A. Atomized forms are required so that we can distribute
the constraints among the predicate variables � implicit constraints are made explicit.

Take a conjunction of atoms A 2L, a quanti�er pre�x Q, and variables ��; ���, where �
varies over PV(Q). Let us discuss the routine Split

¡
Q; ��; A; ���; A�

0
�
de�ned in Table 4.3.

PrimCV(c) stands for primary constrained variables of an atom c. These are the variables
that can be separated to one side of the atom c. For the sort of terms and the numerical
sort, � 2PrimCV(c) if and only if: c, �=_ t, or c, �6 t, or c,t6�, for some t including
t=min (t1; t2) and t=max (t1; t2) for some t1; t2. For other sorts, the de�nition of PrimCV(�)
needs to be extended analogically. The selections of A�

+ we try are minimal with respect
to pointwise set inclusion, i.e. wrt. 6 de�ned as A�

1 6A�
2,8�:A�

1 �A�
2 . The routine Split

separates an answer formula into components that need to become (parts of) the predicate
variable solutions, and the residual answer Ares. The residual answer is a satis�able formula,
it contains solutions to the existentially quanti�ed variables. In particular, the types of
expressions of interest can be extracted from the �nal residual answer. Note that due to
existential types predicates, we actually compute Split

¡
Q; ��; A; ����; A��

0
�
, i.e. we index by

�� (which can be multiple for a single �) rather than �. We retain the notation indexing by
� as it better conveys the intent. Let Split

¡
Q; ��; A; ���

�
be Split

¡
Q; ��; A; ���;T�

�
.
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let
�� � = �<Q� _

¡
�6Q� ^ � �Q�^�2 ���^ � 2/ ���

�
A�� =

�
�=_ �2A

��� 2 ���^ (9�)2Q^ ���	
A0 = AnA��

A�
1 =

�
c2A0

��8�2FV(c):(9�)2Q_
�<Q��^�2/ PrimCV(c)_�2 ���^�2PrimCV(c)

	
A�
2 = Atomized

¡
��
�
; A�

1
�

A�
3 = A�

2 n[�0A�0
1

if M2Q:(A n[�A�
2 )[�� := t�] for all t�

then return ?
for all A�

+ min. w.r.t. � s.t. ^�(A�
+�A�

2 ) and M�Q:([�A�
+)A)[�� := t�] for some t�:

if Strat(A�
+; ��

�
) returns ? for some �

then return ?
else let

��+
�; A�

L; A�
R = Strat(A�

+; ��
�
)

A� = A�
0 [A�

L

��0
� = ��\FV(A�)

��� =

 
��0
� n

[
�0<Q�

��0
�0
!
��+
�

A+ = [�A�
R

Ares = A+[A+(A n[�A�
+)

if [����=/ ?_[�A�
3 =/ ?

then
Q0; Ares

0 ;9�� 0�:A�
0 2

Split
¡
Q
�
8��� := 8(���[���)

�
; �� n[����; Ares^�A�

3 ; ��
�[���; A�

�
return Q0; A��^Ares

0 ; 9����� 0�:A�
0

else return Q9(�� n[����); A��^Ares; 9���:A�

where Strat(A; ���) is computed as follows:
1. for every c2A, and for every �22FV(c) such that �1<Q �2 for �12 ��

�,
2. if �2 is universally quanti�ed in Q, then return ?;
3. otherwise, introduce a fresh variable �f, replace c := c[�2 := �f],
4. add �2=_ �f to A�

R and �f to ��+
�,

5. after replacing all such �2 add the resulting c to A�
L.

Table 4.3. Split routine Split
¡
Q; ��; A; ���; A�

�
In Table 4.4, we describe a single step of solving for predicate variables. The iteration

of the algorithm starts by substituting the partial solutions to predicate variables from the
previous iteration (Table 4.4, Eq. 4.1). Next, it performs constraint generalization, to �nd
the current solutions for postcondition-related predicate variables (Eq. 4.2). The found
postconditions are then substituted for predicate variables in premises, i.e. at places where a
de�nition returning an existential type is used recursively (Eq. 4.3). Having stronger premises
simpli�es, and sometimes enables, the subsequent abduction (Eq. 4.4). The abduction answer
is split into parts (Eq. 4.5), that are added to the partial solutions to predicate variables
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(Eqs. 4.6, 4.8). When abduction shows we need richer postconditions, an auxiliary round of
abduction is performed (Eq. 4.7). It infers additional preconditions that enable the required
postconditions. We add these preconditions to the partial solutions (Eq. 4.8). If the resulting
partial solutions di�er from the initial partial solutions, we continue with another iteration
of the main algorithm.

Recall De�nition 3.5 of solutions to a type inference problem �.

Proposition 4.14. If a solution to the inference problem � exists, then there is an inter-
pretation of predicate variables I such that M; I ��.

De�ne

	0= f(T ;T�;T�)g, 	k+1=
[

�
Fres
k ;9���;k:F�k;9��

�K;k:F�K
k

�
2	k

	
¡
k;�; 9���;k:F�k; 9���K ;k:F�Kk

�

where the operator 	 such that (9��res:Ares; Sk+1; Rk+1)2	(k;�; Sk; Rk) for Sk= 9���;k:F�k,
Rk=9���K ;k:F�Kk , is de�ned in Table 4.4. The convergence condition is:

(8�)Sk+1(�)�Sk(�);
^ (8�K)Rk+1(�K)=Rk(�K);

^ (8��K)A��K
=T ;

^ k > 1

We argue for the truth of the following theorem in Section A.4.

Theorem 4.15. Correctness. Let I = [�� := 9���:F�; �K := 9��K:FK] be an interpretation of
predicate variables for an inference problem �. If (9��res0 :Fres

0 ; 9���:F�; 9���K:F�K) 2 	(�;
9���:F�;9���K:F�K), then M;I ��.

To prove Theorem 4.16, we have to assume that there are no existential type predicate
variables, i.e. for an inference problem �, PV(�) = PV1(�); and also that Abd in the
de�nition of 	 is a complete abduction algorithm returning an atomized form formula. Since
the completeness of abduction assumption is not met, Theorem 4.16 does not describe an
actual implementation. We argue for the truth of Theorem 4.16 in Section A.4.

Theorem 4.16. Let (9��sres:Fres
s ;9��s�:F�s) be any solution to an inference problem � with ��=

PV(�)=PV1(�). Assume that Abd in the de�nition of 	 is a complete abduction algorithm
returning an atomized form formula. Then there is a chain

¡
9��kres:Fres

k ;9���;k:F�k
�
2	k, with¡

9���;k+1:F�k+1
�
2	(k;�;9���;k:F�k), such that for all k> 1, M�^�F�s) (^�F�k)

�
���;k := t�

�
for some t�.

For more discussion on the implementation, see Section B.6.
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9���;k:F� = Sk
In iteration 2, remove non-term-sort atoms
containing outer-scope parameters from Sk:

DK
�)CK

� 2Rk
¡Sk(�) = all such that �K(�; ��K)2CK

� ; (4.1)
Cj
�= fC jD)C 2Sk(�)^D�DK

� g
�K : �K(�K) is a positive atom in �

U�K ;9��g
�K:G�K ; Bd

K = LUB
¡
�K ; �=_ �^DK

� ^jCj
�
�2�3

i;K

�
(4.2)

�~"K =
�
�2FV(G�K)n�� 0��g

�K
��(9�)2Q_�2 ���n���K	

�(9��g�K:G�K) = 9FV(�~"K ; G�K)n�� 0:� 0=_ �~"K^G�K

(9���K:F�K); � = H(Rk(�K);�(9��g�K:G�K))
Rg(�K) = 9���K:F�K

Pg(�K(�; � 0))=Pg(�K(� 0)) = � 0=_ �~"K
F�
0 = F�["K(�~old) := "K(�~"K)[recover(�~"K; �~old)]]

Sk
0 = 9���;kf�2FV(F�0)j��<Q�g:F�0

Q0:^i (Di)Ci)^j (Dj
¡)F ) = Rg

¡Pg
+Sk

0(�^�KU�K) (4.3)
9��:A0 = Abd

¡
Q0; ��= ����
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Table 4.4. Iteration k of solving for predicate variables
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Chapter 5
InvarGenT: Tests and Limitations

In this chapter we present types and inference times of tested examples, measured on a
laptop with Intel Core i3 processor at 2.30GHz, 3MB cache. The implementation does not
use parallelism.

5.1. Benchmarks
Table 5.1 contains examples using the plain GADTs type system, without numerical con-
straints and existential types. Consider the examples from Chuan-kai Lin's [22]. We tested
7 longer examples where algorithm P �nds the expected type. InvarGenT does not have
problems with these cases either, except the head function. We also reproduce all 8 examples
from [22] where algorithm P fails, adapting them only to accomodate to the type system
MMG(X) behind InvarGenT. InvarGenT fails on two examples. One, the function vary,
was contrived to not have a clear intended type. The other, the function fd_comp, can be
slightly modi�ed to work with InvarGenT's type inference. There is also one example, func-
tion leq, which requires non-default parameter setting (passing a parameter -prefer_guess
to InvarGenT). In a future version, InvarGenT will attempt multiple parameter settings
before giving up. Overall, we consider the behavior of InvarGenT on this test suite to be
a success.

Table 5.2 contains examples using numerical constraints and existential types. The
examples are organized around several data structures: lists and arrays with length, binary
numbers, AVL balanced search trees. We provide the inferred types in the hope that they
are self-explanatory.

Table 5.3 contains examples of static array (and matrix) bounds checking. These tests
originally date back to the Hongwei Xi's DML system. They were selected, by [41], to
demonstrate the abilities of the Liquid Types system inference implementation DSolve. The
reported DSolve times come from [41] and [40]. The example isort lists two times: the
shorter time is inferred from a program without an unused nested de�nition of vecswap. We
extracted the corresponding computation as the example swap_interval in Table 5.2. The
shorter time for the example simplex corresponds to a variant where some helper functions
are separated out as toplevel de�nitions, while the longer time is for a variant with a single
toplevel de�nition. For the example program gauss without assertions we again have two
variants, but they both simplify the original example. They remove a redundant level of
nesting in a helper, nested de�nition rowMax. One of the variants requires passing a non-
default option -prefer_bound_to_local to guide inference, the other slightly generalizes
the algorithm by passing a di�erent matrix dimension in two places. Since our type system
does not allow existential types as function arguments, for the FFT examples we introduce
an explicit datatype Bounded. The FFT example with assertion requires non-default option
-same_with_assertions. On the whole, we believe that the approach taken by InvarGenT
shows promise in this comparison. It is clear that InvarGenT faces increasing di�culties
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Class of examples Function name: inferred type Inf. time
incompl. ex. [53] rx: 8a.R a!Int <0.01s
examples from
[23] within the
scope of algo-
rithm P

rotate: 8a.Dir!Int!RoB (Black, a)!Dir!Int!
RoB (Black, a)!RoB (Red, a)!RoB (Black, S a)

0.02s

zip2: 8a, b.Zip2 (B, a)!b!a 0.16s
rotl: 8a.AVL a!Int!AVL (S (S a))!
Choice (AVL (S (S a)), AVL (S (S (S a))))

0.03s

ins: 8a.Int!AVL a!Choice (AVL a, AVL (S a)) 0.41s
extract: 8a, b.Path b!Tree (b, a)!a 0.06s
run_state: 8a, b.b!State (b, a)!(b, a) 0.01s
head: 8a, b.List (a, S b)!a 1

examples from
[23] outside the
scope of algo-
rithm P

joint: 8a.Split (a, a)!a <0.01s
rotr: 8a.Int!AVL a!AVL (S (S a))!
Choice (AVL (S (S a)), AVL (S (S (S a))))

0.09s

delmin: 8a.AVL (S a)!
(Int, Choice (AVL a, AVL (S a)))

0.31s

fd_comp: 8a, b, c.FunDesc (c, b)!FunDesc (b, a)!
FunDesc (c, a)

0.2s*, 0.1s*

zip1: 8a, b.Zip1 (List b, a)!b!a 0.08s
leq: 8a.Nat a!NatLeq (a, a) <0.01s**
run_state: 8a, b.b!State (b, a)!(b, a) 0.03s

run-time type
representations

eval: 8a.Term a!a 0.06s
equal: 8a,b.(Ty a, Ty b)!a!b!Bool 0.3s, 2.1s

* Slight meaning-preserving modi�cation of test program
** Needs a non-default option -prefer_guess

Table 5.1. Examples of types and inference times, plain GADTs
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Class of examples Function name: inferred type Inf. time
lists with length
and arrays with
static bound
checks

head: 8n,a[16n].List (a, n)!a <0.01s
append: 8a,n,k.List (a, n)!List (a, k)!List(a, n+k) 0.02s
flatten_pairs: 8n, a. List ((a, a), n) !
List (a, 2 n)

0.01s

flatten_quadrs: 8n, a. List ((a, a, a, a), n) !
List (a, 4 n)

0.06s

filter: 8n, a. (a ! Bool) ! List (a, n) !
9k[0 6 k ^ k 6 n].List (a, k)

0.18s

zip: 8a,b,n,k.(List (a,n), List (b,k))! 9i[i=min(n,
k)].List ((a,b),i)

0.38s

bsearch2: 8n, a[0 6 n]. a ! Array (a, n) !
9k[0 6 k + 1 ^ k + 1 6 n].Num k (uses assertion)

1.39s

swap_interval: 8i, j, k, n, a[1 6 j ^ 0 6 n ^
0 6 k ^ i + k 6 j ^ i + n 6 j]. Array (a, j) !
Num n ! Num k ! Num i ! ()

0.27s

matmul: 8i, j, k, n[0 6 n ^ 0 6 k ^ 0 6 j ^
j 6 i]. Matrix (n,j) ! Matrix (i,k) ! Matrix (n,k)

0.34s

binary numbers plus: 8n,k,i.Carry i!Binary k!Binary n!Binary

(n+k+i)

0.66s

increment: 8n.Binary n!Binary (n + 1) 0.01s
bitwise_or: 8k, n. Binary k ! Binary n !
9i[k 6 i ^ n 6 i ^ i 6 n + k].Binary i

1.21s

AVL trees, imbal-
ance of 2

create: 8k, n, a[0 6 n ^ 0 6 k ^ n 6 k + 2 ^
k 6 n + 2]. Avl (a, k) ! a ! Avl (a, n) !
9i[i=max (k + 1, n + 1)].Avl (a, i)

0.09s

rotr: 8k, n, a[0 6 n ^ n + 2 6 k ^ k 6 n + 3]. Avl

(a, k) ! a ! Avl (a, n) !
9n[k 6 n ^ n 6 k + 1].Avl (a, n)

1.07s

add: 8n, a. a ! Avl (a, n) ! 9k[1 6 k ^ n 6 k ^ k

6 n + 1].Avl (a, k)

0.69s

remove_min_binding: 8n, a[1 6 n]. Avl (a, n) !
9k[n 6 k + 1 ^ k 6 n ^ k + 2 6 2 n].Avl (a, k)

0.59s

merge: 8k, n, a[n 6 k + 2 ^ k 6 n + 2]. (Avl (a,

n), Avl (a, k)) ! 9i[n 6 i ^ k 6 i ^ i 6 n + k ^
i6max (k + 1, n + 1)].Avl (a, i)

0.93s

remove: 8n, a. a ! Avl (a, n) ! 9k[n 6 k + 1 ^
0 6 k ^ k 6 n].Avl (a, k)

0.38s

Total time for add, remove and helper functions: 4.92s

Table 5.2. Examples of types and inference times, with numerical constraints and existentials

when analysing more complex programs. We propose remedies to the issues encountered as
future work.
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Program Inf. time Time from [ 41]
dotprod 0.05s 0.31s
bcopy 0.03s 0.15s
bsearch 0.07s 0.46s
queen 0.42s 0.7s
isort 0.3s, 0.37s 0.88s
tower no assertions 0.84s 1
tower with assertion 3.93s 3.33s
matmult 0.34s 1.79s
heapsort 2.34s 0.53s
fft no assertions 36.4s* ?
fft with assertion 37.5s*,** 9.13s
simplex 8.1s*, 31.4s 7.73s
gauss no assertions 2.66s*, 1.02s*,*** ?
gauss with assertion 2.72s 3.17s
* Slight meaning-preserving modi�cation of test program
** Needs a non-default option -same_with_assertions
*** Needs a non-default option -prefer_bound_to_local

Table 5.3. Examples of inference times, bound checking

The code of examples from Tables 5.1, 5.2 and 5.3 can be found in Appendix C.

5.2. InvarGenT Failure Cases

Type inference for the type system underlying InvarGenT is undecidable. Constraint
abduction itself is not known to be decidable. Rather than trying to enumerate all pos-
sible answers, we devised constraint abduction algorithms that only consider answers of
restricted forms. The vary example from [22] fails due to such limitation. However, the
practical problems we encountered are not of such nature. Each subsection below describes
a class of problematic cases, exhausting the types of inference failures we encountered. Near
discuss the prospects of improving the situation.

5.2.1. The Need to Expand Pattern Variables

The one function from [22] that needed modi�cation to be type-inferred is fd_comp. Take a
look at the fragment of original de�nition that needed modi�cation:

let fd_comp = fun fd1 fd2 ->
let o = fun f g x -> f (g x) in
match fd1 with

| FDI -> fd2
| FDC b -> ...
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The modi�ed form:

let fd_comp = fun fd1 fd2 ->
let o = fun f g x -> f (g x) in
match fd1 with

| FDI ->
(match fd2 with | FDI -> fd2 | FDC _ -> fd2 | FDG _ -> fd2)

| FDC b -> ...

Type inference needs to know the structure of both arguments to be able to infer the
resulting type. If this problem proves cumbersome, we can devise heuristics for automatic
expansion of pattern variables.

5.2.2. Constraints Shared by Constructors of a Datatype
The above problem is more pronounced in the numerical domain. Fortunately, here it can
have a principled solution. Consider the following list appending example that does not type-
check:

let rec append =
function LNil -> (fun l -> l)

| LCons (x, xs) -> (fun l -> LCons (x, append xs l))

We can mitigate the problem by expanding the pattern, as in Example 5.1:

let rec append =
function LNil -> (function LNil -> LNil | LCons (_,_) as l -> l)

| LCons (x, xs) ->
(function LNil -> LCons (x, append xs LNil)

| LCons (_,_) as l -> LCons (x, append xs l))

But we can also provide the �hidden� information explicitly, by either a positive assertion,
or a negative assertion as below:

let rec append =
function

| LNil ->
(function l when (length l + 1) <= 0 -> assert false | l -> l)

| LCons (x, xs) ->
(function l when (length l + 1) <= 0 -> assert false
| l -> LCons (x, append xs l))

One can investigate a modi�cation to the type system so that each datatype is associated
with an invariant common to all constructors of the datatype. In case of lists, the shared
invariant is that the length of a list is non-negative. In the modi�ed type system, when it
becomes determined that a pattern variable's type is a datatype, the corresponding invariant
is made available for inference.
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5.2.3. Negative Constraints in the Sort of Terms

Example 5.1. Consider the following variant of the head example from [22]:

datatype Z
datatype S : type
datatype List : type * num
datacons LNil : 8a. List(a, Z)
datacons LCons : 8a, b. a * List(a, b) ¡! List(a, S b)

let head = function
| LCons (x, _) -> x
| LNil -> assert false

We introduced the assertion to disallow the overly general type 8a, b. List (a, b) !
a, which is the correct most general type for function LCons (x, _) -> x, because the
type system does not enforce exhaustiveness of pattern matching. The above function has
type 8a, b. List (a, S b) ! a, but type inference fails to �nd it. The problem stems
from the inability to express disequations t1=/ t2 in the sort of terms as conjunctions of atoms.
We already implemented a workaround in InvarGenT for the case of datatypes with only
constant constructors.

5.2.4. Insu�cient Context to Infer Postconditions

Example 5.2. In the following variant of the bsearch2 example it turns out to be too hard
to infer the full postcondition.

datatype Array : type * num
external let array_make :
8n, a [06n]. Num n ! a ! Array (a, n) = "fun a b -> Array.make a b"

external let array_get :
8n, k, a [06k ^ k+16n]. Array (a, n) ! Num k ! a =
"fun a b -> Array.get a b"

external let array_length :
8n, a [06n]. Array (a, n) ! Num n = "fun a -> Array.length a"

datatype LinOrder
datacons LE : LinOrder
datacons GT : LinOrder
datacons EQ : LinOrder
external let compare : 8a. a ! a ! LinOrder =
"fun a b -> let c = Pervasives.compare a b in

if c < 0 then LE else if c > 0 then GT else EQ"
external let equal : 8a. a ! a ! Bool = "fun a b -> a = b"
external let div2 : 8n. Num (2 n) ! Num n = "fun x -> x / 2"
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let bsearch key vec =
let rec look key vec lo hi =

eif lo <= hi then
let m = div2 (hi + lo) in
let x = array_get vec m in
ematch compare key x with

| LE -> look key vec lo (m + (-1))
| GT -> look key vec (m + 1) hi
| EQ -> eif equal key x then m else -1

else -1 in
look key vec 0 (array_length vec + (-1))

We get the result type 9n[0 6 n + 1].Num n instead of 9k[k 6 n ^ 0 6 k +
1].Num k. The inference of the intended type succeeds after we introduce an appropriate
assertion, e.g. assert num -1 <= hi. Alternatively, we can include a use case for bsearch
where the full postcondition is required. It would be challenging to guess the assertion
or use-case automatically.

5.2.5. Insu�cient Search
The need to pass options, in examples like the function leq and the function fft with
assertions, stems from the failure of our search strategy for partial solutions across iterations
of the main algorithm (rather than within a single call to abduction). Our search can recover
from choices leading to contradictions in the following iteration, but not from choices leading
down blind alleys. The problem might be more serious than it appears, because the heuristics
(i.e. the default options) have been tuned in favor of our test suite. The solution to the
problem is beam search: processing a �xed number of partial solutions, those with highest
scores. A score measures heuristically the quality of a partial solution: penalizing complexity,
rewarding locality of scope of parameters in an atom, etc.

5.2.6. Nested De�nitions with Tied Postconditions
The variant of the gauss program without assertions and with more nesting illustrates a
problem with nested de�nitions introducing existential types. To arrive at the postcondition
of the inner de�nition, we need to propagate information from the use-site of the outer
de�nition. The postconditions are tied in the sense that the postcondition of the outer
de�nition depends on the postcondition of the inner de�nition. We need to further investigate
the issue to see what can be done.
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Chapter 6

Conclusions

In this chapter, we summarize our work in its broader context.

6.1. Related Work

Perhaps Xi and Pfenning [57] can be considered the earliest work on GADTs with invariants
over a constraint domain; see Section 2.1. Its numerical constraint language contains min
and max operations enabling e.g. a concise de�nition of AVL trees datatype as in Chapter
1. Its presentation of existential types is similar to ours. [57] opted to automate existential
type elimination by A-translation : Atr(e1 e2)= (letx=Atr(e1) in lety=Atr(e2) inxy). Thanks
to the modi�ed App rule, performing A-translation during the normalization step ExIntro
would make strictly more programs typeable in MMG9(X). The DML language from [57]
and its successor the ATS language do not perform type inference for recursive functions.

We base our type system on the HMG(X) type system from Simonet and Pottier [47];
see Section 2.2. In the tradition of the Milner-Mycroft type system (see Henglein [18]), we
drop the type speci�cations on recursive de�nitions from program terms. We also naturally
restrict HMG(X) by limiting the user-speci�ed and inferred invariant constraints to use
conjunction as the only logical connective. We call the resulting type system MMG(X).

The traditional framework for loop invariant generation of Cousot and Cousot [10]
inspired the iterative aspect of our solver. Mycroft's modi�cation in [33] of algorithm W
to polymorphic recursion is also iterative, but it solves each recursive de�nition separately.
We solve all nested de�nitions jointly in a single iteration.

Initially we were only aware of the work in Knowles and Flanagan [20] in the frame-
work of re�nement types , which applies Dijkstra's weakest precondition calculus to general
re�nement types. An interesting question is whether work similar to ours could be done by
application of the weakest precondition calculus to the Hoare logic of Regis-Gianas and Pot-
tier [43], with the conditions inserted by type inference. Work on Liquid Types by Rondon,
Kawaguchi and Jhala [41] is a continuation of this approach closer to InvarGenT in that it
does not use weakest precondition calculus explicitly; see Section 2.5. Abstract Re�nement
Types by Vazou, Rondon and Jhala [52] is a continuation of Liquid Types in an interesting
direction beyond the scope of current InvarGenT, opening an area for future work.

Early work on applying abduction to type inference was an inspiration for us. The
work by Sulzmann, Schrijvers and Stuckey [49] and [48] closely relates to our work in their
application of fully-maximal constraint abduction to GADTs type inference. But without
annotations, this would �throw the baby out with the bathwater� by rejecting, as not having
an intuitive type, for example any variant of eval that computes for pairs: datacons Pair
: 8a, b. Term a * Term b ¡! Term (a, b), datacons Fst : 8a, b. Term (a, b)
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¡! Term a and datacons Snd : 8a, b. Term (a, b) ¡! Term b. The corresponding
implications do not have fully maximal answers. [49] and [48] use Herbrandization but
solve the resulting constraints in the free algebra of terms, which we �nd problematic (see
Section 4.2.1).

Maher [27] and Maher and Huang [29] introduce fully maximal constraint abduction; see
Section 2.6. Our algorithm for injective terms with multi-sorted alien subterms is extensible
to any constraint domain, given algorithms for the new domain, as long as the domains do
not interact. Allowing the domains to interact would require considerable work, Baader
and Schulz [3] might be relevant. Abduction algorithm for the term algebra is provided in
[29], although further work driven by practical issues was needed. The linear arithmetic
constraint abduction in Maher [26] turned out not to be useful as a basis for an algorithm,
our algorithm is novel. Maher [28] studies constraint domains where a (single) most general
Simple Constraint Abduction answer exists, and gives a closed formula for SCA answer for
the case of Boolean lattices.

The work in Unno and Kobayashi [51] can be seen as extending Knowles and Flanagan
[20] with reasoning by Boolean cases. Their programming language and type system is in
several ways less expressive than the ML language with polymorphic recursion and the full
GADTs type system: no inductive types (and therefore no pattern matching), re�nement
predicates over integers only instead of over arbitrary domains including types.

The recent counterexample-guided abstraction re�nement work of Zhu and Jagannathan
[59] (building on Kobayashi, Sato and Unno [21]) pushes the envelope on both expres-
siveness and efficiency of inference of a refinement types based approach. It is further
developed in Zhu, Nori and Jagannathan [60], the implementation is called SpecLearn.
The work includes features beyond the scope of InvarGenT, for example e�ect tracking.
Wrt. invariant inference, SpecLearn is similar to InvarGenT in that it starts with coarse
invariants and re�nes them. However, rather than deriving the invariants mostly from the
de�nitions they describe, SpecLearn generates test cases to re�ne the invariants. It still
cannot solve, for example, the AVL trees inference task, without assertions in the source
code. SpecLearn is slower than InvarGenT, at least for those of the tests reported
in [60] which belong to our test suite (Table 5.3).

Schrijvers and Bruynooghe [44] shares the objective with our work: softening the learning
curve and facilitating rapid prototyping. It reconstructs algebraic data types. An interesting
direction of future work would be to reconstruct GADTs using the mechanisms already
present in InvarGenT. In fact, InvarGenT reconstructs GADT constructors that serve
as existential types.

There is a surge of work on type inference for GADTs over the last decade, not con-
tributing to our approach. Works such as Pottier and Régis-Gianas [36] (older), Schrijvers,
Peyton Jones, Sulzmann and Vytiniotis [45], Lin and Sheard [23] (see also [22]) modify the
GADTs type system to make it more amenable to type inference (rejecting some reasonable
programs as untypeable), and develop less declarative inference algorithms. These works
also do not allow other domains (than the free term algebra) to express invariants, but
Schrijvers, Peyton Jones, Sulzmann and Vytiniotis [53] extends the OutsideIn system to
arbitrary domains, see Section 2.3. [22] and [44] stand out from our point of view as they
handle type inference for polymorphic recursion: [22] by iteration, see Section 2.4, and [44]
using an algorithm by Henglein.
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Inductive loop invariants from the recent work Dillig, Dillig, Li and McMillan [12] are
closely related to fully maximal joint constraint abduction answers. However, [12] employs
a richer language of answers, including implications. We decided to limit solved forms, thus
preconditions and postconditions, to conjunctions of atoms, to not tax with complexity both
algorithms and users. Exploring [12] in context of InvarGenT may be fruitful, by improving
on InvarGenT's abduction algorithm for linear arithmetic. One improvement is to perform
quanti�er elimination of universal variables (as in [12]) when they cannot be substituted
out. An improvement would be constraint abduction that generates min and max relations,
which in current InvarGenT are only introduced by constraint generalization, but here [12]
does not help directly. [12] would gain by incorporating ideas from our abduction algorithm.

A related work by Deepak Kapur [19] is part of an interesting research program of
Deepak Kapur and Enric Rodríguez Carbonell, for example [19], [38], [39]. [19] generates
loop invariants for imperative programs, by quanti�er elimination. The variables that are
not eliminated are the invariant parameters. In fact, the generated invariant is an abduction
answer to the corresponding invariant inference constraint; compare how InvarGenT uses
abduction to solve for preconditions. On the other hand, [38] uses constraint generalization,
iterating it until convergence. This is in e�ect how InvarGenT solves for postconditions.
[38] and [39] use polynomial equations as the language of invariants. This suggests, as future
work, that including in InvarGenT a domain of polynomial equations.

In case of the free algebra of terms, constraint generalization reduces to anti-uni�ca-
tion. Anti-uni�cation was �rst introduced by Plotkin [35] and Reynolds [37]. Bulychev,
Kostylev and Zakharov [7] is a recent work on anti-uni�cation, with an example application
to invariant inference. Our constraint generalization algorithm for linear inequalities has
inspirations from Fukuda, Liebling and Lütolf [16].

6.2. Future Work

Let us collect together proposed directions for future work.

� Implement beam search, where several answers are maintained and inferior answers
(less general precondition, less speci�c postcondition), or answers with worse heuristic
score (more complex, etc.), are dropped.

� Address other issues discussed in Section 5.2: handle constraints shared by construc-
tors of a datatype, handle use-site constraint propagation for nested de�nitions with
tied postconditions.

� Explore extending the MMG9(X) type system to handle the use of invariants in
arguments of higher-order functions, as in Rondon, Kawaguchi and Jhala [41] and
especially in abstract re�nement types of Vazou, Rondon and Jhala [52].

� Work on error reporting for InvarGenT. Trace use-site location and program path
location associated with implications, separately; see Zhu and Jagannathan [59].

� Integrate InvarGenT with an IDE.

� Add more constraint domains to InvarGenT.
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6.3. Summary

We presented the type inference problem for MMG(X), a Milner-Mycroft style variant of the
HMG(X) type system without subtyping, as satisfaction of second order constraints over a
multi-sorted domain. We provided a minimal extension MMG9(X) of this type system that
enables inference and easy use of existential types. Although insertions of introduction and
elimination of existential types are not automated by the inference process, they are seam-
lessly integrated into expressions. We demonstrated several use cases using the InvarGenT
system.

Our Joint Constraint Abduction under Quanti�er Pre�x algorithm builds on the fully
maximal Simple Constraint Abduction answers algorithm from Maher and Huang [29],
extended to guess equalities of parameters. Thanks to aggregating answers during JCA,
it can �nd answers to some cases of joint problems where it would fail to solve some of
the implications independently. Our SCA algorithm for linear arithmetic is novel.

Consider programs not using the numerical sort. Undecidability of type inference for
polymorphic recursion does not enforce an unbounded number of iteration steps of the main
algorithm, because there can be in�nitely many (maximally general but not fully maximal)
term abduction answers. We encountered examples that need two iteration steps: one to
generate a solution, and the following step to discard a wrong solution and accept the correct
one. However, with numerical sort constraints, a series of programs can be written needing
unbounded number of iteration steps.

We de�ne the Constraint Generalization problem. In case of free terms it is equivalent
to anti-uni�cation and in case of linear equations and inequalities it is equivalent to �nding
extended convex hull. In the former case, we extend the notion to Abductive Constraint
Generalization, providing more speci�c answers. As we do for abduction, we provide a com-
bination-of-domains algorithm for constraint generalization.

We implemented an algorithm solving for predicate variables of the existential second
order constraints generated for our type system. It uses abduction to �nd requirements on
invariants, augmented by constraint generalization to �nd postconditions.

The inference times in InvarGenT are su�cient for interactive use with toplevel de�n-
itions of small-to-moderate size.
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Appendix A

Proofs

A.1. The Type System

A.1.1. The Logic of Constraints
We work with a �rst order language L1 interpreted in a modelM, the language of constraints
for our type inference problem. We assume that the logic is multi-sorted, but the sorts are
combined only via a sort of �nite trees, whose leaves can belong to other sorts. I.e., there is
a single sort stype whose terms can contain subterms from other sorts and for any its terms
C) f(si�)=_ g(ti�) implies f = g and C)^isi=_ ti. The sorts Ls;Ms for s=/ stype are single-
sorted logics and L1=[_ sLs.

Let � be an interpretation of types, that is an assignment of elements of M to variables
in the corresponding sort, extended homomorphically to terms in the standard way. In the
main text, we used R rather than � to avoid unnecessary formality. For �2L1, letM; ���
denote the interpretation of a formula � in the model M under the interpretation �, in the
standard way, for example M; � � �(t) if and only if �(�(t)) holds in M, where predicate
symbol � in L1 corresponds to predicate � in M, etc.

Of the model M of L1 we require the following. For the sort of types stype:

1. Type conservation. For any function symbols f ; g such that f =/ g, and arbitrary s�;
t�, there is no interpretation � such that M; �� f(s�)=_ g(t�).

2. Free generation. For any f 2 f!g [ "� and arbitrary si�16i6ar(f); ti
�
16i6ar(f), for any

interpretation �, if M; �� f(s�)=_ f(t�), then M; ��^16i6ar(f)si=_ ti.
and every sort is nonempty.

Let L be L1 with: a set of unary predicates �(�), which stand for invariants of recursive
de�nitions in the constraints we will derive for type inference problems. And a set of binary
predicates �K(�; � ), which will be put as constraints of data constructors K when we
introduce inferred existential types. We call � and �K predicate variables . Let PV1(�), resp.
PV2(�) be the set of unary, resp. binary predicate variables in any expression, and PV(�)=
PV1(�)[PV2(�). We de�ne solved form formulas to be existentially quanti�ed conjunctions
of atoms 9��:A without predicate variables. Let �; � 0 be �xed variables of sort stype.

Definition A.1. For a formula �, let ��=PV1(�), resp. �K=PV2(�), and let �(��;k), resp.
�K(�K;k ; �K;k

0 ) be all occurrences of �, resp. �K in �. We call an assignment I=[�� :=9���:F�;
�K := 9��K:FK] an interpretation of predicate variables for � when

1. 9��i:Fi9��j:Fj are solved form formulas,
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2. ����#FV(^k��;k) and �� 0��K#FV(^k�K;k ^k �K;k
0 ),

3. for every variable � 2FV(F�)n����, there is a quanti�er that binds � at every position
of �(��;k) in �,

4. FV(FK)� �� 0��K.

For an interpretation of predicate variables I = [�� := 9���:F�; �K := 9��K:FK], de�ne the
corresponding substitution of predicate variables in a formula � by:

I(�(��)) = 9���:F�[� := ��]

I(�K(��; ��0 )) = 9���:F�[� := ��; � 0 := ��
0 ]

I(a) = a for atom a2L1
I(Q:�) = Q:I(�) for any quanti�er pre�x Q

I(�1��2) = I(�1)�I(�2) for any logical connective �

De�ne a statement M; I ; � �� by: I is an interpretation of predicate variables for �, � is
an interpretation of types, and M; � � I(�). De�ne M; I �� as: for all interpretations of
types �,M;I ; ���. De�neM�� as: for all interpretations of predicate variables I for �,
M;I ��. Sometimes we write I ��, resp. ��, instead of M;I ��, resp. M��, since the
model is �xed. We write I ; C ��, resp. C ��, for I �C)�, resp. �C)�.

We say that a formula � is satis�able, if and only if there exists an interpretation of
predicate variables I for �, such that I �9FV(�):�. As seen above, we extend the notion of
substitution to handle predicate variable atoms, where the replacement of each occurrence
of a variable depends on the argument of that variable. For interpretations of predicate
variables I1; I2 with disjoint domains, we write their composition I1I2(�)=I1(I2(�)).

Above we in e�ect introduce a Henkin semantics for existential second order logic, tailored
to our needs of invariant and postcondition inference.

A.1.2. The GADT Type System
Let D � C mean here M � D ) C. Set � := 9��[D]:¡ and �0 := 9��0[D 0]:¡0 such that
��#FV(¡0), ��0#FV(�) and ��0#C. Let �0 6 � denote D 0) 9��:(D ^x2Dom(¡) ¡(x)=_ ¡0(x))

when Dom(¡)=Dom(¡0), and otherwise a falsehood (compare lemma 3.5 of [47]). Let���0

denote 9��� 0� [D^D 0]:¡[_ ¡0, and 9��0[D 0]� denote 9��� 0� [D^D 0]:¡.

Proposition A.2. Properties of environment fragments (see [ 47] lemma 3.15).

f-Hide. ��69��:�.

f-Imply. C1)C2� [C1]�6 [C2]�.

f-Enrich. C)�16�2� [C]�16 [C]�2.

f-Ex. 8��:�16�2� (9��:�1)6 (9��:�2).

f-And. �16�2����16���2.

