
Course of Programming in Java due Oct 7, 2011

Self-Avoiding Random Walk

Introduction to Programming in Java by Robert Sedgewick and Kevin Wayne provides on
page 109 the following program:

public class SelfAvoidingWalk

{

public static void main(String[] args)

{ // Do T random self-avoiding walks in an N-by-N lattice

int N = Integer.parseInt(args[0]);

int T = Integer.parseInt(args[1]);

int deadEnds = 0;

for (int t = 0; t < T; t++)

{

boolean[][] a = new boolean[N][N];

int x = N/2, y = N/2;

while (x > 0 && x < N-1 && y > 0 && y < N-1)

{ // Check for dead end and make a random move.

a[x][y] = true;

if (a[x-1][y] && a[x+1][y] && a[x][y-1] && a[x][y+1])

{ deadEnds++; break; }

double r = Math.random();

if (r < 0.25) { if (!a[x+1][y]) x++; }

else if (r < 0.50) { if (!a[x-1][y]) x–; }

else if (r < 0.75) { if (!a[x][y+1]) y++; }

else if (r < 1.00) { if (!a[x][y-1]) y–; }

}

}

System.out.println(100*deadEnds/T + "% dead ends");

}

}

Do one of the following exercises. Everyone should (ideally) select a different exercise.

Exercise 1. (Ex. 1.4.18 and 1.4.19 in the book.) Modify SelfAvoidingWalk to calculate and
print the average length of the paths and the average area of the smallest axis-oriented rectangle
that encloses the path. Keep separate the average lengths of escape paths and dead-end paths.

Exercise 2. Extend SelfAvoidingWalk to print, on the standard output, cell visit counts,
using “ASCII art”: if any cell was visited by maximally K random walks, divide the range 0..K
into several intervals and represent them by characters of increasing “density”, for example ., o,
x, # (and a space for unvisited cell). Remember not to count a single cell visit multiple times.
Try to avoid using conditional statements when computing the character code (e.g.., o, #) from
the number of visits, use indexing into an array of codes instead.

Exercise 3. (Ex. 1.4.31 in the book.) Self-avoiding walk length. Suppose that there is no limit
on the size of the grid. Run experiments to estimate the average walk length. (Rather than
using a large fixed lattice size, increase the size when it turns out not to be sufficient.)

Exercise 4. (Ex. 1.4.32 in the book.) Three-dimensional self-avoiding walks. Run experiments
to verify that the dead-end probability is 0 for a three-dimensional self-avoiding walk and to
compute the average walk length for various values of N.

1



Exercise 5. (Ex. 1.4.33 in the book.) Random walkers. Suppose that N random walkers,
starting in the center of an N-by-N grid, move one step at a time, choosing to go left, right, up,
or down with equal probability at each step. (They are not “self-avoiding”.) Write a program to
help formulate and test a hypothesis about the number of steps taken before all cells are
touched.

2