Proposition A.3. Constructor K ::8����[D]:�1 � ::: � �n ! "(��) where D = 9��0:A, is
equivalent to K ::8��i�[9����0:i�=_ �i� ^A]:1� :::� n! "(��).
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Proposition A.4. Constructors of the form K ::8�i���[D]:�1 � ::: � �n ! "(�i� ) where
D = 9��0:A, are equivalent to constructors of the form K ::8���[9�i���0:�=_ �1 ! ::: ! �m ^
A]:1� :::� n! "(�) when all uses of "(�1; :::; �m) are translated to "(�1! :::! �m).

Lemma A.5. Weakening (patterns and expressions). Assume C1 � C2. If C2 ` p: � ¡! �
(resp. C2;¡` e: �, C2;¡` e: �) is derivable, then there exists a derivation of C1` p: � ¡!�
(resp. C1;¡` e: �, C1;¡` e: �) of the same structure.

The lemma follows from transitivity of � (A �B and B �C imply A �C) by induction
on the structure of the derivation.

Lemma A.6. If ���0 and C ` p: � ¡!� (resp. C; ¡ ` e: �, C; ¡ ` e: �) is derivable with
constructors �, then the same derivation works with constructors �0.

Lemma A.7. Correctness (patterns). J`p#�K` p: � ¡! J`p"�K.

Proof. By induction on the structure of p.

� Cases 0, 1 and x: follow directly from p-Empty, p-Wild and p-Var respectively.

� Case p1^ p2.

1. By the induction hypothesis, J`pi#�K` pi: � ¡! J`pi"�K for i=1; 2.

2. By weakening and p-And we have the goal.

� Case Kp1:::pn.

1. Let �3K ::8����[D]:�1� :::� �n! "(��).

2. By the induction hypothesis, J`pi#�iK` pi: �i¡! J`pi"�iK for i=1; :::; n.

3. The p-Cstr rule says 8i (C ^ D ` pi: �i ¡! �i) /p-CstrC ` p: "(��) ¡!
9��[D](�1� :::��n), where �i := J`pi"�iK. Applying it to (2) we get C ` p:
"(��)¡!9��[D](�1� :::��n) as long as C ^D � J`pi#�iK.

4. Let �� 0��0#FV(�; �) and �i0 := �i[���� := �� 0��0]; D 0 :=D[���� := �� 0��0]. Let �i
0 be �i

with unbound occurrences of ���� renamed to �� 0��0.

5. By weakening and p-EqIn, (3) gives ����=_ �� 0��0 ^ "(�� 0)=_ � ^ C ` p: � ¡!
9��[D](�1 � ::: � �n). The conjunction of equations ����=_ �� 0��0 allows for
renaming of the �old� variables ���� by the �fresh� variables �� 0��0.

6. By proposition A.2, transitivity of 6, and p-SubOut, we get ����=_ �� 0��0 ^
"(�� 0)=_ � ^C ` p: � ¡!9�� 0��0[D 0](�1

0 � :::��n
0 ).

7. By applying p-Hide to (6) with C = ��=_ �� 0 ^ 8��0:D 0 ) ^iJ`pi#�i0K and
weakening, since w.l.o.g. ���� do not appear unbound in the goal, and C ^
D � J`pi#�iK, we get the goal 9�� 0:"(�� 0)=_ � ^ 8��0:D 0) ^iJ`pi#�i0K ` p: � ¡!
9�� 0��0[D 0](�1

0 � :::��n
0 ). �

Proof of theorem 3.1.
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Proof. By induction on the structure of e.

� Case e is x.

1. If x2/ Dom(¡), then the goal follows by applying FElim. Otherwise, let ¡(x)
be 8�[9��:D]:�. By Var, D;¡` x: �.

2. Let � 0�� 0#FV(¡; �). By (1), weakening and Equ, ���=_ � 0�� 0^D 0^ � 0=_ � ;¡`x:
� , where D 0 :=D[��� := � 0�� 0].

3. By Hide and weakening, since w.l.o.g. ��� do not appear unbounded in the
goal, this implies the goal 9� 0�� 0:(D 0^ � 0=_ � );¡`x: � .

� Case e is assert false. The goal follows by FElim.

� Case e is assert numm�n; e.
1. Let �1�2#FV(¡; �).

2. By the induction hypothesis, we have J¡ ` e1: Num(�1)K; ¡ ` e1: Num(�1),
J¡` e2:Num(�2)K;¡` e2:Num(�2) and J¡` e3: �K;¡` e3: � .

3. By weakening and AssertLeq, this yields J¡ ` e1: Num(�1)K ^ J¡ ` e2:
Num(�2)K^�1��2^ J¡` e3: �K;¡` assert num e1� e2; e3: � .

4. By Hide using (1), this gives the goal.

� Case e is assert type e1= e2; e3.

1. Let �1�2#FV(¡; �).

2. By the induction hypothesis, we have J¡` e1:�1K;¡` e1:�1, J¡` e2:�2K;¡` e2:
�2 and J¡` e3: �K;¡` e3: � .

3. By weakening and AssertEqty, this yields J¡`e1:�1K^ J¡`e2:�2K^�1=_ �2^
J¡` e3: �K;¡` assert type e1= e2; e3: � .

4. By Hide using (1), this gives the goal.

� Case e is runtime failure s.

1. By the induction hypothesis, we have J¡` s: StringK;¡` s:String.
2. The goal follows from RuntimeFailure, since J¡ ` runtime failure s: �K =
J¡` s:StringK.

� Case e is �c� where c�= (c1; :::; cn).

1. Let �1�2#FV(¡; � ).

2. Induction hypothesis yelds J¡` ci:�1!�2K;¡` ci:�1!�2.

3. By (2), weakening and Abs, J¡` c�:�1!�2K;¡`�c�:�1!�2.

4. By weakening and Equ, (3) implies J¡` c�:�1!�2K^�1!�2=_ � ;¡`�c�: � .
5. By (1) and Hide, this implies J¡`�c�: �K;¡`�c�: � .

� Case e is e1 e2.

1. Let �#FV(¡; �).
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2. By the induction hypothesis, we have J¡ ` e1: � ! �K; ¡ ` e1: � ! � and
J¡` e2:�K;¡` e2:�.

3. By weakening and App, this yields J¡` e1:�! �K^ J¡` e2:�K;¡` e1 e2: � .
4. By Hide using (1), J¡` e1 e2: �K;¡` e1 e2: � .

� Case e is Ke1 ::: en.

1. Let �3K ::8����[D]:�1� :::� �n! "(��).

2. By induction hypothesis and weakening for each i=1; :::; n

^jJ¡` ej: �jK^D^ "(��)=_ � ;¡` ei: �i

3. Applying Cstr to (1) and (3) we obtain

^iJ¡` ei: �iK^D^ "(��)=_ � ;¡`Ke1 ::: en: "(��)

4. Let �� 0��0#FV(¡; �) and �i0 := �i[���� := �� 0��0], D 0 :=D[��� := � 0�� 0].

����=_ �� 0��
0^i J¡` ei: �i0K^D^ "(�� 0)=_ � ;¡`Ke1 ::: en: "(�� 0)

5. By Equ, (1) Hide and weakening, since w.l.o.g. ���� do not appear unbounded
in the goal, J¡`Ke1 ::: en: �K;¡`Ke1 ::: en: � .

� Case e is let recx= e1 in e2.

1. Let ��#FV(¡; �) and �#PV(¡).

2. Let �=8�[�(�)]:�, ¡ 0=¡fx 7! �g. By the induction hypothesis, J¡ 0` e1: �K;
¡0` e1: � and J¡0` e2: �K;¡0` e2: � .

3. Let D = 8�:(�(�) ) J¡0 ` e1: �K). Since D ^ �(�) implies J¡0 ` e1: �K, by
weakening of (2), we have D^ �(�);¡0` e1: �. From (1) we have �#FV(D;¡0;
�), by Gen we have D^9�:�(�);¡0` e1:8�[�(�)]:�, by (1) and renaming we
have

D^9�:�(�);¡ 0` e1: �:

4. By weakening of both (2) and (3), and by LetRec, we have J¡ ` let recx=
e1 in e2: �K;¡` let recx= e1 in e2: � .

� Case e is p:e.

1. � is of the form �1! �2. Write J`p"�1K as 9��[D]¡ 0, where ��#FV(¡; �1; �2).

2. By induction hypothesis, J¡¡0` e: �2K;¡¡0` e: �2.
3. By lemma A.7 and (1), we have J`p#�1K` p: �1¡!9��[D]¡0.
4. By instantiation of �� and weakening, (2) implies

J¡` p:e: �K^D;¡¡ 0` e: �2

5. By weakening, (3) implies J¡` p:e: �K` p: �1¡!9��[D]¡0.
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6. By (4), (5), (1), and Clause, we obtain J¡` p:e: �K;¡` p:e: � .
� Case e is pwhen^imi6ni:e and e=/ assert false^:::^ e=/ �(p0:::�(p00:assert false)).

1. Let ���i1�i2#FV(¡; �1; �2). Recall that J¡ ` p when ^imi 6 ni:e: �1 ! �2K =
9�i1�i2:�, for �=
J`p#�1K^8��:D)^iJ¡¡0`mi:Num(�i1)K^i
J¡¡0`ni:Num(�i2)K^ (^i�i1��i2) J¡¡ 0` e: �2K).

2. � is of the form �1! �2. Write J`p"�1K as 9��[D]¡ 0.
3. By induction hypothesis, J¡¡ 0` e: �2K;¡¡0`e: �2, and also J¡¡0`mi:Num(�i1)K;

¡¡0`mi:Num(�i1) and J¡¡0`ni:Num(�i2)K;¡¡0`ni:Num(�i2).

4. By lemma A.7 and (1), we have J`p#�1K` p: �1¡!9��[D]¡0.
5. By instantiation of �� and weakening, (3) implies

�^D^i�i1��i2;¡¡0 ` e: �2

�^D;¡¡0 ` mi:Num(�i1)
�^D;¡¡0 ` ni:Num(�i2)

6. By weakening, (4) implies �` p: �1¡!9��[D]¡0.

7. By (5), (6), (1), and Clause, we obtain �;¡` pwhen^imi6ni:e: � .
8. By (7) and Hide, we get the goal.

� Case e is p when ^imi 6 ni:e and e = assert false_::: _ e = �(p0:::�(p 00:assert false)).
The proof is nearly identical to above.

1. Let �3���i1�i2#FV(¡; �1; �2). Recall that J¡ ` p when ^imi 6 ni:e: �1! �2K =
9�3�i1�i2:�, for �=
J`p#�3K^8��:D)^iJ¡¡0`mi:Num(�i1)K^i J¡¡ 0`ni:Num(�i2)K
^ (�3=_ �1^i�i1��i2) J¡¡0` e: �2K).

2. � is of the form �1! �2. Write J`p"�3K as 9��[D]¡0.
3. By induction hypothesis, J¡¡ 0` e: �2K;¡¡0`e: �2, and also J¡¡0`mi:Num(�i1)K;

¡¡0`mi:Num(�i1) and J¡¡0`ni:Num(�i2)K;¡¡0`ni:Num(�i2).

4. By lemma A.7 and (1), we have J`p#�3K` p:�3¡!9��[D]¡ 0.
5. By instantiation of �� and weakening, (3) implies

�^D^�3=_ �1^i�i1��i2;¡¡ 0 ` e: �2

�^D;¡¡ 0 ` mi:Num(�i1)
�^D;¡¡ 0 ` ni:Num(�i2)

6. By weakening, (4) implies �` p:�3¡!9��[D]¡0.

7. By (5), (6), (1), and NegClause, we obtain �;¡` pwhen^imi6ni:e: � .
8. By (7) and Hide, we get the goal. �
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¡0=_ ¡00 stands for 8x 2 Dom(¡0) [ Dom(¡00):¡0(x)=_ ¡00(x) and is false when Dom(¡ 0) =/
Dom(¡00). Recall that for�:=9��[D]:¡ and�0 :=9��0[D 0]:¡0 such that ��#FV(¡ 0), ��0#FV(�)
and ��0#C, C � �0 6 � denotes C ^ D 0 � 9��:D ^ ¡=_ ¡0. Observe, that C � �0 6 � i�
C �8��0:D 0)9��:D^¡=_ ¡0.

Lemma A.8. Completeness (patterns). Let � = 9��0[D 0]¡0 and J`p"�K = 9��00[D 00]¡ 00 = �0.
C ` p: � ¡!� implies C � J`p#�K and C �8��00:D 00)9��0:(D 0^¡00=_ ¡0), i.e. C ��06�.

Proof. By induction on the derivation of C ` p: � ¡!�. To slightly simplify the proof, the
induction is actually on the lexicographic ordering: (# of applications of p-Cstr, # of other
rules applications).

� Cases p-Empty, p-Wild, p-Var. J`p#�K = T . J`p"�K and � coincide: ¡00 = ¡0,
D 0=D 00=T and �9��:¡0=_ ¡ 0 holds because sorts are nonempty.

� Case p-And. In this case �=�1��2; ��
0= ��1

0��2
0; D 0=D1

0 ^D2
0 ;¡ 0=¡1

0[_ ¡20 .
1. p-And's premises are C ` pi: � ¡! �i, which by induction hypothesis gives

C � J`pi#�K and C � 8��i00:Di
00)9��i0:(Di

0^¡i00=_ ¡i0) for i=1; 2.

2. (1) gives C � J`p1^ p2#�K as J`p1^ p2#�K=J`p1#�K^ J`p2#�K.
3. J`p1 ^ p2"� K=J`p1"� K�J`p2"� K=9��100��200[D1

00 ^ D2
00]¡1

00[_ ¡200 . We will show
C �8��100��200:D1

00^D2
00)9��10��20:(D1

0 ^D2
0 ^¡100[_ ¡200=_ ¡10[_ ¡20).

4. Assume w.l.o.g. ��1
0#��2

0, ��1
00#��2

00. Applying (1) for i=1;2 gives C �8��100��200:D1
00^

D2
00)9��10��20:(D1

0 ^D2
0 ^¡100=_ ¡10 ^¡200=_ ¡20), which completes the goal.

� Case p-Cstr. In this case � = 9��0[D0](�1 � ::: � �n), and � = "(��0), where
D0 :=DK[���� := ��0��0] for �3K ::8����[DK]:�1� :::� �n! "(��) and ��0#FV(C).

1. p-Cstr's premises are C ^D0` pi: �i[���� := ��0��0]¡!�i.

2. Let ��00��0
0#FV(� ; ����; ��0��0; C).

3. Let �i0 := �i[���� := ��0
0��0
0]. By weakening and p-EqIn, (1) gives C ^ D0 ^

��0��0=_ ��0
0��0
0 ` pi: �i0¡!�i.

4. By induction hypothesis we have C ^D0^��0��0=_ ��00��00 � J`pi#�i0K and C ^D0^
��0��0=_ ��0

0��0
0 � 8��i00:Di

00)9��i0:(Di
0^¡i00=_ ¡i0) for i=1; :::; n.

5. Let D0
0 :=DK[���� :=��0

0��0
0]. From (4) follows C ^��0��0=_ ��00��00 �D0

0)^iJ`pi#�i0K.
6. W.l.o.g. ��0��0#FV(D0

0 ) ^iJ`pi#�i0K). (5) gives C ^ ��0=_ ��0
0 � 8��00:D0

0 )
^iJ`pi#�i0K because we can drop ��0=_ ��0

0 from premises.

7. (6) is equivalent to C^��0=_ ��00 �"(��0)=_ "(��00)^8��00:D0
0)^iJpi#�i0K which by the

nonempty domain property implies C ^��0=_ ��00 � 9��00 :"(��0)=_ "(��00)^8��00:D0
0)

^iJ`pi#�i0K.
8. Because by (6) we can drop ��0=_ ��0

0 from premises, (7) is equivalent to
C �9��00 :"(��0)=_ "(��00)^8��00:D0

0)^iJ`pi#�i0K, which is the �rst part of the goal.

9. From (4), C ^��0��0=_ ��00��00 �D0
0)8��100:::��n00:^iDi

00)9��10:::��n0 :^i (Di
0^¡i00=_ ¡i0).
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10. From (9) by (2) and (6), C � 8��00��00:��0��0=_ ��00��00 ^ D0
0 ) 8��100:::��n00: ^i Di

00 )
9��10:::��n0 :^i (Di

0^¡i00=_ ¡i0), which is equivalent to

C �8��00��00��100:::��n00:��0��0=_ ��00��00 ^D0
0 ^iDi

00)
9��10:::��n0 :^i (Di

0^¡i00=_ ¡i0)

11. Observe, that w.l.o.g. ��00 := ��0
0��0
0��1
00:::��n

00. Note by de�nition of J`p"�K, that
D 00= "(��0)=_ "(��0

0)^D0
0 ^iDi

00. By the free generation property, �D 00)��0=_ ��0
0 .

12. Observe, that ¡00=_ ¡ 0�^i(¡i00=_ ¡i0) and D 0=D0^iDi
0. (10) and (11) imply

C � 8��00:��0=_ ��00 ^D 00)9��10:::��n0 :D 0^¡00=_ ¡0

13. Also, ��0 = ��0��1
0:::��n

0 . Because ��0#FV(D 00), because sorts are nonempty (12)
gives C �8��00:��0=_ ��00 ^D 00)9��0:D 0^¡00=_ ¡0, the other part of the goal.

� Case p-EqIn.

1. p-EqIn's premises are: C ` p: � 0¡!�, which by induction hypothesis gives
C � J`p#� 0K and C ��1

0 6�, for �1
0 =9��100[D1

00]¡1
00

2. and C � �=_ � 0.
3. Observe by induction on p, that C ^ �=_ � 0 � J`p#� 0K i� C ^ �=_ � 0 � J`p#�K,

which by (1) and (2) gives the �rst part of the goal.

4. Observe by induction on p, that C ^ �=_ � 0 � J`p"�K 6 J`p"� 0K, i.e. C ^
�=_ � 0��06�1

0 , which by (1), (2) and transitivity of 6, proves the second part
of the goal.

� Case p-SubOut follows by transitivity of 6.
� Case p-Hide.

1. p-Hide's premises are C 0` p: � ¡!� and ��0#FV(� ;�) for C = 9��0:C 0.
2. By inductive hypothesis, C 0� J`p#�K and C 0��06�.

3. By induction on p, FV(J`p#�K)=FV(�).

4. By (1), (2) and (3) we have C � J`p#�K.
5. By induction on p, FV(D 00;¡00)�FV(�)[ ��00.
6. By (1), (2) and (3) we have C ��06�. �

Lemma A.9. Let ¡ be an environment and ¡0; ¡ 00 be simple (i.e. monomorphic) environ-
ments. For any e; �, C ^¡0=_ ¡00;¡¡ 0` e: � i� C ^¡ 0=_ ¡00;¡¡ 00` e: �.

Proof. Consider a derivation of C ^¡0=_ ¡00;¡¡ 0` e: � . The only case where ¡0 is referred to,
is in the Var rule, which for a monomorphic environment simpli�es to: ¡0(x)= � 0/C;¡¡0`x:
� 0. Replace ¡0 with ¡ 00 in judgments throughout the derivation. ¡0(x) = � 0/VarC ^ ¡0=_ ¡00;
¡¡00 ` x: � 0 is not valid, correct it as ¡00(x) = � 00/VarC ^ ¡0=_ ¡00; ¡¡ 00 ` x: � 00/EquC ^ ¡0=_ ¡00;
¡¡00`x: � 0. Analogically follows the other direction of the equivalence of C ^¡0=_ ¡00;¡¡0` e:
� and C ^¡0=_ ¡00;¡¡ 00` e: � . �
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Proof of theorem 3.2.

Proof. We proceed by induction on the derivation of C; ¡ ` e: � . To slightly simplify
the proof, the induction is actually on the lexicographic ordering: (# of structural rule
applications Var, Cstr, Abs, App, LetRec, Clause; # of nonstructural rule applications
Equ, Hide, FElim, DisjElim). (The rules FElim and DisjElim are not needed when
deriving the syntax-directed rules.)

� Case Var.

1. Var's �rst premise is ¡(x)= 8�[9��:D]:�.

2. Var's second premise is C �D.

3. The goal is: I ; C � 9� 0�� 0:(D[��� := � 0�� 0]^ � 0=_ � ), where w.l.o.g. � 0�� 0#FV(C;
¡; � ; � ; ��).

4. (3) follows from (2) by instantiating � to � , because we assume that all sorts
in M are non-empty. We can take an empty interpretation I = �.

� Case AssertFalse. AssertFalse's premise is C �F , we have the goal from �F)�
holding for any �, and transitivity of �.

� Case AssertLeq.

1. AssertLeq's premises are C;¡` e1:Num(�1), C;¡` e2:Num(�2), C � �1� �2
and C;¡` e3: � .

2. Pick w.l.o.g. �1�22/ FV(C; �1; �2;¡; � ). By rule Equ, (1) implies C ^�1=_ �1^
�2=_ �2;¡` e1:Num(�1), C ^�1=_ �1^�2=_ �2;¡` e2:Num(�2) and C;¡` e3: � .

3. By induction hypothesis and weakening, (2) implies Ii; C ^ �1=_ �1 ^ �2=_ �2 ^
�1��2��i for �i= J¡` ei:Num(�i)K, i=1; 2, �3= J¡` e3: �K.

4. By (2) and nonemptiness of sorts, we have C � 9�1�2:(C ^ �1=_ �1 ^ �2=_ �2 ^
�1��2).

5. By (3), the premise and because C �D implies 9�:C �9�:D, we have I1I2I3;
9�1�2:(C ^�1=_ �1^�2=_ �2^�1��2)� 9�:(�1^�2^�3).

6. By (4) and (5), we have the goal I ; C � J¡ ` assert num e1 � e2; e3: �K with
I =I1I2I3.

� Case AssertEqty.

1. AssertEqty's premises are C;¡` ei: �i for i=1; 2; 3; �3= � and C � �1=_ �2.
2. Pick w.l.o.g. �1�22/ FV(C; �1; �2;¡; � ). By rule Equ, (1) implies C ^�1=_ �1^

�2=_ �2;¡` ei:�i for i=1; 2.

3. By induction hypothesis and weakening, (1) and (2) imply Ii; C ^ �1=_ �1 ^
�2=_ �2^�1=_ �2��i for �i= J¡` ei:�iK, i=1; 2, �3= J¡` e3: �K.

4. By (2) and nonemptiness of sorts, we have C � 9�1�2:(C ^ �1=_ �1 ^ �2=_ �2 ^
�1=_ �2).
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5. By (3), the premise and because C �D implies 9�:C �9�:D, we have I1I2I3;
9�1�2:(C ^�1=_ �1^�2=_ �2^�1=_ �2)� 9�:(�1^�2^�3).

6. By (4) and (5), we have the goal I ; C � J¡ ` assert type e1 = e2; e3: �K with
I =I1I2I3.

� Case RuntimeFailure.

1. RuntimeFailure's premise is C;¡` s: String.

2. By induction hypothesis, (1) implies I ; C � J¡` s: StringK and thus the goal.

� Case Cstr.

1. Cst`r's premises are C;¡` ei: �i, i=1; :::; n, C �D and K ::8����[D]:�1:::�n!
"(��). � = "(��).

2. Let w.l.o.g. �� 0��0#FV(C;¡; �). By weakening and Equ, (1) gives C^�� 0��0=_ ����;
¡` ei: �i[���� := �� 0��0].

3. Let �i= J¡` ei: �i[���� :=�� 0��0]K. By induction hypothesis, Ii;C ^�� 0��0=_ ������i,
i=1; :::; n.

4. Observe, that (1) and (3) imply Ii; C ^ �� 0��0=_ ���� � ^i�i ^ D[���� := �� 0��0] ^
"(�� 0)=_ "(��).

5. By non-emptiness of sorts and because the premise PV(C;¡)=? gives disjoint
domains for the Ii, (4) and (2) imply I1:::In; C � 9�� 0��0: ^i �i ^ D[���� :=
�� 0��0]^ "(�� 0)=_ "(��).

6. By (1) and (5), I ; C � J¡`Ke1:::en: �K for I =I1:::In.
� Case Abs. In this case, � := �1! �2.

1. Abs' premise is C; ¡ ` c�: �1! �2, which by induction hypothesis implies Ii;
C ��i for �i= J¡` pi:ei: �1! �2K, i=1; :::; n.

2. Let �1�2#FV(C; �1; �2). Then, because sorts are nonempty, C � 9�1�2:(C ^
�1=_ �1^�2=_ �2).

3. (1) and the premise implies I1I2; C ^�1=_ �1^�2=_ �2�^i�i^�1!�2=_ �1! �2.

4. Combining (2) and (3), I1I2; C �9�1�2:(^i�i^�1!�2=_ �1! �2).

5. By (1) and (4), I1I2; C � J¡`�c�: �K.
� Case App.

1. App's premises are C;¡` e1: � 0! � and C;¡` e2: � 0.

2. Pick w.l.o.g. � 2/ FV(C; � 0; ¡; �). By rule Equ, (1) implies C ^ �=_ � 0; ¡ ` e1:
�! � and C ^�=_ � 0;¡` e2:�.

3. By induction hypothesis, (2) implies Ii;C ^�=_ � 0��i for �i= J¡` ei: �iK, i=1;
2; �1 := � 0! � ; �2 := � 0.

4. By (2) and nonemptiness of sorts, we have C � 9�:(C ^�=_ � 0).
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5. By (3), the premise and because C � D implies 9�:C � 9�:D, we have I1I2;
9�:(C ^�=_ � 0)� 9�:(�1^�2).

6. By (4) and (5), we have the goal I ; C � J¡` e1 e2: �K with I =I1I2.
� Case LetRec. Let ¡0 := ¡fx 7!�g.

1. LetRec's premises are C;¡0` e1:�, which can only be derived by Gen from
C 0 ^D; ¡0 ` e1: �, where � = 8�[9��:D]:� and C = C 0 ^ 9���:D; by induction
hypothesis we get I1; C 0^D ��1 for �1= J¡ 0` e1: �K;

2. and C;¡0` e2: � ; by induction hypothesis we get I2;C ��2 for �2= J¡0` e2: �K.
3. ���#FV(¡; C 0). W.l.o.g., assume additionally that ���#FV(� ).

4. I1; C 0� 8�:(9��:D))�1 i� I1; C 0� (9��:D))�1 i� I1; C 0� 8��:D)�1 i� I1;
C 0�D)�1 i� I1; C 0^D ��1, which is exactly (1).

5. I2; C 0^9���:D �8�:(9��:D))�1 follows from (5), I2; C 0^9���:D �9�:9��:D,
and I2; C ��2 is exactly (2).

6. From (4), (5) and the premise, I1I2; C � (8�:(9��:D))�1)^ (9�:9��:D)^�2.

7. Let I = I1I2; � := 9��:D[� := �], where �#PV(¡; �1; �2). (6) gives I ;
C � (8�:�(�))�1)^ (9�:�(�))^�2, which is I ;C � J¡` let recx=e1 ine2: �K.

� Case Clause.

1. Clause's premises are: C ` p: �1¡!9��[D]¡0,
2. C ^D^i �mi� �ni;¡¡ 0` e: �2,
3. C ^D;¡¡ 0`mi:Num(�mi) and C ^D;¡¡0`ni:Num(�ni),

4. and ��#FV(C;¡; �2).

5. Assume w.l.o.g. that ��#FV(�1).

6. Let �i1�i2#FV(C; �1; �2; �mi; �ni).

7. Let J`p"�1K=9� 0� [D 0]¡00, where � 0�#FV(¡; C ; �1; �2; ��).

8. By lemma A.8, (1) and (7) gives C � J`p#�1K
9. and C �8� 0� :D 0)9��:D^¡00=_ ¡0, which is equivalent to C^D 0�9��:D^¡00=_ ¡0.

10. Recall that J¡` pwhen^imi6ni:e: �1! �2K=9�i1�i2:�, for �=
J`p#�1K^8��0:D 0)^iJ¡¡00`mi:Num(�i1)K^iJ¡¡ 00`ni:Num(�i2)K^(^i�i1��i2)
J¡¡00` e: �2K).

11. By lemma A.9, weakening and Equ, (3) implies C ^ D ^ ¡ 00=_ ¡0 ^ �i
1=_ �mi;

¡¡00`mi:Num(�i1) and C ^D^¡00=_ ¡0^�i2=_ �ni;¡¡00`ni:Num(�i2).

12. From (9) we have C ^D 0 ^ �i1=_ �mi0 � 9��:D ^ ¡00=_ ¡0 ^ �i1=_ �mi and C ^D 0 ^
�i
2=_ �ni0� 9��:D^¡00=_ ¡ 0^�i2=_ �ni for some �mi0; �ni0.

13. By (11), Hide and (12), we get C ^ D 0 ^ �i
1=_ �mi0; ¡¡00 ` mi: Num(�i1) and

C ^D 0^�i2=_ �ni0;¡¡00`ni:Num(�i2).
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14. By induction hypothesis applied to (13) we have Ii1; C ^ D 0 ^
�i
1=_ �mi0� J¡¡ 00`mi:Num(�i1)K and Ii2;C ^D 0^�i2=_ �ni0� J¡¡00`ni:Num(�i2)K.

15. By lemma A.9 and weakening, (2) implies C ^ D ^
¡00=_ ¡0^i�i1=_ �mi^i�i2=_ �ni^i�i1��i2;¡¡00` e: �2.

16. By (15), Hide and (12), we get C ^D 0^i�i1=_ �mi0^i�i2=_ �ni0^i�i1��i2;¡¡00` e:
�2.

17. By induction hypothesis, (16) gives I3; C ^ D 0 ^i �i1=_ �mi0 ^i �i2=_ �ni0 ^i �i1 �
�i
2� J¡¡00` e: �2K.

18. By (8), (10), (14) and (17), we get Ii1� Ii2� I3; C ^i�i1=_ �mi0^i�i2=_ �ni0��.
19. By nonemptiness of the domain, from (18) we get the goal Ii1� Ii2� I3;C�9�i1�i2:�.

� Case NegClause. The proof is nearly identical as above.

1. NegClause's premises are: C ` p: �3¡!9��[D]¡0,
2. C ^D^ �1=_ �3^i �mi� �ni;¡¡ 0` e: �2,
3. C ^D;¡¡ 0`mi:Num(�mi) and C ^D;¡¡0`ni:Num(�ni),

4. and ��#FV(C;¡; �2).

5. Assume w.l.o.g. that ��#FV(�3).

6. Let �3�i1�i2#FV(C; �1; �2; �3; �mi; �ni).

7. Let J`p"�3K=9� 0� [D 0]¡00, where � 0�#FV(¡; C ; �1; �2; �3; ��).

8. By lemma A.8, (1) and (7) gives C � J`p#�3K
9. and C �8� 0� :D 0)9��:D^¡00=_ ¡0, which is equivalent to C^D 0�9��:D^¡00=_ ¡0.

10. Recall that J¡` pwhen^imi6ni:e: �1! �2K=9�3�i1�i2:�, for �=
J`p#�3K^8��0:D 0)^iJ¡¡00`mi:Num(�i1)K^i J¡¡00`ni:Num(�i2)K^
(�1=_ �3^i�i1��i2) J¡¡00` e: �2K).

11. By lemma A.9, weakening and Equ, (3) implies C ^ D ^ ¡ 00=_ ¡0 ^ �i
1=_ �mi;

¡¡00`mi:Num(�i1) and C ^D^¡00=_ ¡0^�i2=_ �ni;¡¡00`ni:Num(�i2).

12. From (9) we have C ^D 0 ^ �i1=_ �mi0 � 9��:D ^ ¡00=_ ¡0 ^ �i1=_ �mi and C ^D 0 ^
�i
2=_ �ni0� 9��:D^¡00=_ ¡ 0^�i2=_ �ni for some �mi0; �ni0.

13. By (11), Hide and (12), we get C ^ D 0 ^ �i
1=_ �mi0; ¡¡00 ` mi: Num(�i1) and

C ^D 0^�i2=_ �ni0;¡¡00`ni:Num(�i2).

14. By induction hypothesis applied to (13) we have Ii1; C ^ D 0 ^
�i
1=_ �mi0� J¡¡ 00`mi:Num(�i1)K and Ii2;C ^D 0^�i2=_ �ni0� J¡¡00`ni:Num(�i2)K.

15. By lemma A.9 and weakening, (2) implies C ^ D ^ ¡ 00=_ ¡ 0 ^
�3=_ �3^i�i1=_ �mi^i�i2=_ �ni^ �1=_ �3^i�i1��i2;¡¡00` e: �2.

16. By (15), Hide and (12), we get C ^ D 0 ^ �3=_ �3 ^i �i1=_ �mi0 ^i �i2=_ �ni0 ^
�1=_ �3^i�i1��i2;¡¡ 00` e: �2.
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17. By induction hypothesis, (16) gives I3; C ^D 0^�3=_ �3^i�i1=_ �mi0^i�i2=_ �ni0^
�1=_ �3^i�i1��i2� J¡¡00` e: �2K.

18. By (8), (10), (14) and (17), we get Ii1� Ii2� I3; C ^�3=_ �3^i�i1=_ �mi0^i�i2=_ �ni0 ��.

19. By nonemptiness of the domains, from (18) we get the goal Ii1� Ii2� I3;
C �9�3�i1�i2:�.

� Case FailClause. The proof is nearly identical as above.

1. FailClause's premises are: C ` p: �3¡!9��[D]¡0,
2. C ^D^ �1=_ �3^i �mi� �ni;¡¡ 0` s:String,
3. C ^D;¡¡ 0`mi:Num(�mi) and C ^D;¡¡0`ni:Num(�ni),

4. and ��#FV(C;¡).

5. Assume w.l.o.g. that ��#FV(�3).

6. Let �3�i1�i2#FV(C; �1; �3; �mi; �ni).

7. Let J`p"�3K=9� 0� [D 0]¡00, where � 0�#FV(¡; C ; �1; �3; ��).

8. By lemma A.8, (1) and (7) gives C � J`p#�3K
9. and C �8� 0� :D 0)9��:D^¡00=_ ¡0, which is equivalent to C^D 0�9��:D^¡00=_ ¡0.

10. Recall that J¡` pwhen^imi6ni:e: �1! �2K=9�3�i1�i2:�, for �=
J`p#�3K^8��0:D 0)^iJ¡¡00`mi:Num(�i1)K^i J¡¡00`ni:Num(�i2)K^
(�1=_ �3^i�i1��i2) J¡¡00` e: �2K).

11. By lemma A.9, weakening and Equ, (3) implies C ^ D ^ ¡ 00=_ ¡0 ^ �i
1=_ �mi;

¡¡00`mi:Num(�i1) and C ^D^¡00=_ ¡0^�i2=_ �ni;¡¡00`ni:Num(�i2).

12. From (9) we have C ^D 0 ^ �i1=_ �mi0 � 9��:D ^ ¡00=_ ¡0 ^ �i1=_ �mi and C ^D 0 ^
�i
2=_ �ni0� 9��:D^¡00=_ ¡ 0^�i2=_ �ni for some �mi0; �ni0.

13. By (11), Hide and (12), we get C ^ D 0 ^ �i
1=_ �mi0; ¡¡00 ` mi: Num(�i1) and

C ^D 0^�i2=_ �ni0;¡¡00`ni:Num(�i2).

14. By induction hypothesis applied to (13) we have Ii1; C ^ D 0 ^
�i
1=_ �mi0� J¡¡ 00`mi:Num(�i1)K and Ii2;C ^D 0^�i2=_ �ni0� J¡¡00`ni:Num(�i2)K.

15. By lemma A.9 and weakening, (2) implies C ^ D ^ ¡ 00=_ ¡ 0 ^
�3=_ �3^i�i1=_ �mi^i�i2=_ �ni^ �1=_ �3^i�i1��i2;¡¡00` s: String.

16. By (15), Hide and (12), we get C ^ D 0 ^ �3=_ �3 ^i �i1=_ �mi0 ^i �i2=_ �ni0 ^
�1=_ �3^i�i1��i2;¡¡ 00` s:String.

17. By induction hypothesis, (16) gives I3; C ^D 0^�3=_ �3^i�i1=_ �mi0^i�i2=_ �ni0^
�1=_ �3^i�i1��i2� J¡¡00` s: StringK.

18. By (8), (10), (14) and (17), we get Ii1� Ii2� I3;C ^�3=_ �3^i�i1=_ �mi0^i�i2=_ �ni0��.
19. By nonemptiness of the domains, from (18) we get the goal Ii1� Ii2� I3;

C �9�3�i1�i2:�.
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� Case Equ.

1. Equ's premises are C; ¡ ` e: � 0, which by induction hypothesis gives I ;
C � J¡` e: � 0K,

2. and C � � 0=_ � .
3. Let �� := J¡` e: �K. Observe, that � occurs in �� only as a subterm in a side

of equation: =_ � , =_ :::! � , =_ (:::! (:::! � ):::). Therefore, � 0=_ � ��� 0,��.

4. (1), (2) and (3) imply that I ; C � J¡` e: �K.
� Case Hide.

1. Hide's premises are C;¡`e:� , that by induction hypothesis gives I ;C�J¡`e:
�K,

2. and ��#FV(¡; �).

3. By (2), w.l.o.g. ��#FV(J¡` e: �K).
4. (1) implies that I �8��:(C)�1) which by (3) is equivalent to I ;9��:C � J¡` e:

�K.
� Case FElim. I ;F �� holds for any �.

� Case DisjElim.

1. DisjElim premises are C;¡` e: � and D;¡` e: � . Induction hypothesis gives
I1; C � J¡ ` e: �K and I2; D � J¡ ` e: �K for some interpretations of predicate
variables I1; I2.

2. Therefore, we have I ; C _D � J¡` e: �K, for both I =I1 and I = I2. �

Proof of corollary 3.3.

Proof. C; ¡ ` e: 8��[D]:� can only be derived by the Gen rule, therefore we have C 0 ^D;
¡` e: � for ��#FV(¡; C 0) and C =C 0^9��:D. By theorem 3.2, there exists an interpretation
I such that I ; C 0 ^ D � J¡ ` e: �K. I ; C 0 ^ D � J¡ ` e: �K i� I � C 0 ^ D) J¡ ` e: �K i�
I �8��:C 0^D) J¡` e: �K i� I ;C 0�8��:D) J¡` e: �K. Therefore I ;C �8��:D) J¡` e: �K. �

A.1.3. Existential Types
Proof of theorem 3.7.

Proof. By inspecting Table 3.11, note that �[K]e subexpressions are absent from n(e).
Thus Ie is empty in all cases other than ExIntro. We therefore shorten these cases by not
mentioning Ie and �. Below we extend the inductive proofs with the cases for expressions
introduced by, or rule applications of, ExIntro, LetIn and ExLetIn.

� Theorem 3.1 (Correctness) J¡;�0` e: �K;¡;�0` e: � . Case: E(e)=/ ?.

1. Induction hypothesis states J¡;�`n(e): �K;¡;�`n(e): � .
2. The goal follows by ExIntro.
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� Theorem 3.1 (Correctness) Case: e is let p= e1 in e2.

1. Induction hypothesis yields J¡ `Kp:e2: �0! �K; ¡ `Kp:e2: �0! � , J¡ ` p:e2:
�0! �K;¡` p:e2:�0! � and J¡` e1:�0K;¡` e1:�0.

2. By weakening, (1), Abs and App, we get J¡ ` e1: �0K ^ J¡ ` p:e2: �0! �K ^
E(�0);¡`�(p:e2)e1: � .

3. By ExLetIn we get J¡` e1:�0K^ J¡`Kp:e2:�0! �K;¡` let p= e1 ine2: � , and
by LetIn: J¡` e1:�0K^ J¡` p:e2:�0! �K^E(�0);¡` let p= e1 in e2: � .

4. By (3) and DisjElim we get (J¡ ` e1: �0K ^ J¡ ` p:e2: �0 ! � K ^
E(�0)) _E (J¡ ` e1: �0K ^ J¡ ` Kp:e2: �0 ! �K); ¡ ` let p = e1 in e2: �
for E = fK jK ::8�K��[E]:�! "K(�K)g.

5. By (4), weakening and Hide, we get the goal.

� Theorem 3.1 (Correctness) Case: e is e1 e2.

1. Let �#FV(¡; �).

2. By the induction hypothesis, we have J¡ ` e1: � ! �K; ¡ ` e1: � ! � and
J¡` e2:�K;¡` e2:�.

3. By weakening and App, this yields J¡ ` e1: � ! �K ^ J¡ ` e2: �K ^ E(�);
¡` e1 e2: � .

4. By Hide using (1), J¡` e1 e2: �K;¡` e1 e2: � .
� Theorem 3.1 (Correctness) Case: e is �Kc�.

1. Let �0; �1#FV(¡; �).

2. By the induction hypothesis, we have J¡`�c�: �K;¡`�c�: � .
3. By weakening, Equ, Hide and ExAbs, we have J¡`�c�: �K^RetType(� ;�0)^
9�1:�0=_ "K(�1);¡`�Kc�: � .

4. By weakening, this yields the goal.

� Theorem 3.2 (Completeness) Case ExIntro: premise C; ¡; � 0 ` n(e): � for
Dom(�0)nDom(�)= E(e).

1. By induction hypothesis we have Iu; C � J¡;�0`n(e): �K.
2. Let �1 = �K ::8�KK[�K(K ; �K)]:K! "K(�K). The goal is Iu; C � Ie(J¡;

�1`n(e): �K)["K(�~) := "K(��)].

3. The goal follows by setting Ie=�0/�.

� Theorem 3.2 (Completeness) Case App.

1. App's premises are C;¡` e1: � 0! � , C;¡` e2: � 0 and C �E(� 0).
2. Pick w.l.o.g. �2/ FV(C; � 0; ¡; �). (1) implies C ^ �=_ � 0 �E(�). By rule Equ,

(1) implies C ^�=_ � 0;¡` e1:�! � and C ^�=_ � 0;¡` e2:�.
3. By induction hypothesis, (2) implies Ii;C ^�=_ � 0��i for �i= J¡` ei: �iK, i=1;

2; �1 := � 0! � ; �2 := � 0.

A.1 The Type System 103



4. By (2) and nonemptiness of sorts, we have C � 9�:(C ^�=_ � 0).
5. By (2), (3), and because C �D implies 9�:C � 9�:D, we have I1I2; 9�:(C ^

�=_ � 0)�9�:(�1^�2^E(�)).

6. By (4) and (5), we have the goal I ; C � J¡` e1 e2: �K with I =I1I2.
� Theorem 3.2 (Completeness) Case LetIn: premise C;¡` let p= e1 in e2: � .

1. LetIn's premise is: C;¡`�(p:e2) e1: � ,

2. derived by App and Abs from C;¡` p:e2: � 0! � , C;¡` e1: � 0 and C �E(� 0).
3. Inductive hypothesis gives I1; C � J¡` p:e2: � 0! �K and I2; C � J¡` e1: � 0K.
4. (1) and (3) imply I1;C � J¡` p:e2: � 0! �K^E(� 0)_E J¡`Kp:e2:�0! �K as the

�rst disjunct holds.

5. As the premise PV(C; ¡) = ? gives disjoint domains for the Ii, we have I ;
C � J¡` e1: � 0K^ (J¡` p:e2: � 0! �K^E(� 0)_E J¡`Kp:e2: � 0! �K) for I =I1I2.

6. I ; C � 9�0:J¡` e1:�0K^ (J¡` p:e2: �0! �K^E(�0)_E J¡ `Kp:e2:�0! �K) by
abstracting �0= � 0.

� Theorem 3.2 (Completeness) Case ExLetIn:
premise C;¡` let p= e1 in e2: � .

1. ExLetIn's premises are: C;¡`Kp:e2: �
0! � and C;¡` e1: � 0,

2. Inductive hypothesis gives I1; C � J¡`Kp:e2: � 0! �K and I2; C � J¡` e1: � 0K.
3. (3) implies I1; C � J¡` p:e2: � 0! �K^E(� 0)_E J¡`Kp:e2: � 0! �K as one of the
_E disjuncts holds. The proof concludes as in the LetIn case.

� Theorem 3.2 (Completeness) Case ExAbs: premise C;¡`�Kc�: � .

1. ExAbs's premises are: (a) C;¡`�c�: � and (b) C �RetType(� ; "K(��0)).
2. Inductive hypothesis gives I1; C � J¡`�c�: �K.
3. Let �0; �1#FV(¡; � ). (1b) and (2) give I1; C � 9�0:J¡ ` �c�: � K ^

RetType(� ; �0)^9�1:�0=_ "K(�1)^�1=_ ��0.

4. Let I0 = [�K(�) :=�=_ ��0]. By (3), I0I1; C � 9�0:RetType(� ; �0) ^
(9�1:�0=_ "K(�1)^ �K(�1))^ J¡`�c�: �K which is the goal. �

A.1.4. Semantics by Reduction to HMG(X)

By induction on the structure of the derivation, we can show the following:

Proposition A.10. Let I be an interpretation of predicate variables for formula C, as in
De�nition A.1. If a typing judgment C;¡;�`e: � is derivable in the type system MMG9(X),
then I(C); I(¡);I(�)` e: � is derivable in MMG9(X).

Proof of Theorem 3.11.
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Proof. Let I be a subsitution of predicate variables such that M;I �9FV(� ):J¡;�` e: �K.
By Theorems 3.1 and 3.7, there exists a derivation of J¡;�` e: �K;¡;�` e: � . Without loss
of generality, let ExIntro be the rule applied at the root of the derivation, and let � be
the derivation of the premise J¡;�` e: �K;¡;�00`n(e): � . Let ¡0=I(¡), C =I(J¡;�` e: �K)
and �0 = I(�00). By Proposition A.10, there exists a derivation � of C; ¡0; �0 ` e: � . We
need to construct a derivation �0 of C 0; ¡0 ` e0: � under constructor environment �0 in the
HMG(X) type system. The tag erasure of e0 w.r.t. � has to be computationally equivalent
to the HMG-form of e and C 0 has to be satis�able. We will transform � into a derivation
in HMG(X) while preserving these conditions. We transform the resulting constraint, the
resulting expression and the derivation simultaneously, as follows:
� For a derivation node applying rule App, we erase the C � E(� 0) condition in the

premise of the node, and we erase E(�) in the corresponding J¡` e1 e2: �K part of the
resulting constraint, where C; � 0; � etc. name the actual pieces of the derivation or
constraint.

� For a derivation node Abs, with �(pi:ei) in conclusion, we erase derivation subtrees
with NegClause or FailClause nodes at the root. Correspondingly, we replace
the expression in the conclusion by �((pi:ei0)i::unreach(ei0)_failure(ei)), which preserves com-
putational equivalence; and we erase the J¡` pi:ei: �1! �2K conjuncts of the resulting
constraint for i: unreach(ei) _ failure(ei), which leads to a weaker formula and thus
preserves satis�ability.

� We replace derivation nodes ExLetIn by applications of the App rule to the premises
C;¡` (Kp:e2)e1:� 0!� and C;¡`e1:� 0, and replace the corresponding subexpressions
let p= e1 in e2 of the resulting expression by (Kp:e2) e1. We replace the J¡ ` let p=
e1 ine2: �K part of the resulting constraint by 9�0:J¡` e1:�0K^ J¡`Kp:e2:�0! �K. To
see that the satis�ability of the constraint is preserved, recall that J¡` letp=e1 ine2:�K
is a disjunction where only one disjunct is consistent with 9��:� 0=_ "K(��). The tag
erasure of (Kp:e2)e1 w.r.t. the original constructor environment � is computationally
equivalent to let p= e1 in e2.

� We excise derivation nodes ExAbs, and remove the corresponding RetType atom
from C, preserving computational equivalence and satis�ability.

� For remaining nodes are easy to rearrange into applications of the corresponding
HMG(X) rules. �

Proof of Corollary 3.12.

Proof. The semantics of expression e in MMG9(X) is given by the semantics of its HMG-
form in HMG(X). By well-typedness and closedness, we have C;?;�` e: � is derivable for
some type scheme �, and M �C. By Theorems 3.2 and 3.7, there exists an interpretation
of predicate variables I such that M; I �C) J?;�` e: �K, thusM; I � J?;�` e:�K.

By Theorem 3.11, we have an HMG(X) environment ¡0, constructor environment �0 and
an expression e0 such that C; ¡0 ` e0: � is derivable in HMG(X) for a valid C, and the tag
erasure of e0 w.r.t. � is computationally equivalent to the HMG-form of e. By [47] Theorem
3.31, see also Theorem 2.3, e0 does not go wrong. Given the call-by-value semantics presented
in [47], it is easy to see that the tag erasure of e0 does not go wrong. By computational
equivalence, HMG-form of e does not go wrong. �
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A.2. Constraint Abduction

A.2.1. Formulating the Joint Constraint Abduction Problem

Proposition A.11. Solved form property for terms. Let �� =Dom(U (C)) be all variables
occurring on the left-hand sides of solved form equations U(C), and � 2 FV(Image(U(C))
be a variable occurring on the right-hand side. If T �Q:C (equivalently Q:U (C)) holds, then
T �Q:C[� := � ] (equivalently T �Q:U(C)[� := � ]), for any � such that for all � 02 FV(� ),
�06Q�.

A.2.2. Abduction Algorithm for The Combination of Domains

Lemma A.12. For any conjunction of atoms D2Lstype, let Dt be D with all alien subterms
r� replaced with fresh variables �r� , Dt2Lty. Let ^sDs

t=U (Dt) be a solved form with Ds
t2Ls.

Observe that for any 	, for any C 2Ls, if M�D^	)C, then

1. M�Ds
t[�r� := r�]^	)C for s=/ stype.

2. For s= stype, let ^sCs
t=U(C t), where Ct is C with all alien subterms r�0 replaced with

fresh variables �r� 0. Then there exist a conjunction of equations E over �r��r� 0 such that
T �Dstype

t ^E^	)Cstype
t and (for s=/ stype)M�Ds

t[�r� := r�]^	^�rs�=_ rs� )Es where
Es are E \Ls.

The proof uses the type conservation and free generation (stype properties) and interpo-
lation techniques. Below follows a sketch of a proof of (2).

Proof. Observe a proof of Dt[�r� := r�]^	)C t[�r� 0 := r�0] (assuming a complete proof system
for M � ). It can be transformed into a proof of Dt ^ 	 ^ �r�=_ r� ^ �r� 0=_ r�0) C t. By stype
properties we get Dstype

t ^	^E0^�r�=_ r�^�r� 0=_ r�0)Cstype
t where E0 are equations among �r� .

By interpolation we get Dstype
t ^E ^	)Cstype

t and Dt^	^�r�=_ r�^�r� 0=_ r�0)E for E0�E
and E as required by the theorem, since �r� are the only non-stype subterms of Cstype

t . �

Proof of Theorem 4.5.

Proof. We use the same notation as in Table 4.1. Note, that the JCAQP with a branch
with unsatis�able conclusion does not have an answer, so we do not consider unsatis�able
conclusions.

Observe that validity of Lty formula in T is equivalent to its validity in M. We will
therefore sometimes drop pre�xes M� and T � for readability.

Let us check correctness, i.e. that 9�ans:Aans2Abd(Q; ��;Di; Ci) are JCAQPM answers.

1. We need to show:M�^i(Di^Aans)Ci),

2. M�Q:Aans[��ans�� := t�] for some t�,

3. M�^i9FV(Di^Aans):Di^Aans,
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4. for all atoms c2Aans such that M2Q:c and FV(c)\ ��=/ ?, then for all �12FV(c)
such that (8�1)2Q, there exists �22FV(c)\ �� such that �16Q �2.

5. We have: M�^i(Di;stype
t ^AT

j )Ci;stype
t ),

6. M�Q:AT
j [��j

T�r���� := t�j
T ] for some t�jT ,

7. M�^i9FV(Di;stype
t ^AT

j ):Di;stype
t ^AT

j ,

8. for all atoms �2=_ t 2AT
j such that �22 �r����, if �12 FV(c) such that (8�1)2Q, then

�16Q�2.
9. We have: M�^i(Di

s^ (Di;s
t ^Ap; j;s

i )[�r�� := r��]^As
kj
s

)Ci
s^ (Ci;s

t ^Ac; j;s
i )[�r�� := r��]),

10. M�Q:As
kj
s
h
�s
kj
s

��r
j�� := t�kjs

i
for some t�kjs,

11. M�^i9FV(Di
s^ (Di;s

t ^Ap; j;s
i )[�r�� := r��]^As

kj
s

):Di
s^ (Di;s

t ^Ap; j;s
i )[�r�� := r��]^As

kj
s

,

12. for all atoms c 2As
kj
s

such that M 2Q:c and FV(c) \ ��=/ ?, then for all �12 FV(c)
such that (8�1)2Q, there exists �22FV(c)\ �� such that �16Q �2.

13. We have: Di � ^sDi
s and Ci � ^sCi

s; Di
t[�r�� := r��] = Di

stype, Ci
t[�r�� := r��] = Ci

stype;
Ap
i
j
=fx=_ t2U(Di;stype

t ^AT
j 0)jx2Xs; s=/ stypeg and Ac

i
j=fx=_ t2U(Di;stype

t ^Ci;stype
t ^

AT
j 0)jx2Xs; s=/ stypeg, Ap/c; j

i =^sAp/c; j;s
i , where Ap/c; j;s

i 2Ls.

14. Di^ ri�=_ �ri)^sDi
s^Di;s

t , ^sCi
s^Ci;s

t ^ ri�=_ �ri)Ci, by (13).

15. We have: Aans=AT
j 0 ^s2usortsAs

kj
s

for some j; kjs� and ��ans= �j
T 0�s

kj
s

\ FV
¡
AT
j 0 ^sAs

kj
s�
,

�s
kj
s

is a concatenation of �s
kj
s

for s2 usorts.

16. By type preservation and free generation, (5) we can have Di;stype
t ^ AT

j 0) Ci;stype
t 0,

where Ci;stype
t 0 di�ers from Ci;stype

t only at alien subterm positions. Pick Ci;stype
t 0 which

di�ers from Ci;stype
t on the least number of alien subterm positions.

17. Consider S = fx=_ t2U (Ci;stype
t ^Ci;stype

t 0)jx 2Xs; s=/ stypeg. Note that S ^Ci;stype
t 0)

Ci;stype
t .

18. By (16) and separation of sorts, we haveU(Di;stype
t ^Ci;stype

t ^AT
j 0)nLstype)U (Ci;stype

t ^
Ci;stype
t 0)nLstype, i.e. Ac

i
j)S.

19. Di^Aans^ r��=_ �r�� =)(13;14)
Di
stype^sDi

s^Di;s
t [�r�� := r��]^AT

j 0^s=/ stypeAs
kj
s

^ r��=_ �r��

20. :::=)(9;13)Di;stype
t ^AT

j 0^s=/ stypeCi
s^Ci;s

t [�ri := ri�]^Ac; j;s
i [�r�� := r��]^ r��=_ �r��

21. ::: =)(17¡18)
Ci;stype
t ^s=/ stypeCi

s^Ci;s
t [�ri := ri�]^ r��=_ �r��=)

(13)
Ci.

22. (19)-(21) and interpolation give the goal (1).

23. From type preservation and free generation properties (as in Proposition A.11), by
(6) we get M �Q:AT

j [��j
T(��\Xstype) := t�j

T ; (��nXstype) := t�j
b; �r�� := t�j

r] for some t�jT , for
all t�j

r ; t�j
b.
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24. Since Ls are single-sorted for s=/ stype, by (15), (23) and (10) we get the goal (2).

25. Similarly, from (3), (7), type preservation and free generation properties, and because
Ls are single-sorted for s=/ stype, we get the goal (3).

26. Consider c2Aans such that M2Q:c and FV(c)\ ��=/ ?, and a �12FV(c) such that
(8�1)2Q.

27. If �12 ��, then �2= �1 satis�es the goal (4). Consider the cases where �12/ ��.

28. Consider �12Xstype. By (26) M2Q:c.

29. By (6) � or (24) � M�Q:c[��jT�� := t�j
T ] for some t�jT .

30. By (15), c is in solved form �3=_ t.

31. By (28)-(30), �32 ��. By (8) we have the goal (4) for case �12Xstype.

32. Consider �1 2Xs for s=/ stype. Because Ls are single-sorted for s=/ stype, by (15) we
have c2As

kj
s

.

33. From (12) we have the goal (4).

Now we sketch a proof of completeness, i.e. that no JCAQP answer �falls through�.

1. We need to show that for any JCAQP Q: ^i (Di) Ci) with parameters �� answer
9��:A, there is an 9�ans:Aans2Abd(Q; ��; Di; Ci) and t� such that A)Aans[�ans := t�].

2. Let A�^sAs where As has atoms of sort s only. Let A0 be a formula obtained from
Astype by substituting all alien subterms r�0 of sorts other than stype by fresh variables
�r� 0. Let ^sAs

0 =U (A0) be solved form of A0 with As
0 2Ls.

3. W.l.o.g., all Ci;Di are satis�able. Observe, that �Di^A)Ci implies, by lemma A.12,
that there is a conjunction of equations over variables �ri�r� 0: Ai

00 :=^s=/ stypeAi;s
00 , such

that:

a. Di^A^�ri�r� 0=_ ri�r�0)Ai
00,

b. Di;stype
t ^Astype

0 ^Ai
00)Ci;stype

t ,

c. Di
s^Di;s

t [�ri := ri�]^As^As
0[�r� 0 := r�0])Ci

s^Ci;s
t [�ri := ri�] for s=/ stype.

4. (3b) and the assumption about AbdT give that for some
¡
9�jT :AT

j
�
2 AbdT

¡
Q; ��;

Di;stype
t ; Ci;stype

t
�
, Astype

0 ^Ai
00)AT

j
�
�j
T := tT�

�
for some tT�.

5. (3a), (3c) and lemma A.12 imply, by substituting free variables, Di
s ^ Di;s

t [�ri :=
ri�]^As^As

0 [�r� 0 := r�0])Ci
s^Ci;s

t [�ri := ri�]^Ai;s
00 [�r���r� 0 := r��r�0].

6. To use the assumption about Abds, we weaken (5). With a stronger premise, we
also get a stronger conclusion: Di

s ^ (Di;s
t ^ Ap; j;s

i ^ Ac; j;s
i )[�r�� := r��] ^ As ^ As

0 [�r� 0 :=
r�0])Ci

s^ (Ci;s
t ^Ac; j;s

i )[�ri := ri�]^Ai;s
00 [�r���r� 0 := r��r�0].

7. (6) gives by the assumption about Abds: (Ac; j;s
i nAp; j;s

i )[�r�� := r��] ^ As ^ As
0[�r� 0 :=

r�0])As
kj
s
h
�s
kj
s

:= ts
kj
s
i
for some kjs and ts

kj
s

.
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8. Check using (3b) and (4) that Astype
0 ^ Ai

00 ^ �ri�r� 0=_ ri�r�
0 ) 9��rj:AT

j 0��jT := tT�
�
^

(Ac; j;s
i nAp; j;s

i )[�r�� := r��]. The subtraction in (Ac; j;s
i nAp; j;s

i ) allows us to drop Di;stype
t

from the premise in (3b).

9. Select 9�ans:Aans :=9�kjs:AT
j 0[�r�� := r��]^sAs

kj
s

for �kjs :=�j
T��r

j�s
kj
s

\FV
¡
AT
j [�r� := r�]^sAs

kj
s�
.

By (7) and (8), we have A^ [�r���r� 0=_ r��r�0])Aans

h
�j
T��r

j�s
kj
s

:= tT�t�r
jts
kj
s
i
for some t�r

j, which
implies (1). �

A.3. Constraint Generalization

Proposition A.13. Let Ds 2 Ls for all sorts s such that Dstype =U(Dstype), and Cs0 2 Ls0
for s0=/ stype. Then M� (^sDs))Cs0 if and only if M�Ds0)Cs0.

Proposition A.14. (MGU property.) MGU: T (F ;X)�C,U (C).

Proposition A.15. Let D be a conjunction of equations with D = U(D), let A be a
conjunction of equations and �� variables such that FV(A)���[FV(D). T (F ;X)�D)9��:A
if and only if there exists a substitution S = [�� := g�� ] and a solved form A0 , A with
A0=U(A0) such that for every x=_ t2A0, either S(x)=S(t), or x=_ S(t)2D.

Proof of Theorem 4.10.

Proof. First, we show M�^i(Di)9��:A).
1. M�Di^Di

a^Di
u) c, for each conjunct c2Astype.

a. Case c= xj=_ gj. By properties of MGU.

b. Case c2Di
g follows from Di^Di

a)Di;stype
t .

c. Case c 2Di
v. The premises are: x=_ t1 2Di

g; y=_ t2 2Di
g;M �Di

g) t1=_ t2. The
goal follows from Di^Di

a^Di
u)Di

g, by transitivity.

2. By properties of LUBs, we have �Di
s^Di

t;s^Di;s)9��s:As for s=/ stype, and therefore
�Di^Di

a^Di
u)9��s:As.

3. We have �Di ) 9�ij
� :Di ^ Di

a, and by properties of most speci�c anti-uni�cation,
�Di)9��j� :Di^Di

u.

4. Collecting the above points, we get �Di)9�ij
���s� :^sAs.

Now, we sketch a proof of: For every 9��r:Ar such that M�^i(Di)9��r:Ar), with variables
renamed so that ��#FV(Ar), M�A)9��r:Ar.

1. The assumption is M�^i(Di)9��r:Ar).

2. By de�nition, M�Di^Di
a,^s=/ stypeDi

s^sDi
t;s^sDi;s

t .

3. Let 9��r:Ar,9��t;sr :^s9��r;s:Dr;s
a ^Ar;s where 9��r;s:Ar;s2Ls, a�t;sr are all alien subterms

of sort s in Ar, ��t;sr are fresh variables ��t;sr #FV(Ar;Di) and also all alien subterms in
Ar;stype, Ar;stype=U(Ar;stype), and Dr;s

a =��t;s
r =_ a�t;s

r for s=/ stype, Dr;stype
a =T .
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4. By Proposition A.15, for each branch i there is a substitution �i of ��t;sr ��r;stype that
is an anti-uni�er of ti; j0 , for all xj 2/ ��t;sr ��r;stype such that xj=_ ur;j 2Ar;stype, where xj ;
ti; j2V andM�Di) ti; j

0 =_ ti; j. ti; j0 can be made equal to ti; j up to a variable-variable
substitution.

� I.e. a substitution [�� := ��] that can assign the same � to several �.

5. There exists a substitution � which establishes M � Astype ) 9��t;sr :9��r;stype:xj=_ ur;j:
by variable-variable substitution, including alien subterm variables, according to
M�Di) ti; j

0 =_ ti; j, and by the factoring via most speci�c anti-uni�cation.

6. Let 9��s:As=LUBs

¡
Di
s^Di

a(Di;s
t ^Di;s

u )
�
as in the de�nition of LUB(�).

7. M � Di) 9��r:Ar by (1), M � Di ^ Di
a ^ Di;s

u ) 9��r:Ar by weakening on the left,
M�Di^Di

a^Di;s
u )9��t;sr :^s9��r;s:Dr;s

a ^Ar;s by (3),M�Di^Di
a^Di;s

u )9��r;s:Ar;s

by weakening on the right, M � Di
s ^ Di

t;s ^ Di;s
t ^ Di;s

u ) 9��r;s:Ar;s by (2) and
Proposition A.13.

8. By (6), (7), interpolation and assumption about LUBs,M�As)9��r;s:Ar;s for every
s=/ stype.

9. More speci�cally, we needM�As^Astype)9��r;s:Ar;s^ �(�t;sr )=_ at;sr . It can be shown
by extending the argument for (8) using the fact that Di;s

u relates �(�t;sr ) introduced
in (5) to the remaining constraints of branch i. �

A.4. Solving for Predicate Variables

In this section, we provide proof sketches for correctness and a limited form of completeness
of the type inference implemented in InvarGenT, correctness with respect to the type
system MMG9(X) and the limited form of completeness wrt. MMG(X).

Lemma A.16. Let (Q0; ��res; Ares; 9���:A�)2 Split
¡
Q; ��; A; ���

�
. Then:

1. M�Ares^�A�)A.

2. M�A)9��+�:Ares^�A�.

3. M�Q0:Ares[��res := t�] for some t�.

4. If A only restricts ��� in ways that are expressible as Q<��9��
�
��1
�
:' for some ��1

�, and
M�Q:A

�
����

�
:= t�

�
for some t�, then Split

¡
Q; ��; A; ���

�
=/ ?.

5. Split preserves atomized form: if 9��:A is in atomized form with respect to Q and
parameters ���, then 9��res:Ares is in atomized form with respect to Q0 and parameters
�����

�.

Proof. Recall the de�nition of Split and the notation used there.
(1) and (2) follow from the observation that A�

L^A�
R)A�

+ and A�
+)9��+�:A�

L^A�
R.

(3) follows from M � Q:(A n [�A�
+)[��res := t�] for some t� because [���� = ? and

Ares=A n[�A�, in the last iteration.
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For (4) to hold the algorithm should at each recursion level be able to �nd A�
+ for which

M�Q:(A n [�A�
+)[�� := t�] for some t� and Strat(A�

+; ��
�
) does not return ? for any �, where

Q and ��
� are either the initial arguments or the recursive call arguments. The algorithm

terminates because �� always decreases in the recursive call.
A�
+ contains restrictions on the variables ���. If Strat(A�

+; ��
�
) returns ?, then, because

A�
+ is in atomized form, A�

+ restricts ��� in a way not expressible as Q<��9��
�
��1
�
:'.

The �nal remark follows from the minimality of A�
+ w.r.t. inclusion. �

Lemma A.17. Let � 2 L, S = 9���:F� and R = 9���K:F�K. Let NF(R S(�)) = Q: ^i (Di)
Ci)=Q:�PN2L.

Let (9��res0 :Fres
0 ; S 0; R 0)2	(k;�; S ; R) for any k. Let

Q0:�PN
0 =NF(R0¡S 0¡R+S+(�))

Then M�Fres
0 )�PN

0
and M�Q0:Fres

0 [��res := t�] for some t�.

Proof. We use the notation from the de�nition of	, with Sk=S;Rk=R;Q0=Qk+1. We have

9��:A02Abd
¡
Qk 0; ����

�
; Di

k 0; Ci
k 0�

and therefore (1) M�^i(Di
k 0^A0)Ci

k 0). Continuing the de�nition of 	, we have¡
Qk+1; ��res; Ares;9����:A��

�
2 Split

¡
Qk 0; ��; A; ����

��
and S 0(�) = 9���;k:Simpl

¡
9����:F�

0 ^ A��

�
����

�
:=����;k

��
, Fres

0 = Ares. Therefore by
Lemma A.16 point 1, (2) M � Fres

0 ^�� A�� ) A, and by Lemma A.16 point 3, the goal
M�Q0:Fres

0 [��res := t�] for some t�.
It remains to show (3)M�Fres

0 )�PN
0

. Observe that (4) �PN
0 � (^��A��)�PN^�KU�K).

(1) is M�A0)�PN^�KU�K. But Fres
0 ^�A��)A0 by (2), so (1) and (4) give (3). �

Sketch of proof of Theorem 4.15.

Proof. Lemma A.17 gives the goal M; I � � with I(�) � Q0:�PN
0 , because S 0 R0 = S R

implies ^��A��=T . �

Axiom A.18. (Interpolation property for M.) We assume that for conjunctions of atoms A
and any quanti�er-free formula �, M�A)� implies that there is a conjunction of atoms
B with FV(B)�FV(A)\FV(�), M�A)B and M�B)�.

Lemma A.19. Let NF(�[�(� ) := 9���:F�[� := � ]])=Q:�N and PV(�)=PV1(�). Let

Q�:�N
�=NF(�[�¡(��) := 9������� :(��^F�)[� := ��]; �+(�) := 9���:F�[� := � ]])

for variables ���
� and conjunctions of atoms ��2L such that the JCAQPM problem Q�:�N

�

has a solution. Assume that Abd in the de�nition of 	 is a complete abduction algorithm
returning an atomized form formula. Then there is (Fres

0 ;9���0:F�0)2	(k;�;9���:F�) such that

M�^���
�) (^�(F�0 nF�))[���0 := t�]
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for all �, for some t�.

Proof. Let 9��resd :Dres be a solution to the JCAQPM problem Q�:�N
�. We have

M � Dres ^� ��
� ) �N . By the completeness assumption about Abd, we have

M � Dres ^� ��
� ) A[����� := t�] for some t�. Since Dres does not participate in restricting

��
� and ��

� is limited to Q<����
����

� variables, by atomized form of 9��:A and interpola-
tion, we get the expressiveness constraint needed for Lemma A.16 point 4, therefore Split

¡
Q;

��; A; ��
��
=/ ?. Thus by Lemma A.16 point 2, M � Dres ^� ��

� ^ ���0=_ t�) 9��+
�:Ares ^� A�

where by de�nition of 	, A� = F�
0 n F�. Since the atomized form is preserved by Split

(Lemma A.16 point 5), we have the goal. �

Sketch of proof of Theorem 4.16.

Proof. The thesis M � ^�F�s) (^�F�k)
�
���;k := t�k

�
is true for k = 0. Assume it holds for

arbitrary k. We need to show M � ^�F�s[� := ��]) (^�F�k+1[� := ��])
�
���;k+1 := t�k+1

�
for

some
¡
Fres
k+1;9���;k+1:F�k+1

�
and a substitution of variables ���;k+1.

By the assumption that ��=PV(�)=PV1(�), de�nition of 	 gives F�
k+1=F�

k^A�. We
will apply Lemma A.19 with ��=F�

s and F�=F�k. By the inductive assumption, JCAQPM
answer 9��sres:Fres

s to NF(�[�(� ) := 9��s�:F�s[� := � ]]) is also an answer to Q�:�N
�. By Lemma

A.19, we get the goal. �
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Appendix B
Algorithmic Details

B.1. Generating and Normalizing Formulas
We inject the existential type and value constructors during parsing for user-provided exis-
tential types, and during constraint generation for inferred existential types, into the list of
toplevel items. It facilitates exporting inference results as OCaml source code.

Toplevel de�nitions are intended as boundaries for constraint solving. This way the
programmer can decompose functions that could be too complex for the solver. A toplevel
let rec only binds a single identi�er, while let binds variables in a pattern. To preserve
the �exibility of expression-level pattern matching, for let � unless it just binds a value
as discussed above � we pack the constraints J�` p"�K which the pattern makes available,
into existential types. Each pattern variable is a separate entry to the global environment,
therefore the connection between them is lost.

The let:::in syntax has two uses: binding values of existential types means �eliminating
the quanti�cation� � the programmer has control over the scope of the existential constraint.
The second use is if the value is not of existential type, the constraint is replaced by one that
would be generated for a pattern matching branch. This recovers the common use of the
let...in syntax, with exception of polymorphic let cases, where let rec needs to be used.

We optimize the disjunctive constraint coming from let bindings as follows. Rather
than inspecting K in � directly, let J� `Kx"�0K= 9��[D]fx 7! � 0g. J¡ `Kp:e2: �0! �K is
equivalent to, or at least implied by:

J�`Kp#�0K^8��:D) J¡` p:e2: � 0! �K
Let us set C0=E(�0), CK= J�`Kp#�0K, D0= �0=_ �0 and DK= �0=_ � 0^D. Then,

9�0:J¡` e1:�0K^ (J¡` p:e2:�0! �K^E(�0)_E J¡`Kp:e2:�0! �K)
is equivalent to:

9�0:J¡` e1:�0K^_i2f0g[E(Ci^8���0:(Di) J¡` p:e2: �0! �K))
We use the same variable �0 across disjuncts of the same disjunction, so that J¡` p:e2: �0!�K
can be derived and simpli�ed only once.

The second argument of the predicate variable �K(; �) provides an �escape route� for
free variables, i.e. precondition variables used in postcondition. In the implementation, we
have user-de�ned existential types with explicit constraints in addition to inferred existential
types. We expand the inferred existential types after they are solved into the fuller format. In
the inferred form, the result type has a single parameter � 0, without loss of generality because
the actual parameters are passed as a tuple type. In the full format we recover after inference,
we extract the parameters � 0=_ (��), the non-local variables of the existential type, and the
partially abstract type �=_ � , and store them separately, i.e. "K(��)=8��9��[D]:� . The variables
�� are instantiated whenever the constructor is used. For a toplevel let, we form existential
types after solving the generated constraint, to have less intermediate variables in them.
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Both during parsing and during inference, we inject new structure items to the program,
which capture the existential types. During printing existential types in concrete syntax 9i:
��[']:t for an occurrence "K((r�)), the variables �� coming from � 0=_ (��)2' are substituted-out
by [�� := r�].

For simplicity, only toplevel de�nitions accept type and invariant annotations from the
user. The constraints are modi�ed according to the J¡; � ` ce: 8��[D]:�K rule. Where let
rec:::in uses a fresh variable �, a toplevel let rec incorporates the type from the annota-
tion. The annotation is considered partial, D becomes part of the constraint generated for
the recursive function but more constraints will be added if needed. The polymorphism of
8�� variables from the annotation is preserved since they are universally quanti�ed in the
generated constraint.

The constraints solver returns three components: the residue, which implies the con-
straint when the predicate variables are instantiated, and the solutions to unary and binary
predicate variables. The residue and the predicate variable solutions are separated into
solved variables part, which is a substitution, and remaining constraints (which are currently
limited to linear inequalities). To get a predicate variable solution we look for the predicate
variable identi�er association and apply it to one or two type variable identi�ers, which will
instantiate the parameters of the predicate variable. We considered several ways to deal with
multiple solutions:

1. report a failure to the user;

2. ask the user for decision;

3. silently pick one solution, if the wrong one is picked the subsequent program might
fail;

4. perform backtracking search for the �rst solution that satis�es the subsequent pro-
gram.

We use approach 3 as it is simplest to implement. Traditional type inference work�ow rules
out approach 2, approach 4 is computationally too expensive. We might use approach 1 in a
future version of the system. Upon �multiple solutions� failure � or currently, when a wrong
type or invariant is picked � the user can add assert clauses (e.g. assert false stating that
a program branch is impossible), and test clauses. The test clauses are boolean expressions
with operational semantics of run-time tests: the test clauses are executed right after the
de�nition is executed, and run-time error is reported when a clause returns false. The
constraints from test clauses are included in the constraint for the toplevel de�nition, thus
propagate more e�ciently than backtracking would. The assert clauses are: assert type
e1 = e2 which translates as equality of types of e1 and e2, assert false which translates
as CFalse, and assert num e1 <= e2, which translates as inequality n16n2 assuming that
e1 has type Num n1 and e2 has type Num n2.

We treat a chain of single branch functions with only assert false in the body of the
last function specially. We put all information about the type of the functions in the premise
of the generated constraint. Therefore the user can use them to exclude unintended types.
See the example equal_assert.gadt.
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B.1.1. Normalization
We reduce the constraint to alternation-minimizing prenex-normal form, as in the formaliza-
tion. We return a variable comparison function. The branches we return from normalization
have uni�ed conclusions, since we need to unify for solving disjunctions anyway.

Releasing constraints from under disjunctions is done iteratively, somewhat similar to
how disjunction would be treated in constraint solvers. Releasing the sub-constraints is
essential for eliminating cases of further disjunction constraints. When at the end more than
one disjunct remains, we assume it is the traditional LetIn rule and select its disjunct.

When one �[K] expression is a branch of another �[K] expression, the corresponding
branch does not introduce a disjunction constraint � the case is settled syntactically to be
the same existential type.

B.1.1.1. Implementation Details

The unsolved constraints are particularly weak with regard to variables constrained by pred-
icate variables. We need to propagate which existential type to select for result type of
recursive functions, if any. Normalization starts by �attening constraints into implications
with conjunctions of atoms as premises and conclusions, and disjunctions with disjuncts and
additional information. The additional information kept with a disjunct is the conjunction
of atoms that hold together with the disjunction. We try to eliminate disjuncts by using
uni�cation to check for contradiction. If only one disjunct is left, or we decide to pick LetIn
anyway (when no progress can be made otherwise), we return the disjunct. Otherwise we
return the �ltered disjunction.

To help eliminate unintended disjuncts, we collect information about existential return
types of recursive de�nitions by:

1. solving the conclusion of a branch together with additional conclusions, to know the
return types of variables,

2. registering existential return types for all variables in the substitution,

3. registering existential return types for all RetType �rst arguments and their substi-
tution instances,

4. traversing the premise and conclusion to �nd new variables that are types of recursive
de�nitions,

5. registering as �type of recursive de�nition� the return types for all variables in the
substitution registered as types of recursive de�nitions,

6. traversing all variables known to be types of recursive de�nitions, and registering
existential type with recursive de�nition (i.e. unary predicate variable) if it has been
learned,

7. traversing all variables known to be types of recursive de�nitions again, and regis-
tering existential type of the recursive de�nition (if any) with the variable.

B.1.2. Simpli�cation
During normalization, we remove from a nested premise the atoms it is conjoined with (as
in �modus ponens�).
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After normalization, we simplify the constraints by removing redundant atoms. We
remove atoms that bind variables not occurring anywhere else in the constraint, and in
case of atoms not in premises, not universally quanti�ed. The simpli�cation step is not
currently proven correct and might need re�ning. We merge implications with the same
premise, unless one of them is non-recursive and the other is recursive. We call an impli-
cation branch recursive when an unary predicate variable � (not a �K) appears in the
conclusion or a binary predicate variable �K appears in the premise.

B.2. Abduction

Our formal speci�cation of abduction provides a scheme for combining sorts that substi-
tutes number sort subterms from type sort terms with variables, so that a single-sort term
abduction algorithm can be called. Since we implement term abduction over the multisorted
datatype typ, we keep these alien subterms in terms passed to term abduction.

B.2.1. Abduction for Terms with Alien Subterms

Here we expand on the overview from Section 4.2.2. The JCAQPAS problem is more com-
plex than simply substituting alien subterms with variables and performing joint constraint
abduction on resulting implications. The ability to �outsource� constraints to the alien sorts
enables more general answers to the target sort, in our case the term algebra T (F ). Term
abduction will o�er answers that cannot be extended to multisort answers.

One might mitigate the problem by preserving the joint abduction for terms algorithm,
and after a solution 9��:A is found, �dissociating� the alien subterms (including variables) in
A as follows. We replace every alien subterm ns in A (including variables, even parameters)
with a fresh variable �s, which results in A0 (in particular A0[�s� := ns� ] = A). Subsets
Ap
i ^ Ac

i = Ai � �s=_ ns such that 9���s� :A0; Ap
i ; Ac

i is a JCAQPAS answer will be recovered
automatically by a residuum-�nding process after abduction for terms ends. This process
is needed regardless of the �dissociation� issue, to uncover the full content of numeric sort
constraints.

To face e�ciency of numerical abduction with many variables, we modify the approach.
On the �rst iteration of the main algorithm, we remove (purge) alien subterms both from
the branches and from the answer, but we do not perform other-sort abduction at all. On
the next iteration, we do not purge alien subterms, neither from the branches nor from the
answer, as we expect the dissociation in the partial solutions (to predicate variables) from the
�rst step to be su�cient. Other-sort abduction algorithms now have less work, because only
a fraction of alien subterm variables �s remain in the partial solutions (see main algorithm
in section B.6). They also have more information to work with, present in the instatiation
of partial solutions. However, this optimization violates completeness guarantees of the
combination of sorts algorithm. To faciliate �nding term abduction solutions that hold under
the quanti�ers, we substitute-out other sort variables, by variables more to the left in the
quanti�er, using equations from the premise.
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The dissociation interacts with the discard list mechanism. Since dissociation intro-
duces fresh variables, no answers with alien subterms would be syntactically identical. When
checking whether a partial answer should be discarded, in case alien subterm dissociation is
on, we ignore alien sort subterms in the comparison.

B.2.2. Joint Constraint Abduction

Here we expand on the overview from Section 4.2.3. We further lose generality by using a
heuristic search scheme instead of testing all combinations of simple abduction answers. In
particular, our search scheme returns from joint abduction for types with a single answer,
which eliminates deeper interaction between the sort of types and other sorts. Some amount
of interaction is provided by the validation procedure, which checks for consistency of the
partial answer, the premise and the conclusion of each branch, including consistency for other
sorts.

We accumulate simple abduction answers into the partial abduction answer, we set aside
branches that do not have any answer satis�able with the partial answer so far. After all
branches have been tried and the partial answer is not an empty conjunction (i.e. not >),
we retry the set-aside branches. If during the retry, any of the set-aside branches fails, we
add the partial answer to discarded answers � which are avoided during simple abduction �
and restart. Restart puts the set-aside branches to be tried �rst. If, when left with set-aside
branches only, the partial answer is an empty conjunction, i.e. all the answer-contributing
branches have been set aside, we fail � return ? from the joint abduction. This does not
peform complete backtracking (no completeness guarantee), but is therefore quicker to report
unsolvable cases and does su�cient backtracking. After an answer working for all branches
has been found, we perform additional check, which encapsulates negative constraints intro-
duced by the assert false construct. If the check fails, we add the answer to discarded
answers and repeat the search.

If a partial answer becomes as strong as one of the discarded answers inside SCA, simple
constraint abduction skips to �nd a di�erent answer. The discarded answers are initialized
with a discard list passed from the main algorithm.

To check validity of answers, we use a modi�ed variant of uni�cation under quanti�ers:
uni�cation with parameters, where the parameters do not interact with the quanti�ers and
thus can be freely used and eliminated. Note that to compute conjunction of the candidate
answer with a premise, uni�cation does not check for validity under quanti�ers.

Because it would be di�cult to track other sort constraints while updating the partial
answer, we discard numeric sort constraints in simple abduction algorithm, and recover them
after the �nal answer for terms (i.e. for the type sort) is found.

Searching for an abduction answer can fail in only one way: we have set aside all the
branches that could contribute to the answer. It is di�cult to pin-point the culprit. We
remember which branch caused the restart when the number of set-aside branches was the
smallest. The conclusion of that branch can be used to construct the error report.
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B.2.3. Simple Constraint Abduction for Terms
Here we expand on the overview from Section 4.2.4.1. Our initial implementation of simple
constraint abduction for terms follows [29] p. 13. The mentioned algorithm only gives fully
maximal answers which is loss of generality w.r.t. our requirements. To solve D) C the
algorithm starts with U(D ^ C) and iteratively replaces subterms by fresh variables � 2 ��
for a �nal solution 9��:A. As our primary approach to mitigate some of the limitations of
fully maximal answers, we start from U (A~(D^C)), where 9��:A is the solution to previous
problems solved by the joint abduction algorithm, andA~(�) is the corresponding substitution.
Moreover, motivated by examples from Chuan-kai Lin [22], we intruduce variable-variable
equations �1=_ �2, for �1�2 � ��, not implied by A~(D ^ C), as additional candidate answer
atoms. During abduction Abd(Q; ��; Di; Ci), we ensure that the (partial as well as �nal)
answer 9��:A satis�es �Q:A[���� := t�] for some t�. We achieve this by normalizing the answer
using parameterized uni�cation under quanti�ers U����(Q:A). �� are the parameters of the
invariants.

In fact, when performing uni�cation, we check more than U����(Q:A) requires. We also
ensure that the use of parameters will not cause problems in the Split phase of the main
algorithm. To this e�ect, we forbid substitution of a variable �1 from ��with a term containing
a universally quanti�ed variable that is not in �� and to the right of �1 in Q. Also, we forbid
substitution of a variable �1 from ��

� with a term containing a variable �22 ���
0
for �=/ �0.

In implementing [29] p. 13, we follow a top-down approach where bigger subterms are
abstracted �rst � replaced by a fresh variable, together with an arbitrary selection of other
occurrences of the subterm. If dropping the candidate atom maintains T (F ) �A^D)C,
we proceed to neighboring subterm or next equation. Otherwise, we try all of: replacing
the subterm by the fresh variable; proceeding to subterms of the subterm; preserving the
subterm; replacing the subterm by variables corresponding to earlier occurrences of the
subterm. This results in a single, branching pass over all subterms considered. Finally, we
clean-up the solution by eliminating fresh variables when possible (i.e. substituting-out
equations x=_ � for variable x and fresh variable �).

Although there could be an in�nite number of abduction answers, there is always a �nite
number of fully maximal answers, or more generally, a �nite number of equivalence classes
of formulas strictly stronger than a given conjunction of equations in the domain T (F ). We
use a search scheme that tests as soon as possible. The simple abduction algorithm takes a
partial solution � a conjunction of candidate solutions for some other branches � and checks
if the solution being generated is satis�able together with the candidate partial solution. The
algorithm also takes several indicators to let it select the expected answer:

� a number that determines how many correct solutions to skip;

� a validation procedure that checks whether the partial answer meets a condition,
in joint abduction the condition is consistency with premise and conclusion of each
branch;

� the parameters and candidates for parameters of the invariants, ��, updated as we
add new atoms to the partial answer; existential variables that are not to the left of
parameters and are connected to parameters become parameters; we process atoms
containing parameters �rst;
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� the quanti�er Q (source q) so that the partial answer 9��:A (source vs,ans) can be
checked for validity with parameters: �Q:A[�� := t�] for some t�;

� a discard list of partial answers to avoid (a tabu list) � implements backtracking, with
answers from abductions raising �fallback� going there.

Since an atom can be mistakenly discarded when some variable could be considered an
invariant parameter but is not at the time, we process atoms incident with candidates for
invariant parameters �rst. A variable becomes a candidate for a parameter if there is a
parameter that depends on it. That is, we process atoms x=_ t such that x 2 �� �rst, and if
equation x=_ t is added to the partial solution, we add to �� existential variables in t. Note
that x=_ t can stand for either x := t, or y := x for t= y. For a universally quanti�ed variable
x2/ ��, x := t will not be part of the answer as it does not hold under the quanti�er.

To simplify the search in presence of a quanti�er pre�x, we preprocess the initial candi-
date by eliminating universally quanti�ed variables:

S = [tu� := tu
0�] for FV(tu)\ �u� =/ ?; 8�u�Q such that M�D)S_ ;

S 0 = [u� := tu
0�] for u�� �u� ; 8�u�Q such that M�D^C)S_

0
;

Rev8(Q; ��; D;C) = fc0jc= x=_ t2C; if x=S 0(t) then c0=S(c) else c0=SS 0(c)g

Note that S above is a substitution of subterms rather than of variables. To move further
beyond fully maximal answers, we incorporate candidates �1=_ �2 for which the following
conditions hold: �1�2 � ��, �1 := t1 2 U (A~(D ^ C)), �2 := t2 2 U(A~(D ^ C)) and t1=_ t2
is satis�able. We also need to include the uni�er of t1=_ t2 among the candidates, since
otherwise the equation �1=_ �2 would not su�ce to imply that of the atoms �1=_ t1, �2=_ t2 which
belongs to the conclusion C. The full candidates U(A~(D ^ C)) and the guess candidates
�1 := �2;U(t1=_ t2) are kept apart, the guess candidates are guessed before the full candidates.
By default, we additionally limit consideration to atoms �1=_ t1, �2=_ t2 where t1; t2 are not
themselves variables.

To recapitulate, the implementation is:

� If there are no more candidates to add to the partial solution: check for repeated
answers, skipping, and discarded answers.

� If there are no more guessed candidates, pick the next full candidate atom FV(c)\��=/
? if any, reordering the candidates until one is found. Otherwise, pick the �rst guess
candidate atom without reordering.

� The are 6 mutually exclusive choices through which the algorithm loops.

1. Try to drop the atom (if the partial answer plus remaining candidates can still
be completed to a correct answer).

2. Replace the current subterm of the atom with a fresh parameter, adding the
subterm to replacements; if at the root of the atom, check connected and
validate before proceeding to remaining candidates.

3. Step into subterms of the current subterm, if any, and if at the sort of types.

4. Keep the current part of the atom unchanged; if at the root of the atom, check
connected and validate before proceeding to remaining candidates.
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5. Replace the current subterm with a parameter introduced for an earlier occur-
rence; branch over all matching parameters; if at the root of the atom, check
connected and validate before proceeding to remaining candidates.

6. Keep a variant of the original atom, but with constants substituted-out by
variable-constant equations from the premise. Redundant, not available when
the option -more_general is on.

� Each iteration is a backtracking point, the choices are tried in turn, depending on
options selected.

� Default ordering of choices is 1, 6, 2, 4, 3, 5 � pushing 4 up minimizes the amount of
branching in 5.

� There is an option -more_general, which reorders the choices to: 1, 6, 4, 2, 3,
5; however the option is not exposed in the interface because the cost of this
reordering is prohibitive.

� An option -richer_answers reorders the choices to: 6, 1, 2, 4, 3, 5; it does
not increase computational cost but sometimes leads to answers that are not
most general.

� If choice 6 would lead to more negative constraints contradicted than choice
1, we pick choice 6 �rst for a particular candidate atom.

� An option -prefer_guess reorders choice 6 prior to choice 1, but only for
guess candidates.

� Form initial candidates Rev8(Q; ��;U(D^Ap);U(Ap^D^C)).
� Form the substitution of subterms for choice-6 counterparts of initial candidate atoms.

For �1=_ � ; :::; �n=_ � 2 U (D ^ Ap), form the substitution of subterms �1 := �i; :::;
�n := �i; � := �i (excluding �i := �i) where �i is the most upstream existential
variable (or parameter) and � is a constant. Note that analogous transformation for
a universally quanti�ed variable as right-hand-sides is performed by Rev8.

� Since for e�ciency reasons we do not always remove alien subterms, we need to
mitigate the problem of alien subterm variables causing violation of the quan-
ti�er pre�x. To this e�ect, we include the premise equations from other sorts
in the process generating the initial candidates and choice 6 candidates, but
not as candidates. Not to lose generality of answer, we only keep a renaming
substitution, in particular we try to eliminate universal variables.

� Sort the initial candidates by decreasing size, because shorter answer atoms are more
valuable and dropping a candidate from participating in an answer is the �rst choice.

� There is an argument in favor of sorting by increasing size: so that the replace-
ments of step 2 are formed at a root position before they are used in step 5 �
instead of forming a replacement at a subterm, and using it in step 5 at a root.

� If ordering in increasing size turns out to be necessary, a workaround should
be introduced to favor answers that, if possible, do not have parameters �� as
left-hand-sides.
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The above ordering of choices ensures that more general answers are tried �rst. Moreover:

� choice 1 could be dropped as it is equivalent to choice 2 applied on the root term;

� choices 4 and 5 could be reordered but having choice 4 as soon as possible is important
for e�ciency.

We perform a two-layer iterative deepening (when without the -more_general option): in
the �rst run we only try choices 1 and 6. It is an imperfect optimization since the running
time gets longer whenever choices 2-5 are needed.

B.2.3.1. Heuristic for Better Answers to Invariants

We implement an optional heuristic in forming the candidates proposed by choice 6. It may
lead to better invariants when multiple maximally general types are possible, but also it may
lead to getting the most general type without the need for backtracking across iterations of
the main algorithm, which unfortunately often takes very long.

We look at the types of substitutions for the variables that are invariant parameters,
in the partial answer, and try to form the initial candidates for choice 6 so that the return
type variables cover the most of argument types variables, for each term substituted for an
invariant parameter. We select from the candidates equations between any variable, or only
non-argument-type variable, and a FV(argument types)nFV(return type) variable � we turn
the equation so that the latter is the RHS. We locate the equations among the candidates
that have an invariant parameter variable or a FV(return type)nFV(argument types) variable
as LHS. We apply the substitution to the RHS of these equations; if the LHS is an invariant
parameter, we use the substitution based on equations where one side is a non-argument-
type variable. We preserve the order of equations in the candidate list.

B.2.4. Simple Constraint Abduction for Linear Arithmetics
Here we expand on the overview from Section 4.2.4.2. For checking validity or satis�ability,
we use Fourier-Motzkin elimination . To avoid complexities we only handle the rational
number domain. To extend the algorithm to integers, Omega-test procedure as presented in
[4] needs to be adapted. The major operations are:

� Elimination of a variable takes an equation and selects a variable that is not upstream,
i.e. to the left in Q regarding alternations, of any other variable of the equation, and
substitutes-out this variable from the rest of the constraint. The solved form contains
an equation for this variable.

� Projection of a variable takes a variable x that is not upstream of any other variable
in the unsolved part of the constraint, and reduces all inequalities containing x to the
form x6_ a or b6_ x, depending on whether the coe�cient of x is positive or negative.
For each such pair of inequalities: if b=a, we add x=_ a to implicit equalities; otherwise,
we add the inequality b6_ a to the unsolved part of the constraint.

We use elimination to solve all equations before we proceed to inequalities. The starting point
of our algorithm is [4] section 4.2 Online Fourier-Motzkin Elimination for Reals . We add
detection of implicit equalities, and more online treatment of equations, introducing known
inequalities on eliminated variables to the projection process. When implicit equalities have
been found, we iterate the process to normalize them as well.
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Our abduction algorithm follows a familiar incrementally-generate-and-test scheme as
in term abduction. There are two new ideas, which can also be applied to abduction in
other domains. We build a lazy list of possible transformations with linear combinations
involving equations a implied by D^C. We pair each inequality c in C with all inequalities
d implied by D which share a variable with c and try out the abduction answers to d) c as
contributions to the partial abduction answer to D)C.

To simplify the search in presence of a quanti�er pre�x, we preprocess the initial candi-
date by eliminating universally quanti�ed variables:

S = [�u� := tu�] for 8�u�Q such that M�D)S_ ;

Rev8(Q; ��; D;C) = fc0jc2C; if M�Q:c[�� := t�] for some t� then c 0= c else c0=S(c)g

Before accepting a new atom into the partial answer, we check that it would not violate the
quanti�er conditions from the split phase of the main algorithm, and that the partial answer
is satis�able with all implication branches of the joint abduction problem. As part of the
quanti�er conditions, we ensure that the escaping parameters are upward in the constraint
before prenexization, i.e. are parameters of the type of a parent de�nition (containing a given
de�nition in its body) rather than a parallel de�nition. The check of satis�ability we call
validation. For domains other than the term domain, validation also involves instantiating
use-sites of recursive de�nitions with parts of the partial answer, split in a simpli�ed way.

Abduction algorithm:

1. Let C=0= Ai
~ (C=), resp. C60=Ai

~ (C6) where C=, resp. C6 are the equations, resp.
inequalities in C and Ai

~ is the substitution according to equations in Ai. Let D 0 =

Ai
~ (D ^ Ai) and D=0 be the equations in D 0, i.e. substituted equations and implicit
equalities. Let D60 be a solved form of inequalities.

a. Let C0==Rev8(Q; ��; D=0; C=0) and C0
6=Rev8(Q; ��; D=0; C60).

2. Prepare the initial transformations from atoms a2D= 0:
a. Add combinations ks a+ b for k=¡n:::n; s=¡1; 1 to the stack of transforma-

tions to be tried for atoms b.
b. The �nal transformations have the form: b 7! b+�a2Dka

saa.
3. Modify C=0 to promote answers with variables rather than constants, as in term

abduction: For �1=_ � ; :::; �n=_ � 2C=0, form the substitution of subterms �1 := �i; :::;
�n :=�i; � :=�i (excluding �i :=�i) where �i is the most upstream existential variable
(or parameter) and � is a constant.

4. Start from Acc := fg and C0 :=C=0^C60. Handle atoms a in C0=aC00, equations �rst.
5. Let B=Ai^D^C00 ^Acc.
6. If a is a tautology (0=_ 0 or c�0 for c60) or B)C, repeat with C0 :=C00. Corresponds

to choice 1 of term abduction.
7. If B;C, for a candidate a0 generated for a, starting with a, which passes validation

against other branches in a joint problem: Acc :=Acc[fa0g, or fail if all a0 fail.
a. If a is an inequality, let a0 be an abduction answer to d) Rev8

¡
Q; ��; D=0;

Acc=(a)
�
, where d belongs to the solved form inequalities implied by D 0. Oth-

erwise, let a0=Acc=(a).
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b. Sort the candidates a0 in order of decreasing value, described below. Let a0 be
a0 with some D=0-derived transformation applied.

� We increase the value of a0 for each variable that is bound by a0 on the
side that it is unbound in B. We decrease the value of a0 for:

� its size, proportionally to the sum of nominators and denomina-
tors,

� containing a constant term,

� containing parameters from multiple invariants,

� introducing an implicit equality,

� binding a variable by a constant on the side where it is already
bounded by B,

� binding a variable by a constant on the right (i.e. upper bound),

� optionally, being less general than some other candidate,
modulo B,

� we include the value of inequalities implied by the candidate
together with the partial answer (but not the partial answer
alone) and not holding when parameters are universally quanti-
�ed (see atomization).

The score determines the order in which atoms are tried.

� Currently, we do not perform transformations when a0 is an inequality,
for simplicity and speed at cost of missing some answers. However, we
eliminate the universal variables, i.e. we use Rev8 above. If it proves
necessary, we will also try the transformations for the inequalities. For
example, by trying all candidates a0 before proceeding to the next
transformation.

c. If Ai ^ (Acc[ fa0g) (resp. Ai ^ (Acc[ fa00g)) does not pass validation for all
a0, backtrack.

d. If Ai ^ (Acc [ fa0g) (resp. Ai ^ (Acc [ fa00g)) passes validation, repeat from
step 5 with C0 :=C0

0;Acc :=Acc[fa0g (resp. Acc :=Acc[fa00g).

8. The answers are Ai+1=Ai^Acc.

We precompute the tranformation variants to try out. The parameter n is set by option
-num_abduction_rotations and defaults to a small value (currently 3).

To check whether B)C, we check for each c2C:

� if c = x=_ y, that A(x) = A(y), where A(�) is the substitution corresponding to
equations and implicit equalities in A;

� if c=x6_ y, that B ^ y<_ x is not satis�able.

We use the nums library for exact precision rationals.
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To �nd the abduction answers to d) c, pick a common variable � 2 FV(d) \ FV(c) or
the constant �=1. We have four possibilities:

1. d,�6 d� and c,�6 c�: the abduction answers are c and d�6 c�,
2. d,�6 d� and c, c�6�: the abduction answer is only c,

3. d, d�6� and c,�6 c�: the abduction answer is only c,

4. d, d�6� and c, c�6�: the abduction answers are c and c�6 d�.
Thanks to cases (1) and (4) above, the abduction algorithm can �nd some answers which
are not fully maximal. The joint constraint abduction algorithm can help in some of the
remaining cases where fully maximal abduction is insu�cient for some implications, by
solving simpler implications �rst.

We provide an optional optimization: we do not pass, in the �rst call to numerical abduc-
tion (the second iteration of the main algorithm), branches that contain unary predicate
variables in the conclusion, i.e. we only use the �non-recursive� branches. Other optimizations
that we use are: iterative deepening on the constant n used to generate ks factors. We also
constrain the algorithm by �ltering out transformations that contain �too many� variables,
which can lead to missing answers if the setting -num_prune_at � �too many� � is too low.
Similarly to term abduction, we count the number of steps of the loop and fail if more than
the option -num_abduction_timeout steps have been taken.

B.3. Constraint Generalization
Here we expand on the exposition from Section 4.3. Constraint generalization answers are
the maximally speci�c conjunctions of atoms that are implied by each of a given set of
conjunction of atoms. In case of term equations the constraint generalization algorithm is
based on the anti-uni�cation algorithm. In case of linear arithmetic inequalities, constraint
generalization is exactly �nding the convex hull of a set of possibly unbounded polyhedra.
We employ our uni�cation algorithm to separate sorts. Since as a result we do not introduce
variables for alien subterms , we include the variables introduced by anti-uni�cation in con-
straints sent to constraint generalization for their respective sorts.

The adjusted algorithm looks as follows:

1. Let ^sDi;s � U (Di) where Di;s is of sort s, be the result of our sort-separating
uni�cation.

2. For the sort stype:

a. Let V = fxj ; ti; j j8i9ti; j:xj=_ ti; j 2Di;stypeg.
b. Let G= f��j ; uj ; �i; j j�i; j = [��j := g�j

i]; �i; j(uj) = ti; jg be the most speci�c anti-
uni�ers of ti; j for each j.

c. Let Di
u=^j��j=_ g�ji and Di

g=Di;stype^Di
u.

d. Let Di
v= fx=_ y jx=_ t12Di

g; y=_ t22Di
g; Di

g � t1=_ t2g.
e. Let Astype = ^jxj=_ uj ^

T
i
(Di

g ^Di
v) (where conjunctions are treated as sets

of conjuncts and equations are ordered so that only one of a=_ b; b=_ a appears
anywhere), and ��stype=��j� .
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f. Let ^sDi;s
u �Di

u for Di;s
u of sort s.

3. For sorts s=/ stype, let 9��s:As=LUBs(Di
s^Di;s

u ).

4. The answer is 9�ij
����s� :^sAs.

We simplify the result by substituting-out redundant answer variables.
We follow the anti-uni�cation algorithm provided in [61], �g. 2.

B.3.1. Extended Convex Hull
[16] provides a polynomial-time algorithm to �nd the half-space represented convex hull
of closed polytopes. It can be generalized to unbounded polytopes � conjunctions of linear
inequalities. Our implementation is inspired by this algorithm but very much simpler, at
cost of losing the optimality requirement.

First we �nd among the given inequalities those which are also the faces of resulting
convex hull. The negation of such inequality is not satis�able in conjunction with any of the
polytopes � any of the given sets of inequalities. Next we iterate over ridges touching the
selected faces: pairs of the selected face and another face from the same polytope. We rotate
one face towards the other: we compute a convex combination of the two faces of a ridge.
We add to the result those half-spaces whose complements lie outside of the convex hull (i.e.
negation of the inequality is unsatis�able in conjunction with every polytope). For a given
ridge, we add at most one face, the one which is farthest away from the already selected face,
i.e. the coe�cient of the selected face in the convex combination is smallest. We check a
small number of rotations, where the algorithm from [16] would solve a linear programming
problem to �nd the rotation which exactly touches another one of the polytopes.

When all variables of an equation a=_ b appear in all branchesDi, we can turn the equation
a=_ b into pair of inequalities a6 b^ b6a. We eliminate all equations and implicit equalities
which contain a variable not shared by all Di, by substituting out such variables. We pass
the resulting inequalities to the convex hull algorithm. Separately, we compute the equations
common to all branches, because the convex hull algorithm is not guaranteed to recover them.

B.3.2. Issues in Inferring Postconditions
Although �nding recursive function invariants � predicate variables solved by abduction �
could theoretically fail to converge for both the type sort and the numerical sort constraints,
neither problem was observed. Finding existential type constraints can only fail to converge
for numerical sort, because solutions are expected to decrease in strength. But such diverging
numerical constraints are commonplace. The main algorithm starts by performing constraint
generalization only on implication branches corresponding to non-recursive cases, i.e. without
binary predicate variables in premise (or unary predicate variables in conclusion). This gener-
ates a stronger constraint than the correct one. Subsequent iterations include all branches in
constraint generalization, weakening the constraints, and so still weaker constraints are fed to
constraint generalization in each following step. To ensure convergence of the numerical part,
starting from some step of the main loop, we compare consecutive solutions and extrapolate
the trend. Currently we simply intersect the sets of atoms, but �rst we expand equations
into pairs of inequalities.
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We �lift� variables escaping the scope of a postcondition by renaming them to fresh
variables, which are added to the answer variables of generalization. We apply this renaming
ater anti-uni�cation, prior to performing generalization in other domains. We pass to other
domains as parameters to preserve only non-escaping variables. The non-escaping variables
are these which have in their scope a variable �K, passed as argument to the generalization
algorithm.

Constraint generalization limited to non-recursive branches, the initial iteration of post-
condition inference, will often generate constraints that contradict other branches. For
another iteration to go through, the partial solutions need to be consistent. Therefore we
�lter the constraints using the same validation mechanism as in abduction. We add atoms
to a constraint greedily, but to favor relevant atoms, we do the �ltering while computing
the connected component of constraint generalization result. See the details of the main
algorithm in section B.6.2.

While reading section B.6.2, you will notice that postconditions are not subjected to
strati�cation. This is because the type system does not support nested existential types.

In the simpli�cation step at the end of constraint generalization, we try to preserve alien
variables that are parameters rather than substituting them by constants. A parameter can
only equal a constant if not all branches have been considered for constraint generalization.
The parameter is both as informative as the constant, and less likely to contradict other
branches.

B.3.3. Abductive Constraint Generalization
Here we expand on the overview from Section 4.3.3.

Global variables here are the variables shared by all disjuncts, i.e. \iFV(Di), remaining
variables are non-global . Recall that for numerical constraint generalization, we either sub-
stitute-out a non-global variable in a branch if it appears in an equation, or we drop the
inequalities it appers in if it is not part of any equation. Non-global variables can also pose
problems for the term sort, by forcing constraint generalization answers to be too general.
When inferring the type for a function, which has a branch that does not use one of arguments
of the function, the existential type inferred would hide the corresponding information in the
result, even if the remaining branches assume the argument has a single concrete type. We
would like the corresponding non-global variable to resolve to the concrete type suggested
by other branches of the resulting constraint.

We extend the notion of constraint generalization: substitution U and solved form 9��:A is
an answer to abductive constraint generalization problemDi given a quanti�er pre�x Q when:

1. (8i)�U(Di))9��nFV(U):A;

2. If �2Dom(U), then (9�)2Q � variables substituted by U are existentially quanti�ed;

3. (8i)�8(Dom(U))9(FV(Di)nDom(U)):Di.

Our generalized anti-uni�cation algorithm is in Table B.1. The notational shorthand :::; �i; :::;
f(t�j); ::: represents the case where all terms are either existential variables or start with a
function symbol f . Similarly, :::; �i; :::; �j; ::: represents the case when there is a variable �j
such that all terms are either �j or are existential variables to the right of �j in the quanti�er.
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auU ;G(t; :::; t) = ?; t; U ;G
auU ;G(f(t�1); :::; f(t�

n)) = ��; f(g�); U 0; G0

where ��; g�; U 0; G0 = aunU ;G(t�1; :::; t�
n)

auU ;G(t1; :::; tn) = ?; �; U ;G
when ([t1; :::; tn] 7!�)2G

auU ;G(:::; �i; :::; f(t�j); ::: as t�) = ���� 0; g; U 00; G0

where �� 0; g; U 00; G0 = auU 0;G(t�[�i := f(��)])
U 0 = U [�i := f(��)]^ �i=_ f(��)

when (9�i)2Q_ �i2 ��, treat �� as quanti�ed with 9�i
auU ;G(:::; �i; :::; �j; ::: as t�) = �� 0; g; U 00; G0

where �� 0; g; U 00; G0 = auU 0;G(t�[�i := �j])
U 0 = U [�i := �j]^ �i=_ �j

when 9�i2Q; �j6Q�i
auU ;G(t1; :::; tn) = �; �; U ; ([t1; :::; tn] 7!�)G

otherwise, where �#FV(t1; :::; tn; U ;G)
aunU ;G(?) = ?;?; U ;G

aunU ;G(?; :::) = ?;?; U ;G
aunU ;G(t11; t�1; :::; t1n; t�

n) = ���� 0; gg�0; U 00; G00

where ��; g; U 0; G0 = auU ;G(t11; :::; t1n)
and �� 0; g�0; U 00; G00 = aunU 0;G 0(t�1; :::; t�

n)

Table B.1. Abductive anti-uni�cation algorithm

The sort-integrating algorithm essentially does not change:

1. Let ^sDi;s � U (Di) where Di;s is of sort s, be the result of our sort-separating
uni�cation.

2. For the sort stype:

a. Let V = fxj ; ti; j j8i9ti; j:xj=_ ti; j 2Di;stypeg.

b. Let G= f��j ; gj ; uj ; �i; j j�i; j = [��j := g�j
i]; �i; j(gj) = (^k6juk)(ti; j)g be the most

speci�c anti-uni�ers of (^k6juk)(ti; j) for each j, where ^juj is the resulting U .

c. Let Di
u=^j��j=_ g�ji and Di

g=Di;stype^Di
u.

d. Let Di
v= fx=_ y jx=_ t12Di

g; y=_ t22Di
g; Di

g � t1=_ t2g.

e. Let Astype = ^jxj=_ gj ^
T

i
(Di

g ^Di
v) (where conjunctions are treated as sets

of conjuncts and equations are ordered so that only one of a=_ b; b=_ a appears
anywhere), and ��stype=��j� .

f. Let ^sDi;s
u �Di

u for Di;s
u of sort s.

3. For sorts s=/ stype, let 9��s:As=LUBs(Di
s^Di;s

u ).

4. The answer is substitution U =^juj and solved form 9�ij
����s� :^sAs.

B.3 Constraint Generalization 127



The task of constraint generalization is to �nd postconditions. Usually, it is bene�cial to
make the postcondition, i.e. the existential type that is the return type of a function, more
speci�c, at the expense of making the overal type of the function less general. To this
e�ect, constraint generalization, just as abduction takes invariant parameters ��. We replace
conditions 9�i 2 Q above by �i 2 �� _ (9�i) 2 Q. Recall that the right-hand-side (RHS)
variable �j can in general be universally quanti�ed: 8�j 2 Q. We exclude universal non-
parameter RHS when a parameter is present: if for any �i, �i 2 ��, then for all �i including
RHS, �i2 ��_9�i2Q. Note that having weaker postconditions also results in correct types,
just not the intended ones. In rare cases a weaker postcondition but a more general invariant
can be bene�cial. To this e�ect, the option -more_existential turns o� generating the
substitution entries when the RHS is a variable, i.e. the case auU ;G(:::; �i; :::; �j; ::: as t�) is
skipped.

Due to greater �exibility of the numerical domain, abductive extension of numerical
constraint generalization does not seem necessary and is turned o� by default. It could take
a similar form, we experiment with the following heuristic. If atoms speci�c to a disjunct
(i.e. not shared by all disjuncts) do not contain a variable, do not include the disjunct when
considering inclusion of inequalities containing the variable in the constraint generalization
answer.

B.4. Incorporating Negative Constraints

Here we expand on the overview from Section 4.4. We call a negative constraint an impli-
cation D ) F in the normalized constraint Q: ^i (Di ) Ci), and we call D the negated
constraint . Such constraints are generated for pattern matching branches whose right-hand-
side is the expression assert false. A generic approach to account for negative constraints
is as follows. We check whether the solution found by multisort abduction contradicts the
negated constraints. If some negated constraint is satis�able, we discard the answer and �fall
back� to try �nding another answer. Unfortunately, this approach is insu�cient when the
answer sought for is not among the maximally general answers to the remaining, positive
part of the constraint. Therefore, we introduce negation elimination.

For the numerical sort, our implementation of negation elimination can produce too
strong constraints when the numerical domain is intended to contain non-integer rational
numbers, and can be turned o� by the -no_int_negation option. It can also produce too
weak constraints, because it produces at most one atom for a given negated constraint.
If the abduction answer for terms does already contradict a negated constraint D, we are
done. Otherwise, let D = c1 ^ ::: ^ cn. For numerical sort atoms ci, either drop them from
consideration or convert their negation :ci into di or di1 _ di2 as follows. The conversion
assumes that the numerical domain is integers. We convert an inequality w60, e.g. 1

3
x¡ 1

2
y¡

260, to ¡k w+160, e.g. 3y¡2x+1360, where k is the common denominator so that k w
has only integer numbers. Note that :(w60),w>0,¡w<0,¡k w<0(¡k w+160.
Similarly, we convert an equation w=_ 0 to inequalities ¡k w + 1 6 0 _ k w + 1 6 0. Note
that :(w> 0),w< 0, kw < 0( kw+16 0. In both cases the implications ( would be
equivalences if the numerical domain was integers rather than rational numbers. At present,
we ignore opti atoms. The disjunct di is a conjunction of inequalities if ci is a subopti atom.
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Assuming that each negative constraint points to a single atomic fact, we try to �nd one
disjunct di, resp. di1 or di2, corresponding to :ci, discarding those disjuncts that contradict
any implication branch. Speci�cally, let Q:^i (Di)Ci) be the constraint we solve, and let
9��:A be a term abduction answer for Q: ^i:Ci=/F (Di) Ci). We search for i such that for
all k with Ck=/ F and Dk satis�able, di^A^Dk ^Ck is satis�able. We provide a function
NegElim(:D;Bi

� )=di0, where di0 is the biggest, syntactically, such atom, and Bi=A^Di^Ci.

Unfortunately, for the sort of terms we do not have well-de�ned representation of dis-
equalities not using negations. The generic approach of relying on backtracking to �nd
another abduction answer is more useful for terms than for the numeric sort. It falls short,
however, when negation was intended to prevent the answer from being too general. Ideally,
we would introduce disequation atoms �=/_ � and follow the scheme we use for the numerical
sort. For now, we only cover a very speci�c use of negation, to discriminate among type-
level �enumeration�. We limit negation elimination to considering atoms of the form �=_ "1,
and contradict them by introducing atoms �=_ "2, for types "1=/ "2 without parameters which
we call phantom enumerations . The variables � are limited to the answer variables generated
in the previous iteration of the main algorithm. The nullary datatype constructor "2 is
picked so that the atom is valid, using the same validation procedure as the one passed to
the abduction algorithm. The heuristic de�nes phantom enumerations as nullary phantom
types that do not share datype parameter position (in GADT constructor de�nitions) with
non-enumeration types. When the equations derived for di�erent negated constraints involve
a common variable as the left-hand-side, we select a common right-hand-side. In the end, we
only introduce the negation elimination result to the answer when a single disjunct remains.

Since the discard (or taboo) list used by backtracking is based on complete answers, it is
preferable to perform negation elimination prior to abduction. Otherwise, the search might
fall into a loop where abduction keeps returning the same answer, since it is more general
than the discarded answer incorporating negation elimination result.

B.5. opti and subopti : minimum and maximum Rela-
tions in num

We extend the numerical domain with relations opti and subopti de�ned below. Operations
min and max can then be de�ned using it. Let k; v;w be any linear combinations. Note that
the relations are introduced to smuggle in a limited form of disjunction into the solved forms.

opti(v; w) = v6 0^w6 0^ (v=_ 0_w=_ 0)
k=_min(v; w) = opti(k¡ v; k¡w)
k=_max(v; w) = opti(v¡ k; w¡ k)
subopti(v; w) = v6 0_w6 0
k6max (v; w) = subopti(k¡ v; k¡w)
min (v; w)6 k = subopti(v¡ k; w¡ k)
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In particular, opti(v;w)�max (v;w)=_ 0 and subopti(v;w)�min (v;w)6 0. We call an opti
or subopti atom directed when there is a variable n that appears in v and w with the same
sign. We do not prohibit undirected opti or subopti atoms, but we do not introduce them,
to avoid bloat.

For simplicity, we do not support min and max as subterms in concrete syntax. Instead,
we parse atoms of the form k=min(:::,:::), resp. k=max(:::,:::) into the corresponding opti
atoms, where k is any numerical term. Similarly for subopti . We also print directed opti and
subopti atoms using the syntax with min and maxexpressions. Not to pollute the syntax with
a new keyword, we use concrete syntax min|max(:::,:::) for parsing arbitrary, and printing
non-directed, opti atoms, and min||max(:::,:::) for subopti respectively.

If need arises, in a future version, we can extend opti to a larger arity N .

B.5.1. Normalization, Validity and Implication Checking

In the function that produces solved forms of numerical constraints, we treat opti clauses
in an e�cient but incomplete manner, doing a single step of constraint solving. We include
the opti terms in processed inequalities. After equations have been solved, we apply the
substitution to the opti and subopti disjunctions. When one of the opti resp. subopti disjunct
terms becomes contradictory or the disjunct terms become equal, we include the other in
implicit equalities, resp. in inequalities to solve. When one of the opti or subopti terms
becomes tautological, we drop the disjunction. We iterate calls to the solver function to
propagate implicit equalities.

We do not perform case splitting on opti and subopti disjunctions, therefore some con-
tradictions may be undetected. However, abduction and constraint generalization currently
perform upfront case splitting on opti and subopti disjunctions, sometimes leading to splits
that a smarter solver would avoid.

B.5.2. Abduction

We eliminate opti and subopti in premises by expanding the de�nition and converting the
branch into two branches, e.g. D^ (v=_ 0_w=_ 0))C into (D^ v=_ 0)C)^ (D^w=_ 0)C).
Recall that an opti atom also implies inequalities v 6 ^w 6 0 assumed to be in D above.
This is one form of case splitting : we consider cases v=_ 0 and w=_ 0, resp. v 6 0 and w 6 0,
separately. We do not eliminate opti and subopti in conclusions. Rather, we consider whether
to keep or drop it in the answer, like with other candidate atoms. The transformations apply
to an opti atom by applying to both its arguments.

Generating a new opti atom for inclusion in an answer means �nding a pair of equations
such that the following conditions hold. Each equation, together with remaining atoms of an
answer but without the remaining equation selected, is a correct answer to a simple abduction
problem. The equations selected share a variable and are oriented so that the variable
appears with the same sign in them. The resulting opti atom passes the validation test for
joint constraint abduction. We may implement generating new opti atoms for abduction
answers in a future version, when need arises. Currently, we only generate new opti and
subopti atoms for postconditions, i.e. during constraint generalization.
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B.5.3. Constraint Generalization

We eliminate opti and subopti atoms prior to �nding the extended convex hull of Di by
expanding the de�nition and converting the disjunction _iDi to disjunctive normal form.
This is another form of case splitting.

In addition to �nding the extended convex hull, we need to discover opti relations that are
implied by _iDi. We select these faces of the convex hull which also appear as an equation
in some disjuncts. Out of these faces, we �nd all minimal covers of size 2, i.e. pairs of faces
such that in each disjunct, either one or the other linear combination appears as an equation.
We only keep pairs of faces that share a same-sign variable. For the purposes of detecting
opti relations, we need to perform transitive closure of the extended convex hull equations
and inequalities, because the redundant inequalities might be required to �nd a cover.

Finding subopti atoms is similar. We �nd all minimal covers of size 2, i.e. pairs of
inequalities such that one or the other appears in each disjunct. We only keep pairs of
inequalities that share a same-sign variable.

We provide a function for the numerical domain to remove opti atoms of the form
k=_ min(c; v), k=_ min(v; c), k=_max(c; v) or k=_ min(v; c) for a constant c, similarly for subopti
atoms, while in initial iterations where constraint generalization is only performed for non-
recursive branches.

We need to further extend the notion of (abductive) constraint generalization, to achieve
the results required for postcondition inference. For constraint branches Di)Ci, we need
not only the disjuncts Di^Ci, but also the premises Di. We keep opti and subopti atoms
opti(v; w); subopti(v; w) such that either both v 6 w and w 6 v are satis�able with all
implication branches, or neither is. An atom c is satis�able with implication Di)Ci here,
when either c^Di is not satis�able, or c^Di^Ci is satis�able. The underlying idea is that
since opti and subopti atoms express a disjunction, resp. v 6 0 ^w6 0 ^ (v=_ 0 _w=_ 0) and
v60_w60, they are meaningful when both cases of the disjunction can obtain under some
circumstances. When only one of the atoms, say v 6 w, is satis�able with all implication
branches, we make an abductive guess that v6w.

B.6. Solving for Predicate Variables

Here we discuss the implementation in InvarGenT of ideas in the overview from Section
4.1 and in the formal discussion from Section 4.5. As we decided to provide the �rst solution
to abduction problems, we accordingly simplify the task of solving for predicate variables.
Instead of a tree of solutions being re�ned, we have a single sequence which we unfold until
reaching �xpoint or contradiction. Another choice point besides abduction in the original
algorithm is the selection of invariants that leaves a consistent subset of atoms as residuum.
Here we also select the �rst solution found. We introduce a form of backtracking, described
in section B.6.4.
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B.6.1. Solving for Predicates in Premises

The core of our inference algorithm consists of distributing atoms of an abduction answer
among the predicate variables. The negative occurrences of predicate variables, when instan-
tiated with the updated solution, enrich the premises so that the next round of abduction
leads to a smaller answer (in number of atoms).

Let us discuss the algorithm for Split
¡
Q;��;A; ���;A�

0
�
. Note that due to existential types

predicates, we actually compute Split
¡
Q; ��; A; ����; A��

0
�
, i.e. we index by �� (which can

be multiple for a single �) rather than �. We retain the notation indexing by � as it better
conveys the intent. We do not pass quanti�ers around to re�ect the source code: the helper
function loop avs ans sol of function split corresponds to Split

¡
��; A;A��

0
�
.

�� � � �<Q� _
¡
�6Q� ^ � �Q�^�2 ���^ � 2/ ���

�
A�� =

�
�=_ �2A

��� 2 ���^ (9�)2Q^ ���	
A0 = AnA��

A�
1 =

�
c2A0

��8�2FV(c):(9�)2Q_
�<Q��^�2/ PrimCV(c)_�2 ���^�2PrimCV(c)

	
A�
2 = Atomized

¡
��
�
; A�

1
�

A�
3 = A�

2 n[�0A�0
1

if M2Q:(A n[�A�
2 )[�� := t�] for all t�

then return ?
for all A�

+ min. w.r.t. � s.t. ^�(A�
+�A�

2 )^M�Q:([�A�
+)A)[�� := t�] for some t�:

if Strat(A�
+; ��

�
) returns ? for some �

then return ?
else ��+

�; A�
L; A�

R = Strat(A�
+; ��

�
)

A� = A�
0 [A�

L

��0
� = ��\FV(A�)

��� =

 
��0
� n

[
�0<Q�

��0
�0
!
��+
�

A+ = [�A�
R

Ares = A+[A+(A n[�A�
+)

if [����=/ ?_[�A�
3 =/ ? then

Q0; Ares
0 ; 9�� 0�:A�

0 2 Split
¡
Q
�
8��� := 8(���[���)

�
; �� n[����; Ares^�A�

3 ;

��
�[���; A�

�
return Q0; A��^Ares

0 ;9����� 0�:A�
0

else return Q9(�� n[����); A��^Ares; 9���:A�

where Strat(A; ���) is computed as follows: for every c2A, and for every �22FV(c) such that
�1<Q�2 for �12��

�, if �2 is universally quanti�ed in Q and �22/ ��
�, then return ?; otherwise,

introduce a fresh variable �f, replace c := c[�2 := �f], add �2=_ �f to A�
R and �f to ��+

�, after
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replacing all such �2 add the resulting c to A�
L. PrimCV(c) stands for primary constrained

variables of an atom c. These are de�ned as the substituted variables in solved forms for
term constraints, and in the case of a numerical atom, the shared variable of a directed opti
or subopti atom, i.e. the variable v in v6max (:::), min (:::)6 v, v=max (:::), v=min (:::).

Description of the algorithm in more detail:

1. �� � � �<Q� _
¡
�6Q � ^ � �Q�^�2 ���^ � 2/ ���

�
The variables ��

� are the
invariant parameters of the solution from the previous round. We need to keep them
apart from other variables even when they're not separated by quanti�er alternation.

2. A0 = AnA�� where A�� =
�
�=_ � 2A

��� 2 ��� ^ (9�) 2 Q^ � � �
	

Discard
the �sca�olding� information, in particular the A+ equations introduced by Strat
in an earlier iteration.

3. A�
1 = fc2A0j8�2FV(c)n���:(9�)2Q_ �<Q ��g Gather atoms pertaining to

predicate �, which should not remain in the residuum.

4. A�
2 = Atomized

¡
��
�
; A�

1
�

An atomized form of A�
1 wrt. ���: a conjunction of atoms

equivalent to A�
1 containing some of the implications of A�

1 , see the formal exposition
of InvarGenT. Actually, rather than computing the atomized form upfront, we gen-
erate its contribution to A�

+ while performing Fourier-Motzkin elimination to check
M�Q:([�A�

+)A).

5. A�
3 = A�

2 n[�0A�0
1 We prune atoms coming from atomization that are already

present in the invariants. Actually, in the implementation we prune by redundancy
with the invariants assigned so far.

6. if M 2Q:(A n [�A�
1 )[�� :=t�] for all t� then return ? : Failed solution attempt. A

common example is when the use site of recursive de�nition, resp. the existential
type introduction site, is not in scope of a de�ning site of recursive de�nition, resp.
an existential type elimination site, and has too strong requirements. FIXME:

7. for all A�
+ min. w.r.t. � s.t.^�(A�

+�A�
2 ) ^M �Q:([�A�

+)A)[�� := t�] for some t�:
Select invariants such that the residuum A n[�A�

+ is consistent. The �nal residuum
Ares represents the global constraints, the solution for global type variables. The
solutions A�

+ represent the invariants, the solution for invariant type parameters.

8. if Strat(A�
+; ��

�
) returns ? for some � then return ? In the implementation, we

address strati�cation issues already during abduction.

9. ��+
�; A�

L; A�
R = Strat(A�

+; ��
�
) is computed as follows: for every c 2 A�

+, and for every
�2 2 FV(c) such that �1<Q �2 for �1 2 ��

�, if �2 is universally quanti�ed in Q, then
return ?; otherwise, introduce a fresh variable �f, replace c := c[�2 :=�f], add �2=_ �f
to A�

R and �f to ��+
�, after replacing all such �2 add the resulting c to A�

L.

� We will add ��+
� to ���.
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10. A� = A�
0 [A�

L is the updated solution formula for �, where A�
0 is the solution from

previous round.

11. ��0
� = ��\FV(A�) are the additional solution parameters coming from variables

generated by abduction.

12. ��� = (��0
� n
S

�0<Q�
��0
�0)��+

� The �nal solution parameters also include the variables

generated by Strat.

13. A+ = [�A�
R and Ares = A+[A+(A n[�A�

+) is the resulting global constraint,

where A+ is the substitution corresponding to A+.

14. if [����=/ ?_[�A�
3 =/ ? then � If new parameters or new atoms have been intro-

duced, we need to redistribute the remaining atoms to make Q0:Ares valid again.

15. Q0; Ares
0 ;9�� 0�:A�

0 2 Split
¡
Q
�
8��� := 8(���[���)

�
; �� n[����; Ares^�A3; ��

�[���; A�

�
Recursive call includes ��+

� in ��
� so that, among other things, A+ are redistributed

into A�.

16. return Q0; Ares
0 ;9����� 0�:A�

0 We do not add 8�� in front of Q0 because it already

includes these variables. ��+
���

+
� 0 lists all variables introduced by Strat.

17. else return Q9(�� n[����); Ares;9���:A� Note that �� n [���� does not contain the
current ���, because �� does not contain it initially and the recursive call maintains
that: �� := �� n[����; ��� := ��

�
���.

Finally we de�ne Split(��;A) := Split(��;A;T�). The complete algorithm for solving predicate
variables is presented in the next section.

B.6.2. Solving for Existential Types Predicates and Main Algorithm

The general scheme is that we perform constraint generalization on branches with positive
occurrences of existential type predicate variables on each round. Since the branches are sub-
stituted with the solution from previous round, constraint generalization will automatically
preserve monotonicity. We retain existential types predicate variables in the later abduction
step.

What di�erentiates existential type predicate variables from recursive de�nition predicate
variables is that the former are not local to context, while the latter are treated as local to
context. It means that free variables need to be bound in the former while they are retained
in the latter. However, it is just a technical di�erence because

134 Algorithmic Details



In the algorithm we operate on all predicate variables, and perform additional operations
on existential type predicate variables; there are no operations pertaining only to recursive
de�nition predicate variables. The equation numbers (N) below are matched by comment
numbers (* N *) in the source code. Let �"K be the invariant which will constrain the
existential type "K, or >. When �"K =>, then we de�ne ���"K ;k=?. Step k of the loop of
the �nal algorithm:

9���;k:F� = Sk

In iteration 2, remove non-term-sort atoms
containing outer-scope parameters from Sk:

DK
�)CK

� 2Rk
¡Sk(�) = all such that �K(�; ��K)2CK

� ; (B.1)
Cj
�= fC jD)C 2Sk(�)^D�DK

� g
�K : �K(�K) is a positive atom in �

U�K ;9��g
�K:G�K ; Bd

K = LUB
¡
�K ; �=_ �^DK

� ^jCj
�
�2�3

i;K

�
(B.2)

�~"K =
�
�2FV(G�K)n�� 0��g

�K
��(9�)2Q_�2 ���n���K	

�(9��g
�K:G�K) = 9FV(�~"K ; G�K)n�� 0:� 0=_ �~"K^G�K

(9���K:F�K); � = H(Rk(�K);�(9��g�K:G�K)) (B.3)
Rg(�K) = 9���K:F�K

Pg(�K(�; � 0))=Pg(�K(� 0)) = � 0=_ �~"K
F�
0 = F�["K(�~old) := "K(�~"K)[recover(�~"K; �~old)]]

Sk
0 = 9���;kf�2FV(F�0)j��<Q�g:F�0 (B.4)

Q0:^i (Di)Ci)^j (Dj
¡)F ) = Rg

¡Pg
+Sk

0(�^�KU�K)

9��:A0 = Abd
¡
Q0; ��= ����

�
; Di; Ci

�
(B.5)

A = A0^jNegElim
¡
:Simpl

¡
FV(Dj

¡)n���:Dj
¡�; A0; Di; Ci

�
In later iterations, check negative constraints. (B.6)¡

Qk+1; Ares; 9����:A��

�
= Split

¡
Q0; ��; A; �����

�
�~"K
0 = FV(Ares(�~"K))

Rk+1(�K) = 9���K ;k����K���KnFV(�~"K0 ):� 0=_ �~"K0 ^Ares(F�Kn� 0=_ :::)
^�KA��K

h
��K�

���K := ����K ;k
i

(B.7)

AK
d =

n
c2A��K

h
��K�

���K := ����K ;k
i���

FV(c)�FV(�(Bd
K))
o

9��K0 :AK
0 = Abd

¡
Q0; �����n��K��

�K ; �(Bd
K); AK

d
�

(B.8)�
Qk+1;?; 9����0:A��

0
�
= Split

¡
Qk+1; ��K

0 ;^KAK
0 ; ����

�n��K��
�K
�

Sk+1(�) = 9���;k:Simpl
¡
9����:F�0

^A��

�
����

�
:= ����;k

�
^A��

0 � (B.9)
if (8�)Sk+1(�)�Sk(�); (B.10)

(8�K)Rk+1(�K)=Rk(�K);
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(8��K)A��K
=T ;

k > 1

then return Ares; Sk+1; Rk+1

repeat k := k+1

Note that Split returns 9����:A�� rather than 9���:A�. This is because in case of existential
type predicate variables �K, there can be multiple negative position occurrences �K(��K ; �)
with di�erent ��K when the corresponding value is used in multiple let ::: in expressions. The
variant of the algorithm to achieve completeness would compute all answers for variants of
Abd and Split algorithms that return multiple answers. Unary predicate variables �(��)
can also have multiple negative occurrences in the normalized form, but always with the
same argument ��. The substitution

h
��K�

���K := ����K ;k
i
replaces the instance parameters

introduced in �K(��K ; �) by the formal parameters used in Rk(�K).
Even for a �xed K, the same branch DK

� ) CK
� can contribute to multiple disjuncts,

with di�erent �=�3
i;K. Substitution Rg

¡ substitutes only negative occurrences of �K, i.e. it
a�ects only the premises. Substitution Pg

+ substitutes only positive occurrences of �K, i.e.
it a�ects only the conclusions. Pg

+ ensures that the parameter instances of the postcondition
are connected with the argument variables. As a matter of implementation, the substitution
recover(�~"K; �~old) is actually derived from the way the variables are freshened in step B.4
above. Its e�ect is currently implemented as a substitution over the intermediate formula
F�["K(�~old) := "K(�~"K)].

We start with S0 :=T� and R0 :=T�. Sk grow in strength by de�nition. The constraint gen-
eralization parts G�K of R1 and R2 are computed from non-recusrive branches only. Starting
from R2, Rk are expected to decrease in strength, but monotonicity is not guaranteed because
of contributions from abduction: mostly in form of A��K

, but also from stronger premises due
to Sk. We remove non-term-sort atoms containing containing outer-scope parameters from
S2, to enable considering a di�erent solution when new facts about outer-scope parameters
propagate.

Connected(�;G) is the connected component of hypergraph G containing node �, where
nodes are variables FV(G) and hyperedges are atoms c 2 G. Connected0(�; (��; G)) addi-
tionally removes atoms c:FV(c)#���. In initial iterations, when the branches DK

� )CK
� are

selected from non-recursive branches only, we include a connected atom only if it is satis�able
in all branches. H(Rk;Rk+1) is a convergence improving heuristic, with H(Rk;Rk+1)= �(Rg)
for early iterations and �roughly� H(Rk; Rg) = Rk \ �(Rg) later. The substitution H,
also computed by the function H, is a renaming that replaces the variables introduced by
constraint generalization in the current iteration, by the corresponding variables introduced
by constraint generalization in the previous iteration.

The use sites of de�nitions with postconditions can introduce requirements A��K
on

postconditions. The inferred postconditions can only meet those requirements which are
guaranteed by all de�ning cases. We use abduction again to strengthen the preconditions,
so that the postconditions meet the requirements. Abduction is applied directly to the
constraint branches preprocessed by constraint generalization, so that the required postcon-
ditions will follow in the next iteration.
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The condition (8��K)A��K
=T is required for correctness of returned solution. Fixpoint

of postconditions Rk(�K) is not a su�cient stopping condition, because it does not imply
A��K

=T , the same A��K
=/ T may be introduced in consecutive iterations. This is not the

case for invariants, where Sk(�) and Sk+1(�) di�er by the portion A�� of abduction answer.

We introduced the assert false construct into the programming language to indicate
that a branch of code should not be reached. Type inference generates for it the logical
connective F (falsehood). We partition the implication branches Di;Ci into fDi;CijF 2/ Cig
which are fed to the algorithm and fDj

¡g = fDijF 2 Cig. After the main algorithm ends
we check that for each Dj

¡, Sk(Di) fails. Optionally, but by default, we perform the check
in each iteration, starting from the third iteration, i.e. k > 1. Turning this option on gives
a way to express negative constraints for the term domain. The option should be turned
o� when a single iteration (plus fallback backtracking described below) is insu�cient to
solve for the invariants. Moreover, for domains with negation elimination, i.e. the numerical
domain, we incorporate negative constraints as described in section B.4. The corresponding
computation is A0^jNegElim

¡
:Simpl

¡
FV(Dj

¡)n���:Dj
¡�; Di; Ci

�
in the speci�cation of the

main algorithm. The simpli�cation reduces the number of atoms in the formula and keeps
those that are most relevant to �nding invariants and postconditions. For convenience,
negation elimination is called from the function that computes the abduction answer.

We implement backtracking using a tabu-search-like discard list. When abduction raises
an exception: for example contradiction arises in the branches Sk(�) passed to it, or it cannot
�nd an answer and raises Suspect with information on potential problem, we fall-back to
step k¡ 1. Similarly, with checking for negative constraints on, when the check of negative
branches Di2�F , M2 9FV(Sk(Di)):Sk(Di) fails. In step k¡ 1, we maintain a discard list
of di�erent answers found not to work in this step and previous steps: initially empty, after
fall-back we add there the latest partial solution. We redo step k¡ 1 starting from Sk¡1(�).
In�nite loop is avoided because answers already attempted are discarded. When step k¡ 1
cannot �nd a new partial solution, we fall back to step k¡ 2, etc. We store discard lists for
distinct sorts separately and we only add to the discard list of the sort that caused fallback.
Unfortunately this means a slight loss of completeness, as an error in another sort might be
due to bad choice in the sort of types. The loss is �slight� because of the dissociation step
described previously. Moreover, the sort information from checking negative branches is
likewise only approximate.

B.6.3. Stages of Iteration

Changes in the algorithm between iterations were mentioned above but not clearly exposed.
We divide iterations into multiple stages, demarcated by parameters jk we now describe.

1. j0 is when inferring any postconditions starts; we use the initial iteration to infer the
shape of types using abduction.

2. j1 is when inferring numerical postconditions starts.
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3. j2 is when using all branches of the constraint in inference starts; before j2, we only
use the branches of the constraint that do not contain requirements derived from
recursive calls. If we use all branches too early, we su�er from missing information.

4. j3 is when second-phase abduction, to enrich preconditions based on postconditions,
starts.

5. j4 is when any forms of guessing in constraint generation should end; we have not yet
implemented any such guessing mechanisms.

6. j5 is when convergence of postconditions is enforced; from this step onward, a solution
to postconditions in an iteration is truncated to contain only atoms matching atoms
from the previous iteration.

7. j6 is the last iteration; if the �xpoint is not reached, we signal an error �Answers do
not converge� .

Default settings are [j0; j1; j2; j3; j4; j5; j6] = [1; 1; 2; 3; 4; 8; 11] where the initial iteration has
index 0. In a single iteration, constraint generalization precedes abduction.

When existential types are used, the expected number of iterations is k = 5 (six itera-
tions), because the last iteration needs to verify that the last-but-one iteration has found
the correct solution. The minimal number of iterations is k=2 (three iterations), so that all
branches are considered.

B.6.4. Implementation Details

We represent �~ as a tuple type rather than as a function type. We modify the quanti�er Q
imperatively, because it mostly grows monotonically, and when variables are dropped they
do not con�ict with fresh variables generated later.

The code that selects A�
+ by ^�(A�

+�A�
1 )andM�Q:A n[�A�

+ is an incremental validity
checker. It starts with A n [�A�

1 and tries to add as many atoms c 2 [�A�
1 as possible to

what in e�ect becomes Ares.
We count the number of iterations of the main loop, a fallback decreases the iteration

number to the previous value. The main loop decides whether multisort abduction should
dissociate alien subterms � in the �rst iteration of the loop � or should perform abductions
for other sorts � in subsequent iteration. See discussion in subsection B.2.1. In the �rst two
iterations, we remove branches that contain unary predicate variables in the conclusion (or
binary predicate variables in the premise, keeping only non-recursive branches), as discussed
at the end of subsection B.2.4 and beginning of subsection B.3.2. As discussed in subsection
B.3.2, starting from iteration k3, we enforce convergence on solutions for binary predicate
variables.

Computing abduction is the �axis� of the main loop. If anything fails, the previous
abduction answer is the culprit. We add the previous answer to the discard list and retry,
without incrementing the iteration number. If abduction and splitting succeeds, we reset the
discard list and increment the iteration number. We use recursion for backtracking, instead
of making loop tail-recursive.
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B.7. Generating OCaml Source and Interface Code

We have a single basis from which to generate all generated output �les: .gadti, .ml �
annot_item. It contains a superset of information in struct_item: type scheme annotations
on introduced names, and source code annotated with type schemes at recursive de�nition
nodes. We use type a. syntax instead of 'a. syntax because the former supports inference
for GADTs in OCaml. A bene�t of the nicer type a. syntax is that nested type schemes
can have free variables, which will be correctly captured by the outer type scheme. For
completeness we sometimes need to annotate all function nodes with types. To avoid
clutter, we start by only annotating let rec nodes, and in case ocamlc -c fails on generated
code, we re-annotate by putting type schemes on let rec nodes and types on function
nodes. If need arises, let-in node annotations can also be introduced in this fallback � we
provide an option to annotate the de�nitions on let-in nodes. Type annotations are optional
because they introduce a slight burden on the solver � the corresponding variables cannot be
removed by the initial simpli�cation of the constraints. let-in node annotations are more
burdensome than function node annotations.

In the signature declarations for existential types, we replace existential identi�ers with
regular indenti�ers of constructors, to get informative output for printing the various result
�les. We print constraint formulas and alien subterms in the original InvarGenT syntax,
commented out.

The types Int, Num, Bool and String should be considered built-in. Int, Bool and
String follow the general scheme of exporting a datatype constructor with the same name,
only lower-case. However, numerals 0, 1, ... are always type-checked as Num 0, Num 1... A
parameter -num_is decides the type alias de�nition added in the generated code: -num_is
bar adds type num = bar in front of an .ml �le, by default int. Numerals are exported as
integers passed to a bar_of_int function. The variant -num_is_mod exports numerals by
passing to a Bar.of_int function. Special treatment for Bool amounts to exporting True
and False as true and false, unlike other constants. In addition, pattern matching match:::
with True ->::: | False ->:::, i.e. the corresponding beta-redex, is exported as the if:::
then::: else::: expression.

In declarations which have concrete syntax starting with the word external, we provide
names assumed to have given type scheme. The syntax has two variants, di�ering in the way
the declaration is exported. It can be either an external declaration in OCaml, which is the
binding mechanism of the foreign function interface. But in the InvarGenT form external
let, the declaration provides an OCaml de�nition, which is exported as the toplevel let
de�nition of OCaml. It has the bene�t that the OCaml compiler will verify this de�nition,
since InvarGenT calls ocamlc -c to verify the exported code.
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Appendix C

Source Code of Examples

Subsection titles start with �Function� for examples from Tables 5.1 and 5.2, and �Program�
for examples from Table 5.3.

C.1. Incompleteness Example for OutsideIn: Function
rx

Example from [53], described on page 50. Source �le non_outsidein_rx.gadt :

datatype R : type
datacons RBool : R Bool
external let fortytwo : Int = "42"

let rx = function RBool -> fortytwo

Value items from non_outsidein_rx.gadti.target :

val rx : 8a. R a ! Int

C.2. Pointwise Examples

These are the longer examples from [23] within the scope of algorithm P .

C.2.1. Function rotate

Example from [22], described on pages 193-194. Source �le pointwise_rbtree_rotate.gadt :

datatype Z
datatype S : type

datatype RoB : type * type
datatype Black
datatype Red
datacons Leaf : RoB (Black, Z)
datacons RNode : 8a. RoB (Black, a) * Int * RoB (Black, a) ¡! RoB (Red, a)
datacons BNode :
8a, b, c. RoB (a, c) * Int * RoB (b, c) ¡! RoB (Black, S c)
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datatype Dir
datacons LeftD : Dir
datacons RightD : Dir

let rotate = fun dir1 p_e sib dir2 g_e uncle -> function
| RNode (x, e, y) ->
(match dir1, dir2 with
| RightD, RightD -> BNode (RNode (x, e, y), p_e, RNode (sib, g_e, uncle))
| RightD, LeftD -> BNode (RNode (uncle, g_e, x), e, RNode (y, p_e, sib))
| LeftD, RightD -> BNode (RNode (sib, p_e, x), e, RNode (y, g_e, uncle))
| LeftD, LeftD -> BNode (RNode (uncle, g_e, sib), p_e, RNode (x, e, y)))

| BNode (_, _, _) -> assert false

Value items from pointwise_rbtree_rotate.gadti.target :

val rotate :
8a.
Dir ! Int ! RoB (Black, a) ! Dir ! Int ! RoB (Black, a) !

RoB (Red, a) ! RoB (Black, S a)

C.2.2. Function zip2: N -way zip_with

Example from [22], provided on page 206. The de�nition of z2 is �-expanded here to �t the
call-by-value semantics of InvarGenT. Source �le pointwise_zip2.gadt :

datatype List : type
datacons N : 8a. List a
datacons C : 8a. a * List a ¡! List a

datatype Zip2 : type * type
datacons Zero2 : 8a. Zip2 (a, List a)
datacons Succ2 :
8a, b, c. Zip2 (a, b) ¡! Zip2 ((c ! a), (List c ! b))

let zip2 =
let rec zipZ = function

| Zero2 -> N
| Succ2 n -> fun _ -> zipZ n in

let rec zipS = fun f r -> function
| Zero2 -> C (f, r)
| Succ2 n -> function

| N -> zipZ n
| C (z, zs) -> zipS (f z) (r zs) n in

let rec z2 = fun n f -> zipS f (z2 n f) n in
z2
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Value items from pointwise_zip2.gadti.target :

val zip2 : 8a, b. Zip2 (b, a) ! b ! a

C.2.3. Function rotl

Example from [22], described on pages 198-199. Source �le pointwise_avl_rotl.gadt :

datatype Z
datatype S : type
datatype AVL : type
datacons Tip : AVL Z
datacons LNode : 8a. AVL a * Int * AVL (S a) ¡! AVL (S (S a))
datacons SNode : 8a. AVL a * Int * AVL a ¡! AVL (S a)
datacons MNode : 8a. AVL (S a) * Int * AVL a ¡! AVL (S (S a))

datatype Choice : type * type
datacons L : 8a, b. a ¡! Choice (a, b)
datacons R : 8a, b. b ¡! Choice (a, b)

let rotl = fun u v -> function
| Tip -> assert false
| SNode (a, x, b) -> R (MNode (LNode (u, v, a), x, b))
| LNode (a, x, b) -> L (SNode (SNode (u, v, a), x, b))
| MNode (k, y, c) ->

(match k with
| SNode (a, x, b) -> L (SNode (SNode (u, v, a), x, SNode (b, y, c)))
| LNode (a, x, b) -> L (SNode (MNode (u, v, a), x, SNode (b, y, c)))
| MNode (a, x, b) -> L (SNode (SNode (u, v, a), x, LNode (b, y, c))))

Value items from pointwise_avl_rotl.gadti.target :

val rotl :
8a.
AVL a ! Int ! AVL (S (S a)) !

Choice (AVL (S (S a)), AVL (S (S (S a))))

C.2.4. Function ins

Example from [22], provided on page 209. Source �le pointwise_avl_ins.gadt :

datatype Z
datatype S : type
datatype AVL : type
datacons Tip : AVL Z
datacons LNode : 8a. AVL a * Int * AVL (S a) ¡! AVL (S (S a))
datacons SNode : 8a. AVL a * Int * AVL a ¡! AVL (S a)
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datacons MNode : 8a. AVL (S a) * Int * AVL a ¡! AVL (S (S a))

datatype Choice : type * type
datacons L : 8a, b. a ¡! Choice (a, b)
datacons R : 8a, b. b ¡! Choice (a, b)

datatype LinOrder
datacons LT : LinOrder
datacons EQ : LinOrder
datacons GT : LinOrder
external let compare : 8a. a ! a ! LinOrder =
"fun x y -> let c=Pervasives.compare x y in

if c<0 then LT else if c=0 then EQ else GT"

external rotl :
8a. AVL a ! Int ! AVL (S (S a)) !

Choice (AVL (S (S a)), AVL (S (S (S a))))

external rotr :
8a. AVL (S (S a)) ! Int ! AVL a !

Choice (AVL (S (S a)), AVL (S (S (S a))))

let rec ins = fun i -> function
| Tip -> R (SNode (Tip, i, Tip))
| SNode (a, x, b) as t ->

(match compare i x with
| EQ -> L t
| LT ->

(match ins i a with
| L a -> L (SNode (a, x, b))
| R a -> R (MNode (a, x, b)))

| GT ->
(match ins i b with

| L b -> L (SNode (a, x, b))
| R b -> R (LNode (a, x, b))))

| LNode (a, x, b) as t ->
(match compare i x with

| EQ -> L t
| LT ->

(match ins i a with
| L a -> L (LNode (a, x, b))
| R a -> L (SNode (a, x, b)))

| GT ->
(match ins i b with

| L b -> L (LNode (a, x, b))
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| R b -> rotl a x b))
| MNode (a, x, b) as t ->

(match compare i x with
| EQ -> L t
| LT ->

(match ins i a with
| L a -> L (MNode (a, x, b))
| R a -> rotr a x b)

| GT ->
(match ins i b with

| L b -> L (MNode (a, x, b))
| R b -> L (SNode (a, x, b))))

Value items from pointwise_avl_ins.gadti.target :

val ins : 8a. Int ! AVL a ! Choice (AVL a, AVL (S a))

C.2.5. Function extract

Example from [22], provided on page 207. Source �le pointwise_extract.gadt :

datatype List : type
datacons N : 8a. List a
datacons C : 8a. a * List a ¡! List a

datatype Nd
datatype Fk : type * type

datatype Tree : type * type
datacons End : 8a. a ¡! Tree (Nd, a)
datacons Fork : 8a, b, c. Tree (a, c) * Tree (b, c) ¡! Tree (Fk (a, b), c)

datatype Path : type
datacons Here : Path Nd
datacons ForkL : 8a, b. Path a ¡! Path (Fk (a, b))
datacons ForkR : 8a, b. Path b ¡! Path (Fk (a, b))

external append : 8a. List a ! List a ! List a
external map : 8a, b. (a ! b) ! List a ! List b

let rec find f = function
| End m -> if f m then C (Here, N) else N
| Fork (x, y) -> append (map (fun y -> ForkL y) (find f x))

(map (fun y -> ForkR y) (find f y))

let rec extract = fun p t ->
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match p with
| Here -> (match t with End m -> m | Fork (_, _) -> assert false)
| ForkL p1 -> (match t with Fork (x, y) -> extract p1 x)
| ForkR p1 -> (match t with Fork (x, y) -> extract p1 y)

Value items from pointwise_extract.gadti.target :

val find : 8a, b. (a ! Bool) ! Tree (b, a) ! List (Path b)

val extract : 8a, b. Path b ! Tree (b, a) ! a

C.2.6. Function run_state

Example from [22], provided on page 208. Source �le pointwise_run_state.gadt :

datatype State : type * type
datacons Bind :
8a, b, s. State (s, a) * (a ! State (s, b)) ¡! State (s, b)

datacons Return : 8a, s. a ¡! State (s, a)
datacons Get : 8s. State (s, s)
datacons Put : 8s. s ¡! State (s, ())

let rec run_state = fun s -> function
| Return a -> (s, a)
| Get -> (s, s)
| Put u -> (u, ())
| Bind (m, k) ->

let s1, a1 = run_state s m in
run_state s1 (k a1)

Value items from pointwise_run_state.gadti.target :

val run_state : 8a, b. a ! State (a, b) ! (a, b)

C.3. Non-Pointwise Examples

These are the examples from [23] falling outside the scope of algorithm P .

C.3.1. Function joint

Example from [22], described on page 86. Source �le non_pointwise_split.gadt :

datatype Split : type * type
datacons Whole : Split (Int, Int)
datacons Parts : 8a, b. Split ((Int, a), (b, Bool))
external let seven : Int = "7"
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external let three : Int = "3"

let joint = function
| Whole -> seven
| Parts -> three, True

Value items from non_pointwise_split.gadti.target :

val joint : 8a. Split (a, a) ! a

C.3.2. Function rotr

Example from [22], described on page 88. Source �le non_pointwise_avl.gadt :

(** Normally we would use [num], but this is a stress test for [type]. *)
datatype Z
datatype S : type
datatype Balance : type * type * type
datacons Less : 8a. Balance (a, S a, S a)
datacons Same : 8a. Balance (a, a, a)
datacons More : 8a. Balance (S a, a, S a)
datatype AVL : type
datacons Leaf : AVL Z
datacons Node :
8a, b, c. Balance (a, b, c) * AVL a * Int * AVL b ¡! AVL (S c)

datatype Choice : type * type
datacons Left : 8a, b. a ¡! Choice (a, b)
datacons Right : 8a, b. b ¡! Choice (a, b)

let rotr = fun z d -> function
| Leaf -> assert false
| Node (Less, a, x, Leaf) -> assert false
| Node (Same, a, x, (Node (_,_,_,_) as b)) ->

Right (Node (Less, a, x, Node (More, b, z, d)))
| Node (More, a, x, (Node (_,_,_,_) as b)) ->

Left (Node (Same, a, x, Node (Same, b, z, d)))
| Node (Less, a, x, Node (Same, b, y, c)) ->

Left (Node (Same, Node (Same, a, x, b), y, Node (Same, c, z, d)))
| Node (Less, a, x, Node (Less, b, y, c)) ->

Left (Node (Same, Node (More, a, x, b), y, Node (Same, c, z, d)))
| Node (Less, a, x, Node (More, b, y, c)) ->

Left (Node (Same, Node (Same, a, x, b), y, Node (Less, c, z, d)))

Value items from non_pointwise_avl.gadti.target :

val rotr :
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8a.
Int ! AVL a ! AVL (S (S a)) !

Choice (AVL (S (S a)), AVL (S (S (S a))))

C.3.3. Function delmin

Example from [22], described on pages 212-213. Source �le non_pointwise_avl_delmin.gadt :

(** Normally we would use [num], but this is a stress test for [type]. *)
datatype Z
datatype S : type
(** This datatype definition is modified to make type inference for

rotr, rotl, ins functions pointwise. *)
datatype AVL : type
datacons Tip : AVL Z
datacons LNode : 8a. AVL a * Int * AVL (S a) ¡! AVL (S (S a))
datacons SNode : 8a. AVL a * Int * AVL a ¡! AVL (S a)
datacons MNode : 8a. AVL (S a) * Int * AVL a ¡! AVL (S (S a))

datatype Choice : type * type
datacons L : 8a, b. a ¡! Choice (a, b)
datacons R : 8a, b. b ¡! Choice (a, b)

datatype Zero : type
datacons IsZ : Zero Z
datacons NotZ : 8a. Zero (S a)

external rotl :
8a. AVL a ! Int ! AVL (S (S a)) ! Choice (AVL (S (S a)),

AVL (S (S (S a))))

external rotr :
8a. AVL (S (S a)) ! Int ! AVL a ! Choice (AVL (S (S a)),

AVL (S (S (S a))))

let empty = function
| Tip -> IsZ
| LNode (_, _, _) -> NotZ
| SNode (_, _, _) -> NotZ
| MNode (_, _, _) -> NotZ

let rec delmin = function
| LNode (a, x, b) ->

(match empty a with
| IsZ -> x, L b
| NotZ ->
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(match delmin a with
y, k ->
(match k with

| L a -> y, rotl a x b
| R a -> y, R (LNode (a, x, b)))))

| SNode (a, x, b) ->
(match empty a with

| IsZ -> x, L b
| NotZ ->

(match delmin a with
y, k ->
(match k with

| L a -> y, R (LNode (a, x, b))
| R a -> y, R (SNode (a, x, b)))))

| MNode (a, x, b) ->
(match delmin a with

y, k ->
(match k with

| L a -> y, L (SNode (a, x, b))
| R a -> y, R (MNode (a, x, b))))

Value items from non_pointwise_avl_delmin.gadti.target :

val empty : 8a. AVL a ! Zero a

val delmin : 8a. AVL (S a) ! (Int, Choice (AVL a, AVL (S a)))

C.3.4. Function fd_comp

Example from [22], described on pages 213-215. The only difference is that the orig-
inal has | FDI -> fd2 as the fourth line of fd_comp instead of our expanded | FDI
-> (match fd2 with | FDI -> fd2 | FDC _ -> fd2 | FDG _ -> fd2). Source file
non_pointwise_fd_comp.gadt :

datatype FunDesc : type * type
datacons FDI : 8a. FunDesc (a, a)
datacons FDC : 8a, b. b ¡! FunDesc (a, b)
datacons FDG : 8a, b. (a ! b) ¡! FunDesc (a, b)

external fd_fun : 8a, b. FunDesc (a, b) ! a ! b

let fd_comp = fun fd1 fd2 ->
let o = fun f g x -> f (g x) in
match fd1 with

| FDI -> (match fd2 with | FDI -> fd2 | FDC _ -> fd2 | FDG _ -> fd2)
| FDC b ->
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(match fd2 with
| FDI -> fd1
| FDC c -> FDC (fd_fun fd2 b)
| FDG g -> FDC (fd_fun fd2 b))

| FDG f ->
(match fd2 with

| FDI -> fd1
| FDC c -> FDC c
| FDG g -> FDG (o (fd_fun fd2) f))

Compare also the example non_pointwise_fd_comp2.gadt :

datatype FunDesc : type * type
datacons FDI : 8a. FunDesc (a, a)
datacons FDC : 8a, b. b ¡! FunDesc (a, b)
datacons FDG : 8a, b. (a ! b) ¡! FunDesc (a, b)

external fd_fun : 8a, b. FunDesc (a, b) ! a ! b

let o = fun f g x -> f (g x)

let fd_comp =
function

| FDI -> (function FDI -> FDI | FDC c -> FDC c | FDG g -> FDG g)
| FDC b as fd1 ->

(function
| FDI -> fd1
| FDC c as fd2 -> FDC (fd_fun fd2 b)
| FDG g as fd2 -> FDC (fd_fun fd2 b))

| FDG f as fd1 ->
(function

| FDI -> fd1
| FDC c -> FDC c
| FDG g as fd2 -> FDG (o (fd_fun fd2) f))

Value items from non_pointwise_fd_comp2.gadti.target :

val o : 8a, b, c. (b ! a) ! (c ! b) ! c ! a

val fd_comp :
8a, b, c. FunDesc (b, c) ! FunDesc (c, a) ! FunDesc (b, a)

C.3.5. Function zip1: N -way zip_with

Example from [22], described on pages 216-217. The local de�nition of apply is a let rec
here because it needs to be polymorphic. Source �le non_pointwise_zip1.gadt :
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datatype List : type
datacons N : 8a. List a
datacons C : 8a. a * List a ¡! List a

datatype Zip1 : type * type
datacons Zero1 : 8a. Zip1 (List a, List a)
datacons Succ1 :
8a, b, c. Zip1 (List a, b) ¡! Zip1 (List (c ! a), (List c ! b))

external zip_with : 8a, b, c. (a ! b ! c) ! List a ! List b ! List c

external repeat : 8a. a ! List a

let zip1 =
let rec apply = fun f x -> f x in
let rec z1 = fun fs -> function

| Zero1 -> fs
| Succ1 n2 -> fun xs -> z1 (zip_with apply fs xs) n2 in

fun n f -> z1 (repeat f) n

Value items from non_pointwise_zip1.gadt :

val zip1 : 8a, b. Zip1 (List b, a) ! b ! a

C.3.6. Function leq

Example from [22], described on pages 217-219. Source �le non_pointwise_leq.gadt , requires
option -prefer_guess for inference:

datatype Z
datatype S : type

datatype Nat : type
datacons Zn : Nat Z
datacons Sn : 8a. Nat a ¡! Nat (S a)

datatype NatLeq : type * type
datacons LeZ : 8a. NatLeq (Z, a)
datacons LeS : 8a, b. NatLeq (a, b) ¡! NatLeq (S a, S b)

let rec leq = function
| Zn -> LeZ
| Sn n -> LeS (leq n)

Value items from non_pointwise_leq.gadti.target :

val leq : 8a. Nat a ! NatLeq (a, a)
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C.3.7. Function run_state

Example from [22], described on pages 219-220. Source �le non_pointwise_run_state.gadt :

datatype State : type * type
datacons Bind :
8a, b, s. State (s, a) * (a ! State (s, b)) ¡! State (s, b)

datacons Return : 8a, s. a ¡! State (s, a)
datacons Get : 8s. State (s, s)
datacons Put : 8s. s ¡! State (s, ())

let rec run_state = fun s -> function
| Return a -> (s, a)
| Get -> (s, s)
| Put u -> (u, ())
| Bind (m, k) ->

match m with
| Return a -> run_state s (k a)
| Get -> run_state s (k s)
| Put u -> run_state u (k ())
| Bind (n, j) -> run_state s (Bind (n, fun x -> Bind (j x, k)))

Value items from non_pointwise_run_state.gadti.target :

val run_state : 8a, b. a ! State (a, b) ! (a, b)

C.4. Run-time Type Representations

C.4.1. Function eval

Source �le eval.gadt :

datatype Term : type

external let plus : Int ! Int ! Int = "(+)"
external let is_zero : Int ! Bool = "(=) 0"

datacons Lit : Int ¡! Term Int
datacons Plus : Term Int * Term Int ¡! Term Int
datacons IsZero : Term Int ¡! Term Bool
datacons If : 8a. Term Bool * Term a * Term a ¡! Term a
datacons Pair : 8a, b. Term a * Term b ¡! Term (a, b)
datacons Fst : 8a, b. Term (a, b) ¡! Term a
datacons Snd : 8a, b. Term (a, b) ¡! Term b

let rec eval = function
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| Lit i -> i
| IsZero x -> is_zero (eval x)
| Plus (x, y) -> plus (eval x) (eval y)
| If (b, t, e) -> (match eval b with True -> eval t | False -> eval e)
| Pair (x, y) -> eval x, eval y
| Fst p -> (match eval p with x, y -> x)
| Snd p -> (match eval p with x, y -> y)

Value items from eval.gadti.target :

val eval : 8a. Term a ! a

Exported OCaml source �le eval.ml.target :

type num = int
type _ term =
| Lit : int -> int term
| Plus : int term * int term -> int term
| IsZero : int term -> bool term
| If : (*8'a.*)bool term * 'a term * 'a term -> 'a term
| Pair : (*8'a, 'b.*)'a term * 'b term -> (('a * 'b)) term
| Fst : (*8'a, 'b.*)(('a * 'b)) term -> 'a term
| Snd : (*8'a, 'b.*)(('a * 'b)) term -> 'b term

let plus : (int -> int -> int) = (+)
let is_zero : (int -> bool) = (=) 0
let rec eval : type a . (a term -> a) =
((function Lit i -> i | IsZero x -> is_zero (eval x)

| Plus (x, y) -> plus (eval x) (eval y)
| If (b, t, e) -> (if eval b then eval t else eval e)
| Pair (x, y) -> (eval x, eval y)
| Fst p -> let ((x, y): (a * _)) = eval p in x
| Snd p -> let ((x, y): (_ * a)) = eval p in y): a term -> a)

C.4.2. Function equal

Source �le equal_assert.gadt :

datatype Ty : type
datatype List : type
datacons Zero : Int
datacons Nil : 8a. List a
datacons TInt : Ty Int
datacons TPair : 8a, b. Ty a * Ty b ¡! Ty (a, b)
datacons TList : 8a. Ty a ¡! Ty (List a)
external let eq_int : Int ! Int ! Bool = "(=)"
external let b_and : Bool ! Bool ! Bool = "(&&)"
external let b_not : Bool ! Bool = "not"
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external forall2 : 8a, b. (a ! b ! Bool) ! List a ! List b ! Bool

let rec equal = function
| TInt, TInt -> fun x y -> eq_int x y
| TPair (t1, t2), TPair (u1, u2) ->

(fun (x1, x2) (y1, y2) ->
b_and (equal (t1, u1) x1 y1)

(equal (t2, u2) x2 y2))
| TList t, TList u -> forall2 (equal (t, u))
| _ -> fun _ _ -> False
| TInt, TList l -> (function Nil -> assert false)
| TList l, TInt -> (fun _ -> function Nil -> assert false)

Source �le equal_test.gadt :

datatype Ty : type
datatype List : type
datacons Nil : 8a. List a
datacons TInt : Ty Int
datacons TPair : 8a, b. Ty a * Ty b ¡! Ty (a, b)
datacons TList : 8a. Ty a ¡! Ty (List a)
external let zero : Int = "0"
external let eq_int : Int ! Int ! Bool = "(=)"
external let b_and : Bool ! Bool ! Bool = "(&&)"
external let b_not : Bool ! Bool = "not"
external forall2 : 8a, b. (a ! b ! Bool) ! List a ! List b ! Bool

let rec equal = function
| TInt, TInt -> fun x y -> eq_int x y
| TPair (t1, t2), TPair (u1, u2) ->

(fun (x1, x2) (y1, y2) ->
b_and (equal (t1, u1) x1 y1)

(equal (t2, u2) x2 y2))
| TList t, TList u -> forall2 (equal (t, u))
| _ -> fun _ _ -> False

test b_not (equal (TInt, TList TInt) zero Nil)

Value items from equal_test.gadti.target :

val equal : 8a, b. (Ty a, Ty b) ! a ! b ! Bool

C.5. Lists with Length

C.5.1. Function head

Source �le list_head.gadt :
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datatype List : type * num
datacons LNil : 8a. List(a, 0)
datacons LCons : 8n, a [06n]. a * List(a, n) ¡! List(a, n+1)

let head = function
| LCons (x, _) -> x
| LNil -> assert false

Value items from list_head.gadti.target :

val head : 8n, a[1 6 n]. List (a, n) ! a

C.5.2. Function append

This example is not featured in the examples directory. The natural solution would be to
propagate one of the arguments when the other list is empty: function LNil -> (fun l
-> l) |::: This currently leads to the problem of insu�cient information about l. We can
expand all cases of both arguments:

datatype Elem
datatype List : num
datacons LNil : List 0
datacons LCons : 8n [06n]. Elem * List n ¡! List (n+1)

let rec append =
function LNil -> (function LNil -> LNil | LCons (_,_) as l -> l)

| LCons (x, xs) ->
(function LNil -> LCons (x, append xs LNil)

| LCons (_,_) as l -> LCons (x, append xs l))

Inferred type:

val append : 8n, k. List (a, k) ! List (a, n) ! List (n + k)

We can also use assertions:

let rec append =
function

| LNil ->
(function l when (length l + 1) <= 0 -> assert false | l -> l)

| LCons (x, xs) ->
(function l when (length l + 1) <= 0 -> assert false
| l -> LCons (x, append xs l))

Inferred type:

val append : 8n, k[06n ^ 06n + k]. List(a, k) ! List(a, n) ! List(n + k)
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C.5.3. Function flatten_pairs

Source �le �atten_pairs.gadt :

datatype List : type * num
datacons LNil : 8a. List(a, 0)
datacons LCons : 8n, a [06n]. a * List(a, n) ¡! List(a, n+1)

let rec flatten_pairs =
function LNil -> LNil

| LCons ((x, y), l) ->
LCons (x, LCons (y, flatten_pairs l))

Value items from �atten_pairs.gadti.target :

val flatten_pairs : 8n, a. List ((a, a), n) ! List (a, 2 n)

C.5.4. Function filter

Source �le �lter.gadt :

datatype List : type * num
datacons LNil : 8a. List(a, 0)
datacons LCons : 8n, a [06n]. a * List(a, n) ¡! List(a, n+1)

let rec filter = fun f ->
efunction LNil -> LNil

| LCons (x, xs) ->
ematch f x with

| True ->
let ys = filter f xs in
LCons (x, ys)

| False ->
filter f xs

Value items from �lter.gadti.target :

val filter :
8n, a.
(a ! Bool) ! List (a, n) ! 9k[0 6 k ^ k 6 n].List (a, k)

C.5.5. Function zip

Source �le zip.gadt :

datatype List : type * num
datacons LNil : 8a. List(a, 0)
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datacons LCons : 8n, a [06n]. a * List(a, n) ¡! List(a, n+1)

let rec zip =
efunction

| LNil, LNil -> LNil
| LNil, LCons (_, _) -> LNil
| LCons (_, _), LNil -> LNil
| LCons (x, xs), LCons (y, ys) ->

let zs = zip (xs, ys) in
LCons ((x, y), zs)

The inferred type is:

val 8n, k, a, b. (List (a, n), List (b, k)) !
9i[i=min (k, n)].List ((a, b), i)

C.6. Binary Numbers

C.6.1. Function plus

Source �le binary_plus.gadt :

datatype Binary : num
datatype Carry : num

datacons Zero : Binary 0
datacons PZero : 8n [06n]. Binary n ¡! Binary(2 n)
datacons POne : 8n [06n]. Binary n ¡! Binary(2 n + 1)

datacons CZero : Carry 0
datacons COne : Carry 1

let rec plus =
function CZero ->

(function
| Zero ->

(function Zero -> Zero
| PZero _ as b -> b
| POne _ as b -> b)

| PZero a1 as a ->
(function Zero -> a

| PZero b1 -> PZero (plus CZero a1 b1)
| POne b1 -> POne (plus CZero a1 b1))

| POne a1 as a ->
(function Zero -> a
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| PZero b1 -> POne (plus CZero a1 b1)
| POne b1 -> PZero (plus COne a1 b1)))

| COne ->
(function Zero ->

(function Zero -> POne(Zero)
| PZero b1 -> POne b1
| POne b1 -> PZero (plus COne Zero b1))

| PZero a1 ->
(function Zero -> POne a1

| PZero b1 -> POne (plus CZero a1 b1)
| POne b1 -> PZero (plus COne a1 b1))

| POne a1 ->
(function Zero -> PZero (plus COne a1 Zero)

| PZero b1 -> PZero (plus COne a1 b1)
| POne b1 -> POne (plus COne a1 b1)))

Value items from binary_plus.gadti.target :

val plus :
8i, k, n. Carry i ! Binary k ! Binary n ! Binary (n + k + i)

C.6.2. Function increment

This example is not featured in the examples directory.

datatype Binary : num

datacons Zero : Binary 0
datacons PZero : 8n [06n]. Binary n ¡! Binary(2 n)
datacons POne : 8n [06n]. Binary n ¡! Binary(2 n + 1)

let rec increment =
function Zero -> POne Zero

| PZero a1 -> POne a1
| POne a1 -> PZero (increment a1)

Inferred type:

val increment : 8n. Binary n ! Binary (n + 1)

C.6.3. Function bitwise_or

For brevity, the function is named ub rather than bitwise_or in the code example. Source
�le binary_upper_bound.gadt :

datatype Binary : num
datacons Zero : Binary 0
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datacons PZero : 8n [06n]. Binary n ¡! Binary(2 n)
datacons POne : 8n [06n]. Binary n ¡! Binary(2 n + 1)

let rec ub = efunction
| Zero ->

(efunction Zero -> Zero
| PZero b1 as b -> b
| POne b1 as b -> b)

| PZero a1 as a ->
(efunction Zero -> a

| PZero b1 ->
let r = ub a1 b1 in
PZero r

| POne b1 ->
let r = ub a1 b1 in
POne r)

| POne a1 as a ->
(efunction Zero -> a

| PZero b1 ->
let r = ub a1 b1 in
POne r

| POne b1 ->
let r = ub a1 b1 in
POne r)

Value items from

val plus :
8i, k, n. Carry i ! Binary k ! Binary n ! Binary (n + k + i)

C.7. AVL Trees

Source �le avl_tree.gadt :

(** We follow the AVL tree algorithm from OCaml Standard Library, where
the branches of a node are allowed to differ in height by at most 2. *)

datatype Avl : type * num
datacons Empty : 8a. Avl (a, 0)
datacons Node :
8a,k,m,n [k=max(m,n) ^ 06m ^ 06n ^ n6m+2 ^ m6n+2].

Avl (a, m) * a * Avl (a, n) * Num (k+1) ¡! Avl (a, k+1)

datatype LinOrder
datacons LT : LinOrder
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datacons EQ : LinOrder
datacons GT : LinOrder
external let compare : 8a. a ! a ! LinOrder =
"fun x y -> let c=Pervasives.compare x y in

if c<0 then LT else if c=0 then EQ else GT"

let height = function
| Empty -> 0
| Node (_, _, _, k) -> k

let create = fun l x r ->
eif height l <= height r then Node (l, x, r, height r + 1)
else Node (l, x, r, height l + 1)

let singleton x = Node (Empty, x, Empty, 1)

let rotr = fun l x r ->
ematch l with
| Empty -> assert false
| Node (ll, lx, lr, _) ->

eif height lr <= height ll then
let r' = create lr x r in
create ll lx r'

else
ematch lr with
| Empty -> assert false
| Node (lrl, lrx, lrr, _) ->

let l' = create ll lx lrl in
let r' = create lrr x r in
create l' lrx r'

let rotl = fun l x r ->
ematch r with
| Empty -> assert false
| Node (rl, rx, rr, _) ->

eif height rl <= height rr then
let l' = create l x rl in
create l' rx rr

else
ematch rl with
| Empty -> assert false
| Node (rll, rlx, rlr, _) ->

let l' = create l x rll in
let r' = create rlr rx rr in
create l' rlx r'
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let rec add x = efunction
| Empty -> Node (Empty, x, Empty, 1)
| Node (l, y, r, h) ->

ematch compare x y, height l, height r with
| EQ, _, _ -> Node (l, x, r, h)
| LT, hl, hr ->

let l' = add x l in
eif height l' <= hr+2 then create l' y r else rotr l' y r

| GT, hl, hr ->
let r' = add x r in
eif height r' <= hl+2 then create l y r' else rotl l y r'

let rec mem x = function
| Empty -> False
| Node (l, y, r, _) ->

match compare x y with
| LT -> mem x l
| EQ -> True
| GT -> mem x r

let rec min_binding = function
| Empty -> assert false
| Node (Empty, x, r, _) -> x
| Node ((Node (_,_,_,_) as l), x, r, _) -> min_binding l

let rec remove_min_binding = efunction
| Empty -> assert false
| Node (Empty, x, r, _) -> r
| Node ((Node (_,_,_,_) as l), x, r, _) ->

let l' = remove_min_binding l in
eif height r <= height l' + 2 then create l' x r
else rotl l' x r

let merge = efunction
| Empty, Empty -> Empty
| Empty, (Node (_,_,_,_) as t) -> t
| (Node (_,_,_,_) as t), Empty -> t
| (Node (_,_,_,_) as t1), (Node (_,_,_,_) as t2) ->

let x = min_binding t2 in
let t2' = remove_min_binding t2 in
eif height t1 <= height t2' + 2 then create t1 x t2'
else rotr t1 x t2'

let rec remove = fun x -> efunction
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| Empty -> Empty
| Node (l, y, r, h) ->

ematch compare x y with
| EQ -> merge (l, r)
| LT ->

let l' = remove x l in
eif height r <= height l' + 2 then create l' y r
else rotl l' y r

| GT ->
let r' = remove x r in
eif height l <= height r' + 2 then create l y r'
else rotr l y r'

Value items from avl_tree.gadti.target :

val height : 8n, a. Avl (a, n) ! Num n

val create :
8k, n, a[0 6 n ^ 0 6 k ^ n 6 k + 2 ^ k 6 n + 2].
Avl (a, k) ! a ! Avl (a, n) ! 9i[i=max (k + 1, n + 1)].Avl (a, i)

val singleton : 8a. a ! Avl (a, 1)

val rotr :
8k, n, a[0 6 n ^ n + 2 6 k ^ k 6 n + 3].
Avl (a, k) ! a ! Avl (a, n) ! 9n[k 6 n ^

n 6 k + 1].Avl (a, n)

val rotl :
8k, n, a[0 6 k ^ n 6 k + 3 ^ k + 2 6 n].
Avl (a, k) ! a ! Avl (a, n) ! 9k[k 6 n + 1 ^

n 6 k].Avl (a, k)

val add :
8n, a.
a ! Avl (a, n) ! 9k[1 6 k ^ n 6 k ^ k 6 n + 1].Avl (a, k)

val mem : 8n, a. a ! Avl (a, n) ! Bool

val min_binding : 8n, a[1 6 n]. Avl (a, n) ! a

val remove_min_binding :
8n, a[1 6 n].
Avl (a, n) ! 9k[n 6 k + 1 ^ k 6 n ^ k + 2 6 2 n].Avl (a, k)
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val merge :
8k, n, a[n 6 k + 2 ^ k 6 n + 2].
(Avl (a, n), Avl (a, k)) ! 9i[n 6 i ^ k 6 i ^ i 6 n + k ^

i6max (k + 1, n + 1)].Avl (a, i)

val remove :
8n, a.
a ! Avl (a, n) ! 9k[n 6 k + 1 ^ 0 6 k ^ k 6 n].Avl (a, k)

C.8. Arrays and Matrices

For clarity, we present the array and matrix operations prelude separately here. Arrays are
polymorphic, matrices only store �oating point numbers.

datatype Array : type * num
external let array_make :
8n, a [06n]. Num n ! a ! Array (a, n) = "fun a b -> Array.make a b"

external let array_get :
8n, k, a [06k ^ k+16n]. Array (a, n) ! Num k ! a = "fun a b ->

Array.get a b"
external let array_set :
8n, k, a [06k ^ k+16n]. Array (a, n) ! Num k ! a ! () =
"fun a b c -> Array.set a b c"

external let array_length :
8n, a. Array (a, n) ! Num n = "fun a -> Array.length a"

external type Matrix : num * num =
"(int, Bigarray.int_elt, Bigarray.c_layout) Bigarray.Array2.t"

external let matrix_make :
8n, k [06n ^ 06k]. Num n ! Num k ! Matrix (n, k) =
"fun a b -> Bigarray.Array2.create Bigarray.int Bigarray.c_layout a b"

external let matrix_get :
8n, k, i, j [06i ^ i+16n ^ 06j ^ j+16k].
Matrix (n, k) ! Num i ! Num j ! Int = "Bigarray.Array2.get"

external let matrix_set :
8n, k, i, j [06i ^ i+16n ^ 06j ^ j+16k].
Matrix (n, k) ! Num i ! Num j ! Int ! () = "Bigarray.Array2.set"

external let matrix_dim1 :
8n, k [06n ^ 06k]. Matrix (n, k) ! Num n = "Bigarray.Array2.dim1"

external let matrix_dim2 :
8n, k [06n ^ 06k]. Matrix (n, k) ! Num k = "Bigarray.Array2.dim2"

C.8.1. Program dotprod

Source �le liquid_dotprod.gadt :
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external let add : Int ! Int ! Int = "fun n k -> n + k"
external let prod : Int ! Int ! Int = "fun n k -> n * k"
external let int0 : Int = "0"

let dotprod v1 v2 =
let rec loop n sum i =

if n <= i then sum else
loop n (add (prod (array_get v1 i) (array_get v2 i)) sum)

(i + 1) in
loop (array_length v1) int0 0

Value items from liquid_dotprod.gadti.target :

val dotprod : 8k, n[k 6 n]. Array (Int, k) ! Array (Int, n) ! Int

C.8.2. Program bcopy

Source �le liquid_bcopy.gadt :

let rec bcopy_aux src des = function
| i, m when m <= i -> ()
| i, m when i+1 <= m ->

let n = array_get src i in
array_set des i n;
let j = i + 1 in
bcopy_aux src des (j, m)

let bcopy src des =
let sz = array_length src in
bcopy_aux src des (0, sz)

Value items from liquid_bcopy.gadti.target :

val bcopy_aux :
8i, j, k, n, a[0 6 n ^ k 6 i ^ k 6 j].
Array (a, j) ! Array (a, i) ! (Num n, Num k) ! ()

val bcopy : 8k, n, a[k 6 n]. Array (a, k) ! Array (a, n) ! ()

C.8.3. Program bsearch

Source �le liquid_bsearch_harder.gadt :

datatype LinOrder
datacons LE : LinOrder
datacons GT : LinOrder
datacons EQ : LinOrder
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external let compare : 8a. a ! a ! LinOrder =
"fun a b -> let c = Pervasives.compare a b in

if c < 0 then LE else if c > 0 then GT else EQ"
external let equal : 8a. a ! a ! Bool = "fun a b -> a = b"

external let div2 : 8n. Num (2 n) ! Num n = "fun x -> x / 2"

datatype Answer : type
datacons NotFound : 8a. Answer a
datacons Found : 8a. a ¡! Answer a

let bsearch key vec =
let rec look lo hi =

if lo <= hi then
let m = div2 (hi + lo) in
let x = array_get vec m in
match compare key x with

| LE -> look lo (m + (-1))
| GT -> look (m + 1) hi
| EQ -> if equal key x then Found x else NotFound

else NotFound in
look 0 (array_length vec + (-1))

Value items from liquid_bsearch_harder.gadti.target :

val bsearch : 8n, a[0 6 n]. a ! Array (a, n) ! Answer a

C.8.4. Function bsearch2

Source �le liquid_bsearch2_harder3.gadt :

datatype LinOrder
datacons LE : LinOrder
datacons GT : LinOrder
datacons EQ : LinOrder

external let compare : 8a. a ! a ! LinOrder =
"fun a b -> let c = Pervasives.compare a b in

if c < 0 then LE else if c > 0 then GT else EQ"
external let equal : 8a. a ! a ! Bool = "fun a b -> a = b"

external let div2 : 8n. Num (2 n) ! Num n = "fun x -> x / 2"

let bsearch key = efunction vec ->
let rec look key vec lo hi =
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assert num -1 <= hi;
eif lo <= hi then

let m = div2 (hi + lo) in
let x = array_get vec m in
ematch compare key x with

| LE -> look key vec lo (m + (-1))
| GT -> look key vec (m + 1) hi
| EQ -> eif equal key x then m else -1

else -1 in
look key vec 0 (array_length vec + (-1))

Value items from liquid_bsearch2_harder3.gadti.target :

val bsearch :
8n, a[0 6 n].
a ! Array (a, n) ! 9k[0 6 k + 1 ^ k + 1 6 n].Num k

Exported OCaml source liquid_bsearch2_harder3.ml.target :

type num = int
(** type _ array = built-in *)
let array_make : (*0 6 n*) ((* n *) num -> 'a -> ('a (* n *)) array) =
fun a b -> Array.make a b

let array_get :
(*0 6 k ^ k + 1 6 n*) (('a (* n *)) array -> (* k *) num -> 'a) =
fun a b -> Array.get a b

let array_set :
(*0 6 k ^ k + 1 6 n*)
(('a (* n *)) array -> (* k *) num -> 'a -> unit) =
fun a b c -> Array.set a b c

let array_length : (*0 6 n*) (('a (* n *)) array -> (* n *) num) =
fun a -> Array.length a

type linOrder =
| LE : linOrder
| GT : linOrder
| EQ : linOrder

let compare : ('a -> 'a -> linOrder) =
fun a b -> let c = Pervasives.compare a b in

if c < 0 then LE else if c > 0 then GT else EQ
let equal : ('a -> 'a -> bool) = fun a b -> a = b
let div2 : ((* 2 n *) num -> (* n *) num) = fun x -> x / 2
type ex4 =
| Ex4 : (*8'k, 'n[0 6 k + 1 ^ k + 1 6 n].*)(* k *) num ->

(* n *) ex4
type ex3 =
| Ex3 : (*8'k, 'n[0 6 k + 1 ^ k 6 n].*)(* k *) num -> (* n *) ex3
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let bsearch
: type (*n*) a (*0 6 n*). (a -> (a (* n *)) array -> (* n *) ex4) =
(fun key vec ->

let Ex3 xcase =
let rec look :
type (*i*) (*j*) (*k*) b (*0 6 k + 1 ^ 0 6 i ^
k + 1 6 j*). (b -> (b (* j *)) array -> (* i *) num -> (* k *) num ->

(* k *) ex3)
=
(fun key vec lo hi ->

(if lo <= hi then
let m = div2 (hi + lo) in
let x = array_get vec m in
(((match (compare key x: linOrder) with
LE -> let Ex3 xcase = look key vec lo (m + -1) in Ex3 xcase

| GT -> let Ex3 xcase = look key vec (m + 1) hi in Ex3 xcase
| EQ ->

(if equal key x then let xcase = m in Ex3 xcase else
let xcase = -1 in Ex3 xcase))) :

(* k *) ex3) else let xcase = -1 in Ex3 xcase)) in
look key vec 0 (array_length vec + -1) in Ex4 xcase)

C.8.5. Program queen

Source �le liquid_queen.gadt :

external let n2i : 8n. Num n ! Int = "fun i -> i"
external let equal : 8a. a ! a ! Bool = "fun x y -> x = y"
external let leq : 8a. a ! a ! Bool = "fun x y -> x <= y"

external let print : String ! () = "print_string"
external let string_make : Int ! String ! String =
"fun n s -> String.make n s.[0]"

external let abs : Int ! Int = "fun i -> if i < 0 then ~-i else i"
external let minus : Int ! Int ! Int = "(-)"
external let plus : Int ! Int ! Int = "(+)"

let queens size =
let board = array_make size (n2i 0) in
let print_row pos =

print (string_make (minus pos (n2i 1)) "."); print "Q";
print (string_make (minus (n2i size) pos) ".") in

let print_queens () =
let rec aux row =

if size <= row then ()

C.8 Arrays and Matrices 167



else (print_row (array_get board row); aux (row + 1)) in
aux 0 in

let rec solved j =
let q2j = array_get board j in
let rec aux i =

if i + 1 <= j then
let q2i = array_get board i in
let qdiff = abs (minus q2j q2i) in
if equal q2i q2j then False
else if equal qdiff (n2i (j - i)) then False
else aux (i + 1)

else True in
aux 0 in

let rec loop row =
let next = plus (array_get board row) (n2i 1) in
if leq (n2i (size + 1)) next then (

array_set board row (n2i 0);
if row <= 0 then () else loop (row - 1))

else (
array_set board row next;
if solved row then

if size <= row + 1 then (print_queens (); loop row)
else loop (row + 1)

else loop row) in
loop 0

Value items from liquid_queen.gadti.target :

val queens : 8n[1 6 n]. Num n ! ()

C.8.6. Function swap_interval

Source �le liquid_vecswap.gadt :

let swap_interval arr start middle n =
let rec item i = array_get arr i in
let rec swap i j =

let tmpj = item j in
let tmpi = item i in
array_set arr i tmpj; array_set arr j tmpi in

let rec vecswap i j n =
if n <= 0 then () else (

swap i j; vecswap (i + 1) (j + 1) (n - 1)) in
vecswap start middle n

Value items from liquid_vecswap.gadti.target :
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val swap_interval :
8i, j, k, n, a[1 6 j ^ 0 6 n ^ 0 6 k ^ i + k 6 j ^
i + n 6 j]. Array (a, j) ! Num n ! Num k ! Num i ! ()

C.8.7. Program isort

Source �le liquid_isort_harder.gadt :

datatype LinOrder
datacons LE : LinOrder
datacons GT : LinOrder
datacons EQ : LinOrder

external let compare : 8a. a ! a ! LinOrder =
"fun a b -> let c = Pervasives.compare a b in

if c < 0 then LE else if c > 0 then GT else EQ"
external let equal : 8a. a ! a ! Bool = "fun a b -> a = b"

let rec insertSort arr start n =
let rec item i = array_get arr i in
let rec swap i j =

let tmpj = item j in
let tmpi = item i in
array_set arr i tmpj; array_set arr j tmpi in

let rec outer i =
if start + n <= i then ()
else

let rec inner j =
if j <= start then outer (i + 1)
else if equal (compare (item j) (item (j - 1))) LE
then (swap j (j - 1); inner (j - 1))
else outer (i + 1) in

inner i in
outer (start + 1)

Value items from liquid_isort_harder.gadti.target :

val insertSort :
8i, k, n, a[0 6 k ^ 1 6 i ^ k + n 6 i].
Array (a, i) ! Num k ! Num n ! ()

C.8.8. Program tower

Source �le liquid_tower.gadt :

external let n2i : 8n. Num n ! Int = "fun i -> i"
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external let equal : 8a. a ! a ! Bool = "fun x y -> x = y"
external let leq : 8a. a ! a ! Bool = "fun x y -> x <= y"

external let print : String ! () = "print_string"
external let string_make : Int ! String ! String =
"fun n s -> String.make n s.[0]"

external let string_of_int : Int ! String = "string_of_int"

external let abs : Int ! Int = "fun i -> if i < 0 then ~-i else i"
external let minus : Int ! Int ! Int = "(-)"
external let plus : Int ! Int ! Int = "(+)"
external let int0 : Int = "0"

let play sz =
let leftPost = array_make sz int0 in
let middlePost = array_make sz int0 in
let rightPost = array_make sz int0 in

let initialize post =
let rec init_rec i =

if i + 1 <= sz - 1 then (
array_set post i (n2i (i+1));
init_rec (i+1))

else () in
init_rec 0 in

let showpiece n =
let rec r_rec i =

if leq (plus i (n2i 2)) n then (
print " "; r_rec (plus i (n2i 1)))

else () in
let rec r2_rec j =

if leq (plus j (n2i 1)) (n2i sz)
then (print "#"; r2_rec (plus j (n2i 1)))
else () in

r_rec (n2i 1);
r2_rec (plus n (n2i 1)) in

let showposts () =
let rec show_rec i =

if i + 1 <= sz - 1 then (
showpiece (array_get leftPost i); print " ";
showpiece (array_get middlePost i); print " ";
showpiece (array_get rightPost i); print "\n";
show_rec (i+1))
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else () in
show_rec 0; print "\n" in

initialize leftPost;
let rec move n source s post p post' p' =

if n <= 1 then (
array_set post (p - 1) (array_get source s);
array_set source s int0; showposts ())

else (
move (n - 1) source s post' p' post p;
array_set post (p - 1) (array_get source (s + n - 1));
array_set source (s + n - 1) int0;
showposts ();
move (n - 1) post' ((p' - n) + 1) post (p - 1) source (s + n)) in

showposts ();
move sz leftPost 0 rightPost sz middlePost sz

Value items from liquid_tower.gadti.target :

val play : 8n[1 6 n]. Num n ! ()

C.8.9. Program matmult

Source �le liquid_matmult.gadt :

external let n2i : 8n. Num n ! Int = "fun i -> i"
external let equal : 8a. a ! a ! Bool = "fun x y -> x = y"
external let leq : 8a. a ! a ! Bool = "fun x y -> x <= y"

external let abs : Int ! Int = "fun i -> if i < 0 then ~-i else i"
external let minus : Int ! Int ! Int = "(-)"
external let plus : Int ! Int ! Int = "(+)"
external let mult : Int ! Int ! Int = "( * )"
external let int0 : Int = "0"

let fillar arr2 fill =
let d1 = matrix_dim1 arr2 in
let d2 = matrix_dim2 arr2 in
let rec loop i =

if i + 1 <= d1
then

let rec loopi j =
if j + 1 <= d2 then (

matrix_set arr2 i j (fill ());
loopi (j + 1))
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else () in
loopi 0

else loop (i + 1) in
loop 0

let matmul a b =
let p = matrix_dim1 a in
let q = matrix_dim2 a in
let r = matrix_dim2 b in

let cdata = matrix_make p r in
let callback0 () = int0 in
fillar cdata callback0;

let rec loop1 i =
if i + 1 <= p then (

let rec loop2 j =
if j + 1 <= r then (

let rec loop3 k sum =
if k + 1 <= q then (

let sum_p =
plus sum (mult (matrix_get a i k) (matrix_get b k j)) in

loop3 (k + 1) sum_p)
else sum in

let l3 = loop3 0 int0 in
matrix_set cdata i j l3;
loop2 (j + 1))

else () in
loop2 0;
loop1 (i + 1))

else () in
loop1 0;
cdata

Value items from liquid_matmult.gadti.target :

val fillar :
8k, n[0 6 n ^ 0 6 k]. Matrix (n, k) ! (() ! Int) ! ()

val matmul :
8i, j, k, n[0 6 n ^ 0 6 k ^ 0 6 j ^ j 6 i].
Matrix (n, j) ! Matrix (i, k) ! Matrix (n, k)

C.8.10. Program heapsort

Source �le liquid_heapsort.gadt :
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external let div2 : 8n. Num (2 n) ! Num n = "fun x -> x / 2"

external let n2i : 8n. Num n ! Int = "fun i -> i"
external let equal : 8a. a ! a ! Bool = "fun x y -> x = y"
external let leq : 8a. a ! a ! Bool = "fun x y -> x <= y"
external let less : 8a. a ! a ! Bool = "fun x y -> x < y"

external let print : String ! () = "print_string"
external let string_make : Int ! String ! String =
"fun n s -> String.make n s.[0]"

external let string_of_int : Int ! String = "string_of_int"

external let abs : Int ! Int = "fun i -> if i < 0 then ~-i else i"
external let minus : Int ! Int ! Int = "(-)"
external let plus : Int ! Int ! Int = "(+)"
external let int0 : Int = "0"

let rec heapify size data i =
let left = 2 * i + 1 in
let right = 2 * i + 2 in
let largest1 =

eif left + 1 <= size then
eif less (array_get data i) (array_get data left)
then left else i

else i in
let largest2 =

eif right + 1 <= size then
eif less (array_get data largest1) (array_get data right) then right
else largest1

else largest1 in
if i + 1 <= largest2 then

let temp = array_get data i in
let temp2 = array_get data largest2 in
array_set data i temp2;
array_set data largest2 temp;
heapify size data largest2

else ()
(* We do not get the constraint [i + 1 <= size], because if [i] is larger,

the last [else] branch is entered. *)

let buildheap size data =
let rec loop i =

if 0 <= i then (
heapify size data i;
loop (i - 1))
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else () in
loop (div2 size - 1)

let heapsort maxx size data =
buildheap size data;
let rec loop i =

if 1 <= i then
let temp = array_get data i in
array_set data i (array_get data 0);
array_set data 0 temp;
heapify i data 0;
loop (i - 1)

else () in
loop (maxx - 1)

let print_array data i j =
let rec loop k =

if k + 1 <= j then (
print (array_get data k);
loop (k + 1))

else () in
loop i

Value items from liquid_heapsort.gadti.target :

val heapify :
8i, k, n, a[0 6 n ^ i 6 k].
Num i ! Array (a, k) ! Num n ! ()

val buildheap : 8k, n, a[k 6 n]. Num k ! Array (a, n) ! ()

val heapsort :
8i, k, n, a[k 6 n ^ i 6 k].
Num i ! Num k ! Array (a, n) ! ()

val print_array :
8i, k, n[k 6 i ^ 0 6 n].
Array (String, i) ! Num n ! Num k ! ()

C.8.11. Program simplex

Source �le liquid_simplex.gadt :

external let n2f : 8n. Num n ! Float = "float_of_int"
external let equal : 8a. a ! a ! Bool = "fun x y -> x = y"
external let leq : 8a. a ! a ! Bool = "fun x y -> x <= y"
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external let less : 8a. a ! a ! Bool = "fun x y -> x < y"

external let minus : Float ! Float ! Float = "(-.)"
external let plus : Float ! Float ! Float = "(+.)"
external let mult : Float ! Float ! Float = "( *. )"
external let div : Float ! Float ! Float = "( /. )"
external let fl0 : Float = "0.0"

(* step 1 *)

let rec is_neg_aux a j =
if j + 2 <= matrix_dim2 a then

if less (matrix_get a 0 j) fl0 then True
else is_neg_aux a (j+1)

else False

let is_neg a = is_neg_aux a 1

(* step 2 *)

let rec unb1 a i j =
let rec unb2 a i j =

if i + 1 <= matrix_dim1 a then
if less (matrix_get a i j) fl0
then unb2 a (i+1) j
else unb1 a 0 (j+1)

else True in

if j + 2 <= matrix_dim2 a then
if less (matrix_get a 0 j) fl0
then unb2 a (i+1) j
else unb1 a 0 (j+1)

else False

(* step 6 *)

let rec norm_aux a i c j =
if j + 1 <= matrix_dim2 a then (

matrix_set a i j (div (matrix_get a i j) c);
norm_aux a i c (j+1))

else ()

let rec norm a i j =
let c = matrix_get a i j in
norm_aux a i c 1
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let rec row_op_aux1 a i i' c j =
if j + 1 <= matrix_dim2 a then

matrix_set a i' j
(minus (matrix_get a i' j)

(mult (matrix_get a i j) c));
row_op_aux1 a i i' c (j+1)

else ()

let rec row_op_aux2 a i i' j =
row_op_aux1 a i i' (matrix_get a i' j) 1

let rec row_op_aux3 a i j i' =
if i' + 1 <= matrix_dim1 a then

if i' <= i && i <= i' then (
row_op_aux2 a i i' j;
row_op_aux3 a i j (i'+1))

else row_op_aux3 a i j (i'+1)
else ()

let rec row_op a i j =
norm a i j;
row_op_aux3 a i j 0

let rec simplex a =

(* step 3 *)

let rec enter_var j c j' =
eif j' + 2 <= matrix_dim2 a then

let c' = matrix_get a 0 j' in
eif less c' c then enter_var j' c' (j'+1)
else enter_var j c (j'+1)

else j in

(* step 4 *)

let rec depart_var j i r i' =
eif i' + 1 <= matrix_dim1 a then

let c' = matrix_get a i' j in
eif less fl0 c' then

let r' = div (matrix_get a i' (matrix_dim2 a + (-1))) c' in
eif less r' r then depart_var j i' r' (i'+1)
else depart_var j i r (i'+1)

else depart_var j i r (i'+1)
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else i in

(* step 5 *)

let rec init_ratio j i =
eif i + 1 <= matrix_dim1 a then

let c = matrix_get a i j in
eif less fl0 c then i, div (matrix_get a i (matrix_dim2 a + (-1))) c
else init_ratio j (i+1)

else runtime_failure "init_ratio: no variable found" in

(* step 7 *)

if is_neg a then
if unb1 a 0 1 then () (* assert false *)
else

let j = enter_var 1 (matrix_get a 0 1) 2 in
let i, r = init_ratio j 1 in
let i = depart_var j i r (i+1) in
row_op a i j;
simplex a

else ()

The �le liquid_simplex_harder.gadt has the above steps in order as part of a single
toplevel de�nition. Value items from liquid_simplex.gadti.target :

val is_neg_aux :
8i, k, n[0 6 n ^ 1 6 k ^ 0 6 i].
Matrix (k, i) ! Num n ! Bool

val is_neg : 8k, n[1 6 n ^ 0 6 k]. Matrix (n, k) ! Bool

val unb1 :
8i, j, k, n[0 6 n ^ 0 6 k + 1 ^ 1 6 i ^ 0 6 j].
Matrix (i, j) ! Num k ! Num n ! Bool

val norm_aux :
8i, j, k, n[0 6 n ^ 0 6 k ^ k + 1 6 i ^ 0 6 j].
Matrix (i, j) ! Num k ! Float ! Num n ! ()

val norm :
8i, j, k, n[0 6 n ^ 0 6 k ^ k + 1 6 i ^ n + 1 6 j].
Matrix (i, j) ! Num k ! Num n ! ()

val row_op_aux1 :
8i, j, k, m, n[0 6 n ^ 0 6 k ^ 0 6 i ^ i + 1 6 j ^
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k + 1 6 j ^ 0 6 m].
Matrix (j, m) ! Num i ! Num k ! Float ! Num n ! ()

val row_op_aux2 :
8i, j, k, m, n[0 6 n ^ 0 6 k ^ 0 6 i ^ i + 1 6 j ^
k + 1 6 j ^ n + 1 6 m].
Matrix (j, m) ! Num i ! Num k ! Num n ! ()

val row_op_aux3 :
8i, j, k, m, n[0 6 k ^ 0 6 i ^ 0 6 j ^ k + 1 6 m].
Matrix (j, m) ! Num i ! Num k ! Num n ! ()

val row_op :
8i, j, k, n[0 6 n ^ 0 6 k ^ k + 1 6 i ^ n + 1 6 j].
Matrix (i, j) ! Num k ! Num n ! ()

val simplex : 8k, n[1 6 n ^ 2 6 k]. Matrix (n, k) ! ()

Exported OCaml source liquid_simplex.ml.target :

type num = int
type matrix =
(float, Bigarray.float64_elt, Bigarray.c_layout) Bigarray.Array2.t

let matrix_make :
(*0 6 n ^ 0 6 k*) ((* n *) num -> (* k *) num -> (* n, k *) matrix) =
fun a b -> Bigarray.Array2.create Bigarray.float64 Bigarray.c_layout a b

let matrix_get :
(*0 6 i ^ i + 1 6 n ^ 0 6 j ^ j + 1 6 k*)
((* n, k *) matrix -> (* i *) num -> (* j *) num -> float) =
Bigarray.Array2.get

let matrix_set :
(*0 6 i ^ i + 1 6 n ^ 0 6 j ^ j + 1 6 k*)
((* n, k *) matrix -> (* i *) num -> (* j *) num -> float -> unit) =
Bigarray.Array2.set

let matrix_dim1 :
(*0 6 n ^ 0 6 k*) ((* n, k *) matrix -> (* n *) num) =
Bigarray.Array2.dim1

let matrix_dim2 :
(*0 6 n ^ 0 6 k*) ((* n, k *) matrix -> (* k *) num) =
Bigarray.Array2.dim2

let n2f : ((* n *) num -> float) = float_of_int
let equal : ('a -> 'a -> bool) = fun x y -> x = y
let leq : ('a -> 'a -> bool) = fun x y -> x <= y
let less : ('a -> 'a -> bool) = fun x y -> x < y
let minus : (float -> float -> float) = (-.)
let plus : (float -> float -> float) = (+.)
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let mult : (float -> float -> float) = ( *. )
let div : (float -> float -> float) = ( /. )
let fl0 : float = 0.0
let rec is_neg_aux :
(*type i k n [0 6 n ^ 1 6 k ^

0 6 i].*) ((* k, i *) matrix -> (* n *) num -> bool) =
(fun a j ->

(if j + 2 <= matrix_dim2 a then
(if less (matrix_get a 0 j) fl0 then true else is_neg_aux a (j + 1))

else
false))

let is_neg
: (*type k n [1 6 n ^ 0 6 k].*) ((* n, k *) matrix -> bool) =
(fun a -> is_neg_aux a 1)

let rec unb1 :
(*type i j k n [0 6 n ^ 0 6 k + 1 ^ 1 6 i ^

0 6 j].*) ((* i, j *) matrix -> (* k *) num -> (* n *) num -> bool) =
(fun a i j ->

let rec unb2 :
(*type k1 l m n1 [0 6 m ^ 0 6 l ^ 0 6 n1 ^

m + 1 6 k1].*) ((* n1, k1 *) matrix -> (* l *) num -> (* m *) num ->
bool)

=
(fun a i j ->

(if i + 1 <= matrix_dim1 a then
(if less (matrix_get a i j) fl0 then unb2 a (i + 1) j else
unb1 a 0 (j + 1)) else true)) in

(if j + 2 <= matrix_dim2 a then
(if less (matrix_get a 0 j) fl0 then unb2 a (i + 1) j else
unb1 a 0 (j + 1)) else false))

let rec norm_aux :
(*type i j k n [0 6 n ^ 0 6 k ^ k + 1 6 i ^

0 6 j].*) ((* i, j *) matrix -> (* k *) num -> float -> (* n *) num ->
unit) =

(fun a i c j ->
(if j + 1 <= matrix_dim2 a then
(matrix_set a i j (div (matrix_get a i j) c) ; norm_aux a i c (j + 1))
else ()))

let rec norm :
(*type i j k n [0 6 n ^ 0 6 k ^ k + 1 6 i ^

n + 1 6 j].*) ((* i, j *) matrix -> (* k *) num -> (* n *) num -> unit)
=
(fun a i j -> let c = matrix_get a i j in norm_aux a i c 1)

let rec row_op_aux1 :
(*type i j k m n [0 6 n ^ 0 6 k ^ 0 6 i ^ i + 1 6 j ^
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k + 1 6 j ^
0 6 m].*) ((* j, m *) matrix -> (* i *) num -> (* k *) num -> float ->

(* n *) num -> unit) =
(fun a i i' c j ->

(if j + 1 <= matrix_dim2 a then
(matrix_set a i' j

(minus (matrix_get a i' j) (mult (matrix_get a i j) c))
; row_op_aux1 a i i' c (j + 1)) else ()))

let rec row_op_aux2 :
(*type i j k m n [0 6 n ^ 0 6 k ^ 0 6 i ^ i + 1 6 j ^

k + 1 6 j ^
n + 1 6 m].*) ((* j, m *) matrix -> (* i *) num -> (* k *) num ->

(* n *) num -> unit) =
(fun a i i' j -> row_op_aux1 a i i' (matrix_get a i' j) 1)

let rec row_op_aux3 :
(*type i j k m n [0 6 k ^ 0 6 i ^ 0 6 j ^

k + 1 6 m].*) ((* j, m *) matrix -> (* i *) num -> (* k *) num ->
(* n *) num -> unit) =

(fun a i j i' ->
(if i' + 1 <= matrix_dim1 a then
(if i <= i'&& i' <= i then
(row_op_aux2 a i i' j ; row_op_aux3 a i j (i' + 1)) else
row_op_aux3 a i j (i' + 1)) else ()))

let rec row_op :
(*type i j k n [0 6 n ^ 0 6 k ^ k + 1 6 i ^

n + 1 6 j].*) ((* i, j *) matrix -> (* k *) num -> (* n *) num -> unit)
=
(fun a i j -> (norm a i j ; row_op_aux3 a i j 0))

type ex7 =
| Ex7 : (*8'i, 'k, 'n[k 6 i ^ i + 1 6 n].*)((* i *) num * float) ->

(* n, k *) ex7
type ex5 =
| Ex5 : (*8'i, 'k, 'n[0 6 k ^ k6max (i, n + -1)].*)(* k *) num ->

(* n, i *) ex5
type ex2 =
| Ex2 : (*8'i, 'k, 'n[0 6 k ^ k6max (i, n + -1)].*)(* k *) num ->

(* n, i *) ex2
let rec simplex :
(*type k n [1 6 n ^ 2 6 k].*) ((* n, k *) matrix -> unit) =
(fun a ->

let rec enter_var :
(*type i j [0 6 j ^

0 6 i].*) ((* i *) num -> float -> (* j *) num -> (* k, i *) ex2)
=
(fun j c j' ->
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(if j' + 2 <= matrix_dim2 a then
let c' = matrix_get a 0 j' in
(if less c' c then
let Ex2 xcase = enter_var j' c' (j' + 1) in Ex2 xcase else
let Ex2 xcase = enter_var j c (j' + 1) in Ex2 xcase) else
let xcase = j in Ex2 xcase)) in

let rec depart_var :
(*type l m n1 [0 6 l ^ 0 6 n1 ^ n1 + 1 6 k ^

0 6 m].*) ((* n1 *) num -> (* m *) num -> float -> (* l *) num ->
(* n, m *) ex5)

=
(fun j i r i' ->

(if i' + 1 <= matrix_dim1 a then
let c' = matrix_get a i' j in
(if less fl0 c' then
let r' = div (matrix_get a i' (matrix_dim2 a + -1)) c' in
(if less r' r then
let Ex5 xcase = depart_var j i' r' (i' + 1) in Ex5 xcase else
let Ex5 xcase = depart_var j i r (i' + 1) in Ex5 xcase) else
let Ex5 xcase = depart_var j i r (i' + 1) in Ex5 xcase) else
let xcase = i in Ex5 xcase)) in

let rec init_ratio :
(*type i1 k1 [0 6 k1 ^ 0 6 i1 ^

i1 + 1 6 k].*) ((* i1 *) num -> (* k1 *) num -> (* n, k1 *) ex7)
=
(fun j i ->

(if i + 1 <= matrix_dim1 a then
let c = matrix_get a i j in
(if less fl0 c then
let xcase = (i, div (matrix_get a i (matrix_dim2 a + -1)) c) in
Ex7 xcase else let Ex7 xcase = init_ratio j (i + 1) in Ex7 xcase)

else
(failwith "init_ratio: no variable found"))) in

(if is_neg a then
(if unb1 a 0 1 then () else

let Ex2 j = enter_var 1 (matrix_get a 0 1) 2 in
let Ex7 (i, r) = init_ratio j 1 in
let Ex5 i = depart_var j i r (i + 1) in (row_op a i j ; simplex a))

else
()))

C.8.12. Program gauss

Source �le liquid_gauss.gadt :

external let n2f : 8n. Num n ! Float = "float_of_int"
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external let equal : 8a. a ! a ! Bool = "fun x y -> x = y"
external let leq : 8a. a ! a ! Bool = "fun x y -> x <= y"
external let less : 8a. a ! a ! Bool = "fun x y -> x < y"

external let minus : Float ! Float ! Float = "(-.)"
external let plus : Float ! Float ! Float = "(+.)"
external let mult : Float ! Float ! Float = "( *. )"
external let div : Float ! Float ! Float = "( /. )"
external let fabs : Float ! Float = "abs_float"
external let fl0 : Float = "0.0"
external let fl1 : Float = "1.0"

let getRow data i =
let stride = matrix_dim2 data in
let rowData = array_make stride fl0 in
let rec extract j =

if j + 1 <= stride then (
array_set rowData j (matrix_get data i j);
(* lukstafi: the call below missing in the original source? *)
extract (j + 1))

else () in
extract 0;
rowData

let putRow data i row =
let stride = array_length row in
let rec put j =

if j + 1 <= stride then (
matrix_set data i j (array_get row j);
(* lukstafi: the call below missing in the original source? *)
put (j + 1))

else () in
put 0

let rowSwap data i j =
let temp = getRow data i in
putRow data i (getRow data j);
putRow data j temp

let norm r n i =
let x = array_get r i in
array_set r i fl1;
let rec loop k =

if k + 1 <= n then (
array_set r k (div (array_get r k) x);
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loop (k+1))
else () in

loop (i+1)

let rowElim r s n i =
let x = array_get s i in
array_set s i fl0;
let rec loop k =

if k + 1 <= n then (
array_set s k (minus (array_get s k) (mult x (array_get r k)));
loop (k+1))

else () in
loop (i+1)

let gauss data =
let n = matrix_dim1 data in
let m = matrix_dim2 data in

let rec rowMax i j x mx =
eif j + 1 <= n then

let y = fabs (matrix_get data j i) in
eif (less x y) then rowMax i (j+1) y j
else rowMax i (j+1) x mx

else mx in

let rec loop1 i =
if i + 1 <= n then

let x = fabs (matrix_get data i i) in
let mx = rowMax i (i+1) x i in
norm (getRow data mx) m i;
rowSwap data i mx;
let rec loop2 j =

if j + 1 <= n then (
rowElim (getRow data i) (getRow data j) m i;
loop2 (j+1))

else () in
loop2 (i+1);
loop1 (i+1)

else () in
loop1 0

Value items from liquid_gauss.gadti.target :

val getRow :
8i, k, n[0 6 n ^ 0 6 k ^ k + 1 6 i].
Matrix (i, n) ! Num k ! Array (Float, n)
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val putRow :
8i, j, k, n[0 6 n ^ 0 6 k ^ k + 1 6 i ^ n 6 j].
Matrix (i, j) ! Num k ! Array (Float, n) ! ()

val rowSwap :
8i, j, k, n[0 6 n ^ 0 6 k ^ k + 1 6 i ^ n + 1 6 i ^
0 6 j]. Matrix (i, j) ! Num k ! Num n ! ()

val norm :
8i, k, n[0 6 n ^ n + 1 6 i ^ k 6 i].
Array (Float, i) ! Num k ! Num n ! ()

val rowElim :
8i, j, k, n[0 6 n ^ n + 1 6 i ^ k 6 i ^ k 6 j].
Array (Float, j) ! Array (Float, i) ! Num k ! Num n ! ()

val gauss : 8k, n[0 6 n ^ 1 6 k ^ n 6 k]. Matrix (n, k) ! ()

The last toplevel de�nition from liquid_gauss2.gadt , requires -prefer_bound_to_local:

let gauss data =
let n = matrix_dim1 data in

let rec rowMax i j x mx =
eif j + 1 <= n then

let y = fabs (matrix_get data j i) in
eif (less x y) then rowMax i (j+1) y j
else rowMax i (j+1) x mx

else mx in

let rec loop1 i =
if i + 1 <= n then

let x = fabs (matrix_get data i i) in
let mx = rowMax i (i+1) x i in
norm (getRow data mx) (n+1) i;
rowSwap data i mx;
let rec loop2 j =

if j + 1 <= n then (
rowElim (getRow data i) (getRow data j) (n+1) i;
loop2 (j+1))

else () in
loop2 (i+1);
loop1 (i+1)

else () in
loop1 0
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The inferred types do not di�er from the liquid_gauss.gadt case.
The last toplevel de�nition from liquid_gauss_harder_asserted.gadt :

let gauss data =
let n = matrix_dim1 data in

let rec rowMax = efunction i ->
let x = fabs (matrix_get data i i) in
let rec loop j x mx =

assert num mx + 1 <= n;
eif j + 1 <= n then

let y = fabs (matrix_get data j i) in
eif (less x y) then loop (j+1) y j
else loop (j+1) x mx

else mx in
loop (i+1) x i in

let rec loop1 i =
if i + 1 <= n then

let mx = rowMax i in
norm (getRow data mx) (n+1) i;
rowSwap data i mx;
let rec loop2 j =

if j + 1 <= n then (
rowElim (getRow data i) (getRow data j) (n+1) i;
loop2 (j+1))

else () in
loop2 (i+1);
loop1 (i+1)

else () in
loop1 0

The inferred types do not di�er from the liquid_gauss.gadt case.

C.8.13. Program fft

Source �le liquid_�t_full.gadt :

external let n2i : 8n. Num n ! Int = "fun i -> i"
external let div2 : 8n. Num (2 n) ! Num n = "fun i -> i / 2"
external let div4 : 8n. Num (4 n) ! Num n = "fun i -> i / 4"
external let n2f : 8n. Num n ! Float = "float_of_int"
external let equal : 8a. a ! a ! Bool = "fun x y -> x = y"
external let leq : 8a. a ! a ! Bool = "fun x y -> x <= y"
external let less : 8a. a ! a ! Bool = "fun x y -> x < y"
external let ignore : 8a. a ! () = "ignore"
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external let abs : Float ! Float = "abs_float"
external let cos : Float ! Float = "cos"
external let sin : Float ! Float = "sin"
external let neg : Float ! Float = "(~-.)"
external let minus : Float ! Float ! Float = "(-.)"
external let plus : Float ! Float ! Float = "(+.)"
external let mult : Float ! Float ! Float = "( *. )"
external let div : Float ! Float ! Float = "( /. )"
external let fl0 : Float = "0.0"
external let fl05 : Float = "0.5"
external let fl1 : Float = "1.0"
external let fl2 : Float = "2.0"
external let fl3 : Float = "3.0"
external let fl4 : Float = "4.0"
external let pi : Float = "4.0 *. atan 1.0"
external let two_pi : Float = "8.0 *. atan 1.0"

datatype Bounded : num * num
datacons Index : 8i, k, n[n 6 i ^ i 6 k].Num i ¡! Bounded (n, k)

let ffor s d body =
let rec loop i =

if i <= d then (body (Index i); loop (i + 1)) else () in
loop s

external let ref : 8a. a ! Ref a = "fun a -> ref a"
external let asgn : 8a. Ref a ! a ! () = "fun a b -> a := b"
external let deref : 8a. Ref a ! a = "(!)"

let fft px py = (* n must be a power of 2! *)
let n = array_length px + (-1) in
let rec loop n2 n4 =

if n2 <= 2 then () else (* the case n2 = 2 is treated below *)
let e = div two_pi (n2f n2) in
let e3 = mult fl3 e in
let a = ref fl0 in
let a3 = ref fl0 in
let rec forbod j' =
match j' with Index j ->
(*for j = 1 to n4 do*)

let cc1 = cos (deref a) in
let ss1 = sin (deref a) in
let cc3 = cos (deref a3) in
let ss3 = sin (deref a3) in
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asgn a (plus (deref a) e);
asgn a3 (plus (deref a3) e3);
let rec loop1 i0 i1 i2 i3 id =

if n + 1 <= i3 then () else (* out_of_bounds *)
let g_px_i0 = array_get px i0 in
let g_px_i2 = array_get px i2 in
let r1 = minus g_px_i0 g_px_i2 in
let r1' = plus g_px_i0 g_px_i2 in
array_set px i0 r1';
let g_px_i1 = array_get px i1 in
let g_px_i3 = array_get px i3 in
let r2 = minus g_px_i1 g_px_i3 in
let r2' = plus g_px_i1 g_px_i3 in
array_set px i1 r2';
let g_py_i0 = array_get py i0 in
let g_py_i2 = array_get py i2 in
let s1 = minus g_py_i0 g_py_i2 in
let s1' = plus g_py_i0 g_py_i2 in
array_set py i0 s1';
let g_py_i1 = array_get py i1 in
let g_py_i3 = array_get py i3 in
let s2 = minus g_py_i1 g_py_i3 in
let s2' = plus g_py_i1 g_py_i3 in
array_set py i1 s2';
let s3 = minus r1 s2 in
let r1 = plus r1 s2 in
let s2 = minus r2 s1 in
let r2 = plus r2 s1 in
array_set px i2 (minus (mult r1 cc1) (mult s2 ss1));
array_set py i2 (minus (mult (neg s2) cc1) (mult r1 ss1));
array_set px i3 (plus (mult s3 cc3) (mult r2 ss3));
array_set py i3 (minus (mult r2 cc3) (mult s3 ss3));
loop1 (i0 + id) (i1 + id) (i2 + id) (i3 + id) id in

let rec loop2 is id =
if n <= is then ()
else (

let i1 = is + n4 in
let i2 = i1 + n4 in
let i3 = i2 + n4 in
loop1 is i1 i2 i3 id;
loop2 (2 * id + j - n2) (4 * id)) in

loop2 j (2 * n2) in
ffor 1 n4 forbod;
loop (div2 n2) (div2 n4) in

loop n (div4 n);

C.8 Arrays and Matrices 187



let rec loop1 i0 i1 id =
if n + 1 <= i1 then () else
let r1 = array_get px i0 in
array_set px i0 (plus r1 (array_get px i1));
array_set px i1 (minus r1 (array_get px i1));
let r1 = array_get py i0 in
array_set py i0 (plus r1 (array_get py i1));
array_set py i1 (minus r1 (array_get py i1));
loop1 (i0 + id) (i1 + id) id in

let rec loop2 is id =
if n <= is then () else (

loop1 is (is + 1) id;
loop2 (2 * id + (-1)) (4 * id)) in

loop2 1 4;

let rec loop1 j k =
eif j <= k then j + k
else loop1 (j - k) (div2 k) in

let rec loop2 i j =
if n <= i then () else (

if j <= i then () else (
let xt = array_get px j in
array_set px j (array_get px i); array_set px i (xt);
let xt = array_get py j in
array_set py j (array_get py i); array_set py i (xt));

let j' = loop1 j (div2 n) in
loop2 (i + 1) j') in

loop2 1 1; n

let ffttest np =
let enp = n2f np in
let n2 = div2 np in
let npm = n2 - 1 in
let pxr = array_make (np+1) fl0 in
let pxi = array_make (np+1) fl0 in
let t = div pi enp in
array_set pxr 1 (mult (minus enp fl1) fl05);
array_set pxi 1 (fl0);
array_set pxr (n2+1) (neg (mult fl1 fl05));
array_set pxi (n2+1) fl0;
let rec forbod i =

if i <= npm then
let j = np - i in
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array_set pxr (i+1) (neg (mult fl1 fl05));
array_set pxr (j+1) (neg (mult fl1 fl05));
let z = mult t (n2f i) in
let y = mult (div (cos z) (sin z)) fl05 in
array_set pxi (i+1) (neg y); array_set pxi (j+1) (y)

else () in
forbod 1;
ignore (fft pxr pxi);
(* lukstafi: kr and ki are placeholders? *)
let rec loop i zr zi kr ki =

if np <= i then (zr, zi) else
let a = abs (minus (array_get pxr (i+1)) (n2f i)) in
let b = less zr a in
let zr = if b then a else zr in
let kr = eif b then i else kr in
let a = abs (array_get pxi (i+1)) in
let b = less zi a in
let zi = if b then a else zi in
let ki = eif b then i else ki in
loop (i+1) zr zi kr ki in

let zr, zi = loop 0 fl0 fl0 0 0 in
let zm = if less (abs zr) (abs zi) then zi else zr in
(*in print_float zm; print_newline ()*) zm

let rec loop_np i np =
if 17 <= i then () else
( ignore (ffttest np); loop_np (i + 1) (2 * np) )

let doit _ = loop_np 4 16

Value items from liquid_�t_full.gadti.target :

val ffor :
8i, j, k, n[j 6 i ^ k 6 n].
Num n ! Num j ! (Bounded (k, i) ! ()) ! ()

val fft :
8k, n[1 6 n ^ n + 1 6 k].
Array (Float, n + 1) ! Array (Float, k) ! Num n

val ffttest : 8n[2 6 n]. Num n ! Float

val loop_np : 8k, n[2 6 n]. Num k ! Num n ! ()

val doit : 8a. a ! ()
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Appendix D

InvarGenT: Manual

D.1. Introduction

Type systems are an established natural deduction-style means to reason about programs.
Dependent types can represent arbitrarily complex properties as they use the same language
for both types and programs, the type of value returned by a function can itself be a function
of the argument. Generalized Algebraic Data Types bring some of that expressivity to type
systems that deal with data-types. Type systems with GADTs introduce the ability to
reason about return type by case analysis of the input value, while keeping the bene�ts of a
simple semantics of types, for example deciding equality between types can be very simple.
Existential types hide some information conveyed in a type, usually when that information
cannot be reconstructed in the type system. A part of the type will often fail to be expressible
in the simple language of types, when the dependence on the input to the program is complex.
GADTs express existential types by using local type variables for the hidden parts of the
type encapsulated in a GADT.

The InvarGenT type system for GADTs di�ers from more pragmatic approaches in
mainstream functional languages in that we do not require any type annotations on expres-
sions, even on recursive functions. The implementation also includes linear equations and
inequalities over rational numbers in the language of types, with the possibility to introduce
more domains in the future.

D.2. Tutorial

The concrete syntax of InvarGenT is similar to that of OCaml. However, it does not
currently cover records, the module system, objects, and polymorphic variant types. It
supports higher-order functions, algebraic data-types including built-in tuple types, and
linear pattern matching. It supports conjunctive patterns using the as keyword, but it
currently does not support disjunctive patterns. It currently has limited support for guarded
patterns: after when, only inequality <= between values of the Num type are allowed.

The sort of a type variable is identi�ed by the �rst letter of the variable. a,b,c,r,s,t,a1,...
are in the sort of terms called type, i.e. �types proper�. i,j,k,l,m,n,i1,... are in the sort of
linear arithmetics over rational numbers called num. Remaining letters are reserved for sorts
that may be added in the future. Value constructors (like in OCaml) and type constructors
(unlike in OCaml) have the same syntax: capitalized name followed by a tuple of arguments.
They are introduced by datatype and datacons respectively. The datatype declaration
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might be misleading in that it only lists the sorts of the arguments of the type, the resulting
sort is always type. Values assumed into the environment are introduced by external.
There is a built-in type corresponding to declaration datatype Num : num and de�nitions
of numeric constants newcons 0 : Num 0 newcons 1 : Num 1... The programmer can use
external declarations to give the semantics of choice to the Num data-type. The type with
additional support as Num is the integers.

When solving negative constraints, arising from assert false clauses, we assume that
the intended domain of the sort num is integers. This is a workaround to the lack of strict
inequality in the sort num. We do not make the whole sort num an integer domain because
it would complicate the algorithms.

In examples here we use Unicode characters. For ASCII equivalents, take a quick look
at the tables in the following section.

We start with a simple example, a function that can compute a value from a repre-
sentation of an expression � a ready to use value whether it be Int or Bool. Prior to the
introduction of GADT types, we could only implement a function eval : 8a. Term a !
Value where, using OCaml syntax, type value = Int of int | Bool of bool.

datatype Term : type
external let plus : Int ! Int ! Int = "(+)"
external let is_zero : Int ! Bool = "(=) 0"
datacons Lit : Int ¡! Term Int
datacons Plus : Term Int * Term Int ¡! Term Int
datacons IsZero : Term Int ¡! Term Bool
datacons If : 8a. Term Bool * Term a * Term a ¡! Term a

let rec eval = function
| Lit i -> i
| IsZero x -> is_zero (eval x)
| Plus (x, y) -> plus (eval x) (eval y)
| If (b, t, e) -> if eval b then eval t else eval e

Let us look at the corresponding generated, also called exported , OCaml source code:

type _ term =
| Lit : int -> int term
| Plus : int term * int term -> int term
| IsZero : int term -> bool term
| If : (*8'a.*)bool term * 'a term * 'a term -> 'a term

let plus : (int -> int -> int) = (+)
let is_zero : (int -> bool) = (=) 0
let rec eval : type a . (a term -> a) =
(function Lit i -> i | IsZero x -> is_zero (eval x)

| Plus (x, y) -> plus (eval x) (eval y)
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| If (b, t, e) -> (if eval b then eval t else eval e))

The Int, Num and Bool types are built-in. Int and Bool follow the general scheme of
exporting a datatype constructor with the same name, only lower-case. However, numerals
0, 1, ... are always type-checked as Num 0, Num 1... Num can also be exported as a type other
than int, and then numerals are exported via an injection function (ending with) of_int.

The syntax external let allows us to name an OCaml library function or give an
OCaml de�nition which we opt-out from translating to InvarGenT. Such a de�nition will
be veri�ed against the rest of the program when InvarGenT calls ocamlc -c to verify the
exported code. Another variant of external (omitting the let keyword) exports a value
using external in OCaml code, which is OCaml source declaration of the foreign function
interface of OCaml. When we are not interested in linking and running the exported code,
we can omit the part starting with the = sign. The exported code will reuse the name in the
FFI de�nition: external f : ... = "f".

The type inferred for the above example is eval : 8a. Term a!a. GADTs make it
possible to reveal that IsZero x is a Term Bool and therefore the result of eval should in
its case be Bool, Plus (x, y) is a Term Num and the result of eval should in its case be
Num, etc. The if/eif:::then:::else::: syntax is a syntactic sugar for match/ematch:::with
True ->::: | False ->:::, and any such expressions are exported using if expressions.

equal is a function comparing values provided representation of their types:

datatype Ty : type
datatype Int
datatype List : type
datacons Zero : Int
datacons Nil : 8a. List a
datacons TInt : Ty Int
datacons TPair : 8a, b. Ty a * Ty b ¡! Ty (a, b)
datacons TList : 8a. Ty a ¡! Ty (List a)
datatype Boolean
datacons True : Boolean
datacons False : Boolean
external eq_int : Int ! Int ! Bool
external b_and : Bool ! Bool ! Bool
external b_not : Bool ! Bool
external forall2 : 8a, b. (a ! b ! Bool) ! List a ! List b ! Bool

let rec equal = function
| TInt, TInt -> fun x y -> eq_int x y
| TPair (t1, t2), TPair (u1, u2) ->

(fun (x1, x2) (y1, y2) ->
b_and (equal (t1, u1) x1 y1)

(equal (t2, u2) x2 y2))
| TList t, TList u -> forall2 (equal (t, u))
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| _ -> fun _ _ -> False

InvarGenT returns an unexpected type: equal: 8a,b.(Ty a, Ty b)!a!a!Bool,
one of four maximally general types of equal as de�ned above. The other maximally gen-
eral �wrong� types are 8a,b.(Ty a, Ty b)!b!b!Bool and 8a,b.(Ty a, Ty b)!b!
a!Bool. This illustrates that unrestricted type systems with GADTs lack principal typing
property.

InvarGenT commits to a type of a toplevel de�nition before proceeding to the next one,
so sometimes we need to provide more information in the program. Besides type annotations,
there are three means to enrich the generated constraints: assert false syntax for providing
negative constraints, assert type e1 = e2;::: and assert num e1 <= e2;::: for positive
constraints, and test syntax for including constraints of use cases with constraint of a
toplevel de�nition. To ensure only one maximally general type for equal, we use assert
false and test. We can either add the assert false clauses:

| TInt, TList l -> (function Nil -> assert false)
| TList l, TInt -> (fun _ -> function Nil -> assert false)

The �rst assertion excludes independence of the �rst encoded type and the second argu-
ment. The second assertion excludes independence of the second encoded type and the third
argument. Or we can add the test clause:

test b_not (equal (TInt, TList TInt) Zero Nil)

The test ensures that arguments of distinct types can be given. InvarGenT returns the
expected type equal: 8a,b.(Ty a, Ty b)!a!b!Bool.

Now we demonstrate numerical invariants:

datatype Binary : num
datatype Carry : num
datacons Zero : Binary 0
datacons PZero : 8n[06n]. Binary n ¡! Binary(2 n)
datacons POne : 8n[06n]. Binary n ¡! Binary(2 n + 1)
datacons CZero : Carry 0
datacons COne : Carry 1

let rec plus =
function CZero ->

(function Zero -> (fun b -> b)
| PZero a1 as a ->

(function Zero -> a
| PZero b1 -> PZero (plus CZero a1 b1)
| POne b1 -> POne (plus CZero a1 b1))

| POne a1 as a ->
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(function Zero -> a
| PZero b1 -> POne (plus CZero a1 b1)
| POne b1 -> PZero (plus COne a1 b1)))

| COne ->
(function Zero ->

(function Zero -> POne(Zero)
| PZero b1 -> POne b1
| POne b1 -> PZero (plus COne Zero b1))

| PZero a1 as a ->
(function Zero -> POne a1

| PZero b1 -> POne (plus CZero a1 b1)
| POne b1 -> PZero (plus COne a1 b1))

| POne a1 as a ->
(function Zero -> PZero (plus COne a1 Zero)

| PZero b1 -> PZero (plus COne a1 b1)
| POne b1 -> POne (plus COne a1 b1)))

We get plus: 8i,k,n.Carry i!Binary k!Binary n!Binary (n + k + i).

We can introduce existential types directly in type declarations. To have an existential
type inferred, we have to use efunction, ematch or eif expressions, which di�er from
function, match, eif respectively in that the (return) type is an existential type. To use
a value of an existential type, we have to bind it with a let..in expression. Otherwise, the
existential type will not be unpacked. An existential type will be automatically unpacked
before being �repackaged� as another existential type. In the following arti�cial example, we
abstract away the particular resulting location.

datatype Room
datatype Yard
datatype Village
datatype Castle : type
datatype Place : type
datacons Room : Room ¡! Castle Room
datacons Yard : Yard ¡! Castle Yard
datacons CastleRoom : Room ¡! Place Room
datacons CastleYard : Yard ¡! Place Yard
datacons Village : Village ¡! Place Village

external wander : 8a. Place a ! 9b. Place b

let rec find_castle = efunction
| CastleRoom x -> Room x
| CastleYard x -> Yard x
| Village _ as x ->

let y = wander x in
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find_castle y

We get find_castle: 8a. Place a! 9b. Castle b. Next consider a slightly less arti-
�cial, toy example of computer hardware con�guration. It illustrates many aspects of existen-
tial types in InvarGenT. We introduce functions config_mem_board and config_gpu
as external, i.e., ones whose de�nition is not type-checked by InvarGenT. Their types
illustrate that existential types can be used in type annotations. Types Slow and Fast,
although declared as data-types, are phantom types, i.e. are not inhabited and convey infor-
mation as parameters of other types.

datatype Slow datatype Fast datatype Budget
datacons Small : Budget datacons Medium : Budget datacons Large : Budget
datatype Memory : type datacons Best_mem : Memory Fast
datatype Motherboard : type datacons Best_board : Motherboard Fast
external config_mem_board : Budget ! 9a. (Memory a, Motherboard a)
datatype CPU : type
datacons FastCPU : CPU Fast datacons SlowCPU : CPU Slow
datatype GPU : type
datacons FastGPU : GPU Fast datacons SlowGPU : GPU Slow
external config_gpu : Budget ! 9a. GPU a
datatype PC : type * type * type * type
datacons PC :
8a,b,c,r. CPU a * GPU b * Memory c * Motherboard r ¡! PC (a,b,c,r)

datatype Usecase datacons Gaming : Usecase
datacons Scientific : Usecase datacons Office : Usecase

let budget_to_cpu = efunction
| Small -> SlowCPU | Medium -> FastCPU | Large -> FastCPU

let usecase_to_gpu budget = efunction
| Gaming -> FastGPU | Scientific -> FastGPU
| Office -> config_gpu budget

let rec configure = efunction
| Small, Gaming -> configure (Small, Office)
| Large, Gaming -> PC (FastCPU, FastGPU, Best_mem, Best_board)
| budget, usecase ->

let mem, board = config_mem_board budget in
let cpu = budget_to_cpu budget in
let gpu = usecase_to_gpu budget usecase in
PC (cpu, gpu, mem, board)

InvarGenT infers the following types:

budget_to_cpu : Size ! 9a.CPU a
usecase_to_gpu : Usecase ! 9a.GPU a
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configure : (Size, Usecase) ! 9a, b, c.PC (a, b, c, c)

The de�nition of configure illustrates explicit elimination of existential types by let..in
de�nitions: by design, inlining of cpu or gpu de�nitions would make the function not typeable.
The call to config_gpu and the recursive call to configure illustrate implicit elimination
of existential types in return positions.

A more practical existential type example:

datatype Bool
datacons True : Bool
datacons False : Bool
datatype List : type * num
datacons LNil : 8a. List(a, 0)
datacons LCons : 8n,a[06n]. a * List(a, n) ¡! List(a, n+1)

let rec filter f =
efunction LNil -> LNil

| LCons (x, xs) ->
eif f x then

let ys = filter f xs in
LCons (x, ys)

else filter f xs

We get filter: 8n, a.(a!Bool)!List (a, n)! 9k[06k ^ k6n].List (a, k).
Note that we need to use both efunction and eif above, since every use of function, match
or if will force the types of its branches to be equal. In particular, for lists with length the
resulting length would have to be the same in each branch. If the constraint cannot be met,
as for filter with either function or if, the code will not type-check.

A more complex example that computes bitwise or � ub stands for �upper bound�:

datatype Binary : num
datacons Zero : Binary 0
datacons PZero : 8n [06n]. Binary n ¡! Binary(2 n)
datacons POne : 8n [06n]. Binary n ¡! Binary(2 n + 1)

let rec ub = efunction
| Zero ->

(efunction Zero -> Zero
| PZero b1 as b -> b
| POne b1 as b -> b)

| PZero a1 as a ->
(efunction Zero -> a

| PZero b1 ->
let r = ub a1 b1 in
PZero r
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| POne b1 ->
let r = ub a1 b1 in
POne r)

| POne a1 as a ->
(efunction Zero -> a

| PZero b1 ->
let r = ub a1 b1 in
POne r

| POne b1 ->
let r = ub a1 b1 in
POne r)

ub:8k,n.Binary k!Binary n!9:i[06n ^ 06k ^ n6i ^ k6i ^ i6n+k].Binary
i.

Why cannot we shorten the above code by converting the initial cases to Zero ->
(efunction b -> b)? Without pattern matching, we do not make the contribution of
Binary n available. Knowing n=i and not knowing 06n, for the case k=0, we get: ub:8k,
n.Binary k!Binary n!9i[06k^n6i^i6n+k].Binary i. n�i follows from n=i, i6n+k
follows from n=i and 06k, but k6i cannot be inferred from k=0 and n=i without knowing
that 06n.

Besides displaying types of toplevel de�nitions, InvarGenT can also export an OCaml
source �le with all the required GADT de�nitions and type annotations.

D.3. Syntax

Below we present, using examples, the syntax of InvarGenT: the mathematical notation,
the concrete syntax in ASCII and the concrete syntax using Unicode.
type variable: types �; �; ; � a,b,c,r,s,t,a1,...
type variable: nums k;m; n i,j,k,l,m,n,i1,...
type var. with coef. 1

3
n 1/3 n

type constructor List List
number (type) 7 7
numerical sum (type) m+n m+n
existential type 9k; n[k6n]:� ex k, n [k<=n].t 9k,n[k6n].t
type sort stype type
number sort sR num
function type �1! �2 t1 -> t2 t1 ! t2
equation a=_ b a = b
inequation k6n k <= n k 6 n
conjunction '1^ '2 a=b && b=a a=b ^ b=a

For the syntax of expressions, we discourage non-ASCII symbols. Below e; ei stand for
any expression, p; pi stand for any pattern, x stands for any lower-case identi�er and K for
an upper-case identi�er. KT stands for True, KF for False, and Ku for ().
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named value x x �lower-case identi�er
numeral (expr.) 7 7
constructor K K �upper-case identi�er
application e1 e2 e1 e2
non-br. function �(p1:�(p2:e)) fun (p1,p2) p3 -> e
branching function �(p1:e1:::pn:en) function p1->e1 | ... | pn->en
pattern match �(p1:e1:::pn:en) e match e with p1->e1 | ...
if-then-else clause �(KT :e1;KF :e2) e if e then e1 else e2
if-then-else condition �(_whenm6n:e1; :::)Ku if m <= n then e1 else e2
postcond. function �[K](p1:e1:::pn:en) efunction p1->e1 | ...
postcond. match �[K](p1:e1:::pn:en) e ematch e with p1->e1 | ...
eif-then-else clause �[K](KT :e1;KF :e2) e eif e then e1 else e2
eif-then-else condition �[K](_whenm6n:e1; :::)Ku eif m <= n then e1 else e2
rec. de�nition let recx= e1 in e2 let rec x = e1 in e2
de�nition let p= e1 in e2 let p1,p2 = e1 in e2
asserting dead br. assert false assert false
runtime failure runtime failure s runtime_failure s
assert equal types assert type �e1=_ �e2; e3 assert type e1 = e2; e3
assert inequality assert num e16 e2; e3 assert num e1 <= e2; e3

A built-in fail at runtime with the given text message is only needed for introducing
existential types: a user-de�ned equivalent of runtime_failure would introduce a spurious
branch for generalization.

Toplevel expressions (corresponding to structure items in OCaml) introduce types, type
and value constructors, global variables with given type (external names) or inferred type
(de�nitions).

type constructor datatype List : type * num
value constructor datacons Cons : all n a. a * List(a,n) --> List(a,n+1)

datacons Cons : 8n,a. a * List(a,n) ¡! List(a,n+1)
declaration external foo : 8n,a. List(a,n)!9k[k<=n].List(a,k)="c_foo"

external filter : 8n,a. List(a,n)!9k[k<=n].List(a,k)
let-declaration external let mult : 8n,m. Num n!Num m!9k.Num k = "( * )"
rec. de�nition let rec f =...
non-rec. de�nition let a, b =...
de�nition with test let rec f =... test e1; ...; en

Toplevel non-recursive let de�nitions are polymorphic as an exception. In expressions,
let:::in de�nitions are monomorphic, one should use the let rec:::in syntax to get a
polymorphic let-binding.

Tests list expressions of type Bool that at runtime have to evaluate to True. Type
inference is a�ected by the constraints generated to typecheck the expressions.

There are variants of the if-then-else clause syntax supporting when conditions:

� if m1 <= n1 && m2 <= n2 &&::: then e1 else e2 is �(_ when ^imi 6 ni:e1; _
:e2)Ku,
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� if m <= n then e1 else e2 is �(_whenm6n:e1;_whenn+16m:e2)Ku if integer
mode is on (as in default setting),

� similarly for the eif variants.

We add the standard syntactic sugar for function de�nitions:

� let p1 p2::: pn = e1 in e2 expands to let p1 = fun p2::: pn -> e1 in e2

� let rec l1 p2::: pn = e1 in e2 expands to let rec l1 = fun p2::: pn -> e1 in
e2

� toplevel let and let rec de�nitions expand correspondingly.

For simplicity of theory and implementation, mutual non-nested recursion and or-patterns
are not provided. For mutual recursion, nest one recursive de�nition inside another.

Like in OCaml, types of arguments in declarations of constructors are separated by
asterisks. However, the type constructor for tuples is represented by commas, like in Haskell
but unlike in OCaml.

At any place between lexemes, regular comments encapsulated in (*:::*) can occur.
They are ignored during lexing. In front of all toplevel de�nitions and declarations, e.g.
before a datatype, datacons, external, let rec or let, and in front of let rec:::in and
let:::in nodes in expressions, documentation comments (**:::*) can be put. Documentation
comments at other places are syntax errors. Documentation comments are preserved both
in generated interface �les and in exported source code �les.

D.4. Solver Parameters and CLI

The default settings of InvarGenT parameters should be su�cient for most cases. For
example, after downloading InvarGenT source code and changing current directory to
invargent, we can enter, assuming a Unix-like shell:

$ make main
$ ./invargent examples/binary_upper_bound.gadt

To get the inferred types printed on standard output, use the -inform option:

$ ./invargent -inform examples/avl_tree.gadt

Below we demonstrate what happens with insu�ciently high parameter setting. Consider
this example:

$ ./invargent -inform examples/flatten_septs.gadt
File "examples/flatten_septs.gadt", line 8, characters 6-104:
No answer in type: term abduction failed

Perhaps increase the -term_abduction_timeout parameter.
Perhaps increase the -term_abduction_fail parameter.
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$ ./invargent -inform -term_abduction_timeout 3000 examples/
flatten_septs.gadt
File "examples/flatten_septs.gadt", line 3, characters 26-261:
No answer in num: numerical abduction failed

Perhaps do not pass the -no_dead_code flag.
Perhaps increase the -num_abduction_timeout parameter.
Perhaps increase the -num_abduction_fail parameter.
$ ./invargent -inform -term_abduction_timeout 3000 \
-num_abduction_rotations 4 examples/flatten_septs.gadt

val flatten_septs :
8n, a. List ((a, a, a, a, a, a, a), n) ! List (a, 7 n)

InvarGenT: Generated file examples/flatten_septs.gadti
InvarGenT: Generated file examples/flatten_septs.ml
InvarGenT: Command "ocamlc -w -25 -c examples/flatten_septs.ml" exited with
code 0

The Perhaps increase suggestions are generated only when the corresponding limit
has actually been exceeded. Remember however that the limits will often be exceeded for
erroneus programs which should not type-check. Moreover, as illustrated above, other set-
tings might be the culprit.

To understand the intent of the solver parameters, we need a rough �birds-eye view�
understanding of how InvarGenT works. The invariants and postconditions that we solve
for are logical formulas and can be ordered by strength. Least Upper Bounds (LUBs) and
Greatest Lower Bounds (GLBs) computations are traditional tools used for solving recursive
equations over an ordered structure. In case of implicational constraints that are generated
for type inference with GADTs, constraint abduction is a form of LUB computation. Con-
straint generalization is our term for computing the GLB wrt. strength for formulas that
are conjunctions of atoms. We want the invariants of recursive de�nitions � i.e. the types of
recursive functions and formulas constraining their type variables � to be as weak as possible,
to make the use of the corresponding de�nitions as easy as possible. The weaker the invariant,
the more general the type of de�nition. Therefore the use of LUB, constraint abduction. For
postconditions � i.e. the existential types of results computed by efunction expressions and
formulas constraining their type variables � we want the strongest possible solutions, because
stronger postcondition provides more information at use sites of a de�nition. Therefore we
use GLB, constraint generalization, but only if existential types have been introduced by
efunction or ematch.

Below we discuss all of the InvarGenT options. We use the technical term terms to
mean type shapes, types without the concern for the sort of numbers (or other sorts to come
in the future).

-inform. Print type schemes of toplevel de�nitions as they are inferred.

-time. Print the time it took to infer type schemes of toplevel de�nitions.

-no_sig. Do not generate the .gadti �le.

D.4 Solver Parameters and CLI 201



-no_ml. Do not generate the .ml �le.

-overwrite_ml. Overwrite the .ml �le if it already exists.

-ml_file. Generate the exported OCaml �le under the provided name.

-no_verif. Do not call ocamlc -c on the generated .ml �le.

-num_is. The exported type for which Num is an alias (default int). If -num_is bar for
bar di�erent than int, numerals are exported as integers passed to a bar_of_int
function. The variant -num_is_mod exports numerals by passing to a Bar.of_int
function.

-full_annot. Annotate the function and let..in nodes in generated OCaml code.
This increases the burden on inference a bit because the variables associated with the
nodes cannot be eliminated from the constraint during initial simpli�cation.

-keep_assert_false. Keep assert false clauses in exported code. When faced with
multiple maximally general types of a function, we sometimes want to prevent some
interpretations by asserting that a combination of arguments is not possible. These
arguments will not be compatible with the type inferred, causing exported code to
fail to typecheck. Sometimes we indicate unreachable cases just for documentation.
If the type is tight this will cause exported code to fail to typecheck too. This option
keeps pattern matching branches with assert false in their bodies in exported code
nevertheless.

-allow_dead_code. Allow more programs with dead code than would otherwise pass.

-force_no_dead_code. Reject all programs with dead code (may misclassify programs
using min or max atoms). Unreachable pattern matching branches lead to unsatis�-
able premises of the type inference constraint, which we detect. However, sometimes
multiple implications in the simpli�ed form of the constraint can correspond to the
same path through the program, in particular when solving constraints with min and
max clauses. Dead code due to datatype mismatch, i.e. patterns unreachable without
resort to numerical constraints, is detected even without using this option.

-term_abduction_timeout. Limit on term simple abduction steps (default 700). Simple
abduction works with a single implication branch, which roughly corresponds to a
single branch � an execution path � of the program.

-term_abduction_fail. Limit on backtracking steps in term joint abduction (default
4). Joint abduction combines results for all branches of the constraints.

-no_alien_prem. Do not include alien (e.g. numerical) premise information in term
abduction.

-early_num_abduction. Include recursive branches in numerical abduction from the
start. By default, in the second iteration of solving constraints, which is the �rst
iteration that numerical abduction is performed, we only pass non-recursive branches
to numerical abduction. This makes it faster but less likely to �nd the correct solution.

-convergence_step. The iteration at which to start truncating postconditions by only
keeping atoms present in the previous iteration, to force convergence (default 8).
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-early_postcond_abd. Include postconditions from recursive calls in abduction from
the start. We do not derive requirements put on postconditions by recursive calls on
�rst iteration. The requirements may turn smaller after some derived invariants are
included in the premises. This option turns o� the special treatment of postconditions
on �rst iteration.

-num_abduction_rotations. Numerical abduction: coefficients from �1 / N to �N
(default 3). Numerical abduction answers are built, roughly speaking, by adding
premise equations of a branch with conclusion of a branch to get an equation or
inequality that does not con�ict with other branches, but is equivalent to the con-
clusion equation/inequality. This parameter decides what range of coe�cients is tried.
If the highest coe�cient in correct answer is greater, abduction might fail. How-
ever, it often succeeds because of other mechanisms used by the abduction algorithm.

-num_prune_at. Keep less than N elements in abduction sums (default 6). By elements
here we mean distinct variables � lack of constant multipliers in concrete syntax of
types is just a syntactic shortcoming.

-num_abduction_timeout. Limit on numerical simple abduction steps (default 1000).

-num_abduction_fail. Limit on backtracking steps in numerical joint abduction
(default 10).

-affine_penalty. How much to penalize an abduction candidate inequality for con-
taining a constant term (default 4). Too small a value may lead to divergence, e.g. in
some examples abduction will pick an answer a+1, which in the following step will
force an answer a+2, then a+3, etc.

-reward_constrn. How much to reward introducing a constraint on so-far uncon-
strained varialbe, or penalize if negative (default 2).

-complexity_penalty. How much to penalize an abduction candidate inequality for
complexity of its coe�cients; the coe�cient of either the linear or power scaling of
the coe�cients (default 2.5).

-abd_lin_thres_scaling. Scale the complexity cost of coe�cients linearly with a jump
of the given height after coe�cient 1 (default 2.0).

-abd_pow_scaling. Scale the complexity cost of coefficients according to the given
power.

-prefer_bound_to_local. Prefer a bound coming from outer scope, to inequality
between two local parameters. In numerical abduction heuristic, such bounds are
usually doubly penalized: for having a constant, and non-locality of parameters.

-prefer_bound_to_outer. Prefer a bound coming from outer scope, to inequality
between two outer scope parameters. Outer-scope constraints sometimes lead to a
solution not general enough.

-only_off_by_1. Limit the effect of -prefer_bound_to_local and
-prefer_bound_to_outer to inequalities with a constant 1. This corresponds to
an upper bound of an index into a zero-indexed array/matrix/etc.
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-same_with_assertions. Do not treat de�nitions with positive assertions (assert num,
assert type) specially. The special treatment is currently equivalent to passing
-reward_constrn -1 and -prefer_bound_to_local.

-concl_abd_penalty. Penalize abductive guess when the supporting argument comes
from the partial answer, instead of from the current premise (default 4). Guesses
involving the partial answer are less secure, for example they depend on the order in
which the constraint to explain is being processed.

-more_general_num. Filter out less general abduction candidate atoms (does not guar-
antee overall more general answers). The �ltering is currently not performed by
default to save on computational cost.

-no_num_abduction. Turn o� numerical abduction; will not ensure correctness. Numer-
ical abduction uses a brute-force algorithm and will fail to work in reasonable time
for complex constraints. However, including the e�ects of assert false clauses, and
inference of postconditions, do not rely on numerical abduction. If the numerical
invariant of a typeable (i.e. correct) function follows from assert false facts alone,
a call with -no_num_abductionmay still �nd the correct invariant and postcondition.

-if_else_no_when. Do not add when clause to the else branch of an if expression with
a single inequality as condition. Expressions if, resp. eif, with a single inequality as
the condition are expanded into expressions match, resp. ematch, with when condi-
tions on both the True branch and the False branch. I.e. if m <= n then e1 else
e2 is expanded into match () with _ when m <= n -> e1 | _ when n+1 <= m -
> e2. Passing -if_else_no_when will result in expansion match () with _ when m
<= n -> e1 | _ -> e2. The same e�ect can be achieved for a particular expression
by arti�cially incresing the number of inequalities: if m <= n && m <= n then e1
else e2.

-weaker_pruning. Do not assume integers as the numerical domain when pruning
redundant atoms.

-stronger_pruning. Prune atoms that force a numerical variable to a single value under
certain conditions; exclusive with -weaker_pruning.

-postcond_rotations. In postconditions, check coefficients from 1 / N (default 3).
Numerical constraint generalization is performed by approximately �nding the convex
hull of the polytopes corresponding to disjuncts. A step in an exact algorithm involves
rotating a side along a ridge � an intersection with another side � until the side
touches yet another side. We approximate by trying out a couple of rotations: convex
combinations of the inequalities de�ning the sides. This parameter decides how many
rotations to try.

-postcond_opti_limit. Limit the number of atoms x = min (a; b), x = max (a; b) in
(intermediate and �nal) postconditions (default 4). Unfortunately, inference time is
exponential in the number of atoms of this form. The �nal postconditions usually have
few of these atoms, but a greater number is sometimes needed in the intermediate
steps of the main loop.
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-postcond_subopti_limit. Limit the number of atoms min (a; b)6x, x6max (a; b) in
(intermediate and �nal) postconditions (default 4). Unfortunately, inference time is
exponential in the number of atoms of this form. The �nal postconditions usually have
few of these atoms, but a greater number is sometimes needed in the intermediate
steps of the main loop.

-iterations_timeout. Limit on main algorithm iterations (default 6). Answers found
in an iteration of the main algorithm are propagated to use sites in the next iteration.
However, for about four initial iterations, each iteration turns on additional processing
which makes better sense with the results from the previous iteration propagated. At
least three iterations will always be performed.

-richer_answers. Keep some equations in term abduction answers even if redundant.
Try keeping an initial guess out of a list of candidate equations before trying to
drop the equation from consideration. We use fully maximal abduction for single
branches, which cannot �nd answers not implied by premise and conclusion of a
branch. But we seed it with partial answer to branches considered so far. Some-
times an atom is required to solve another branch although it is redundant in given
branch. -richer_answers does not increase computational cost but sometimes leads
to answers that are not most general. This can always be �xed by adding a test
clause to the de�nition which uses a type con�icting with the too speci�c type.

-prefer_guess. Try to guess equality-between-parameters before considering other pos-
sibilities. Implied by -richer_answers but less invasive.

-more_existential. More general invariant at expense of more existential postcon-
dition. To avoid too abstract postconditions, constraint generalization can infer
additional constraints over invariant parameters. In rare cases a weaker postcon-
dition but a more general invariant can be bene�cial.

-show_extypes. Show datatypes encoding existential types, and their identi�ers with
uses of existential types. The type system in InvarGenT encodes existential types as
GADT types, but this representation is hidden from the user. Using -show_extypes
exposes the representation as follows. The encodings are exported in .gadti �les as
regular datatypes named exN, and existential types are printed using syntax 9N::::
instead of 9:::, where N is the identi�er of an existential type.

-passing_ineq_trs. Include inequalities in conclusion when solving numerical abduc-
tion. This setting leads to more inequalities being tried for addition in numeric
abduction answer.

-not_annotating_fun. Do not keep information for annotating function nodes. This
may allow eliminating more variables during initial constraint simpli�cation.

-annotating_letin. Keep information for annotating let..in nodes. Will be set auto-
matically anyway when -full_annot is passed.

-let_in_fallback. Annotate let..in nodes in fallback mode of .ml generation. When
verifying the resulting .ml �le fails, a retry is made with function nodes annotated.
This option additionally annotates let..in nodes with types in the regenerated .ml
�le.
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Let us have a look at tests from the examples direcotory that need a non-default
parameter setting. The program examples/flatten_septs.gadt has already been
shown above. It is the only example that needs the -term_abduction_timeout
and -num_abduction_rotations settings. The need for -num_abduction_rotations
comes from having an equation with large coefficient in the answer. The need for
-term_abduction_timeout comes from having bigger type shapes to handle during term,
i.e. type shape, abduction.

$ ./invargent -inform examples/non_pointwise_leq.gadt
File "examples/non_pointwise_leq.gadt", line 12, characters 14-60:
No answer in type: Answers do not converge

Perhaps increase the -iterations_timeout parameter or try one of the
options: -more_existential, -prefer_guess, -prefer_bound_to_local.
$ ./invargent -inform -prefer_guess examples/non_pointwise_leq.gadt
val leq : 8a. Nat a ! NatLeq (a, a)
InvarGenT: Generated file examples/non_pointwise_leq.gadti
InvarGenT: Generated file examples/non_pointwise_leq.ml
InvarGenT: Command "ocamlc -w -25 -c examples/non_pointwise_leq.ml" exited
with code 0

Other examples that need the -prefer_guess option:
non_pointwise_zip1_simpler.gadt, non_pointwise_zip1_simpler2.gadt,
non_pointwise_zip1_modified.gadt. On the other hand, non_pointwise_zip1.gadt is
inferred with default settings.

The response from the system does not always include an option which would make the
inference succeed.

$ ./invargent -inform examples/liquid_simplex_step_3a.gadt
File "examples/liquid_simplex_step_3a.gadt", line 7, characters 49-1651:
No answer in type: Answers do not converge

Perhaps do not pass the -no_dead_code flag.
Perhaps increase the -iterations_timeout parameter or try one of the
options: -more_existential, -prefer_guess, -prefer_bound_to_local.
Perhaps some definition is used with requirements on
its inferred postcondition not warranted by the definition.
$ ./invargent -inform -prefer_bound_to_local -only_off_by_1 \
examples/liquid_simplex_step_3a.gadt
val main_step3_test : 8k, n[1 6 n ^ 3 6 k]. Matrix (n, k) ! Float
InvarGenT: Generated file examples/liquid_simplex_step_3a.gadti
InvarGenT: Generated file examples/liquid_simplex_step_3a.ml
File "examples/liquid_simplex_step_3a.ml", line 43, characters 8-9:
Warning 26: unused variable m.
InvarGenT: Command "ocamlc -w -25 -c examples/liquid_simplex_step_3a.ml"
exited with code 0
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The other examples that need the -prefer_bound_to_local option, but not the
-only_off_by_1 option: liquid_simplex_step_6a_2.gadt, liquid_tower_harder.gadt,
liquid_gauss2.gadt.

$ ./invargent -inform examples/pointwise_zip2_harder.gadt
val zip2 : 8a, b. Zip2 (a, b) ! a ! b
InvarGenT: Generated file examples/pointwise_zip2_harder.gadti
InvarGenT: Generated file examples/pointwise_zip2_harder.ml
File "examples/pointwise_zip2_harder.ml", line 19, characters 21-32:
Error: This kind of expression is not allowed as right-hand side of `let
rec'
InvarGenT: Command "ocamlc -w -25 -c examples/pointwise_zip2_harder.ml"
exited with code 2
InvarGenT: Regenerated file examples/pointwise_zip2_harder.ml
File "examples/pointwise_zip2_harder.ml", line 21, characters 21-32:
Error: This kind of expression is not allowed as right-hand side of `let
rec'
InvarGenT: Command "ocamlc -w -25 -c examples/pointwise_zip2_harder.ml"
exited with code 2
$ ./invargent -inform -no_ml examples/pointwise_zip2_harder.gadt
val zip2 : 8a, b. Zip2 (a, b) ! a ! b
InvarGenT: Generated file examples/pointwise_zip2_harder.gadti

The example pointwise_zip2_harder.gadt is not compatible with the pass-by-
value semantics. We can avoid the complaint of the OCaml compiler by passing either
the -no_ml flag or the -no_verif flag. More interestingly, we can notice that the file
pointwise_zip2_harder.ml is generated twice. This happens because InvarGenT,
noticing the failure, generates an OCaml source with more type information, as if the -
full_annot option was used.

The examples liquid_fft_simpler.gadt and liquid_fft_full_asserted.gadt con-
tain assertions, but are nearly as hard as liquid_fft.gadt, liquid_fft_full.gadt respec-
tively. They need the option -same_with_assertions to not switch to settings tuned for
cases where assertions capture the harder aspects of the invariants to infer.

Unfortunately, inference fails for some examples regardless of parameters setting. We
discuss them in the next section.

D.5. Limitations of Current InvarGenT Inference

Type inference for the type system underlying InvarGenT is undecidable. In some cases,
the failure to infer a type is not at all problematic. Consider this example due to Chuan-kai
Lin:

datatype EquLR : type * type * type
datacons EquL : 8a, b. EquLR (a, a, b)
datacons EquR : 8a, b. EquLR (a, b, b)
datatype Box : type
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datacons Cons : 8a. a ¡! Box a
external let eq : 8a. a ! a ! Bool = "(=)"

let vary = fun e y ->
match e with
| EquL, EquL -> eq y "c"
| EquR, EquR -> Cons (match y with True -> 5 | False -> 7)

Although vary has multiple types, it is a contrived example unlikely to have an intended
type. However, not all cases of failure to infer a type for a correct program are due to
contrived examples. The problems are not insurmountable theoretically. The algorithms
used in the inference can incorporate heuristics for special cases, and can be modi�ed to do
a more exhaustive search.

The example pointwise_head.gadt fails because of the limitations of the type sort in
representing disequalities.

datatype Z
datatype S : type
datatype List : type * num
datacons LNil : 8a. List(a, Z)
datacons LCons : 8a, b. a * List(a, b) ¡! List(a, S b)

let head = function
| LCons (x, _) -> x
| LNil -> assert false

If we omit the LNil branch, we get the technically correct but inadequate type 8a, b.
List(a, b) ! a, because the type system does not guarantee exhaustiveness of the pattern
matching. The intended type is 8a, b. List(a, S b) ! a.

The example non_pointwise_fd_comp_harder.gadt is inferred an insu�ciently general
type 8a, b. FunDesc (b, b) ! FunDesc (b, a) ! FunDesc (b, a).

datatype FunDesc : type * type
datacons FDI : 8a. FunDesc (a, a)
datacons FDC : 8a, b. b ¡! FunDesc (a, b)
datacons FDG : 8a, b. (a ! b) ¡! FunDesc (a, b)
external fd_fun : 8a, b. FunDesc (a, b) ! a ! b

let fd_comp fd1 fd2 =
let o f g x = f (g x) in
match fd1 with

| FDI -> fd2
| FDC b ->

(match fd2 with
| FDI -> fd1
| FDC c -> FDC (fd_fun fd2 b)
| FDG g -> FDC (fd_fun fd2 b))
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| FDG f ->
(match fd2 with

| FDI -> fd1
| FDC c -> FDC c
| FDG g -> FDG (o (fd_fun fd2) f))

This happens because the second argument fd2 is not expanded when fd1 is equal to FDI.
Type inference cannot carry out the di�erent reasoning steps leading to the more general
type.

In the example liquid_bsearch2_harder4.gadt it turns out to be too hard to infer the
full postcondition.

datatype Array : type * num
external let array_make :
8n, a [06n]. Num n ! a ! Array (a, n) = "fun a b -> Array.make a b"

external let array_get :
8n, k, a [06k ^ k+16n]. Array (a, n) ! Num k ! a =
"fun a b -> Array.get a b"

external let array_length :
8n, a [06n]. Array (a, n) ! Num n = "fun a -> Array.length a"

datatype LinOrder
datacons LE : LinOrder
datacons GT : LinOrder
datacons EQ : LinOrder
external let compare : 8a. a ! a ! LinOrder =
"fun a b -> let c = Pervasives.compare a b in

if c < 0 then LE else if c > 0 then GT else EQ"
external let equal : 8a. a ! a ! Bool = "fun a b -> a = b"
external let div2 : 8n. Num (2 n) ! Num n = "fun x -> x / 2"

let bsearch key vec =
let rec look key vec lo hi =

eif lo <= hi then
let m = div2 (hi + lo) in
let x = array_get vec m in
ematch compare key x with

| LE -> look key vec lo (m + (-1))
| GT -> look key vec (m + 1) hi
| EQ -> eif equal key x then m else -1

else -1 in
look key vec 0 (array_length vec + (-1))

We get the result type 9n[0 6 n + 1].Num n instead of 9k[k 6 n ^ 0 6 k +
1].Num k. The inference of the intended type succeeds after we introduce an appropriate
assertion, e.g. assert num -1 <= hi. Alternatively, we could include a use case for
bsearch where the full postcondition is required.
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Examples liquid_simplex_step_3.gadt, liquid_simplex_step_4.gadt and
liquid_gauss_rowMax.gadt result in uninformative, empty postconditions, because to tell
more would require inspecting the behavior of the respective function across recursive calls.
To save space, we list just the function de�nition from liquid_simplex_step_3.gadt:

let rec enter_var arr2 n j c j' =
eif j' + 2 <= n then

let c' = matrix_get arr2 0 j' in
eif less c' c then enter_var arr2 n j' c' (j'+1)
else enter_var arr2 n j c (j'+1)

else j

Fortunately, if the function is used in the same toplevel de�nition in which it is de�ned,
use-site requirements facilitate the inference of the intended postcondition.

The example liquid_gauss_harder.gadt poses too big a challenge for InvarGenT. To
get it pass the inference, we streamline one of the nested de�nitions, to not introduce another,
unnecessary level of nesting. This gives the example liquid_gauss2.gadt, which needs to be
run with the option -prefer_bound_to_local. Additionally, we can relax the constraint on
the processed portion of the matrix, coming from the restriction on the matrix size intended
in the original source of the liquid_gauss_harder.gadt example. In liquid_gauss.gadt,
the whole matrix is processed and the inferred type is most general, under the default settings
� no need to pass any options to InvarGenT. The reason liquid_gauss_harder.gadt is
too di�cult for InvarGenT is that the nesting interferes with the propagation of use-site
constraints to the postcondition of the nested de�nition (the loop inside rowMax). Infer-
ence works for liquid_gauss_harder_asserted.gadt, because the assertion provides the
required information to infer the rowMax invariants directly.
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