
Course of Programming in Java

by Łukasz Stafiniak

Email: lukstafi@gmail.com, lukstafi@ii.uni.wroc.pl

Web: www.ii.uni.wroc.pl/~lukstafi

The Java Tutorials

Object-Oriented Programming Concepts

Language Basics

Classes and Objects

Interfaces and Inheritance

1

Object-Oriented Programming Concepts

Objects and Classes

A bicycle modeled as a software object

• "What possible states can this object be in?"

• "What possible behavior can this object perform?"

2

class Bicycle {

int cadence = 0;

int speed = 0;

int gear = 1;

void changeCadence(int newValue) {

cadence = newValue;

}

void changeGear(int newValue) {

gear = newValue;

}

void speedUp(int increment) {

speed = speed + increment;

}

void applyBrakes(int decrement) {

speed = speed - decrement;

}

void printStates() {

System.out.println("cadence:" + cadence + " speed:" + speed +

" gear:" + gear);

}

}

3

class BicycleDemo {

public static void main(String[] args) {

// Create two different Bicycle objects

Bicycle bike1 = new Bicycle();

Bicycle bike2 = new Bicycle();

// Invoke methods on those objects

bike1.changeCadence(50);

bike1.speedUp(10);

bike1.changeGear(2);

bike1.printStates();

bike2.changeCadence(50);

bike2.speedUp(10);

bike2.changeGear(2);

bike2.changeCadence(40);

bike2.speedUp(10);

bike2.changeGear(3);

bike2.printStates();

}

}

4

Inheritance

class MountainBike extends Bicycle {

// new fields and methods defining a mountain bike

}

take care to properly document the state and behavior that each super-
class defines – that code will not appear in the source file of each subclass

5

Interface

Interfaces are used to provide contracts.

interface Bicycle {

void changeCadence(int newValue);

void changeGear(int newValue);

void speedUp(int increment);

void applyBrakes(int decrement);

}

class ACMEBicycle implements

Bicycle {

// remainder of this class implemented as before

}

6

Language Basics

Variables

• Instance Variables (Non-Static Fields) Their values are unique to
each instance of a class (to each object); the currentSpeed of one
bicycle is independent from the currentSpeed of another.

• Class Variables (Static Fields) There is exactly one copy of this vari-
able in existence. The number of gears for a particular kind of bicycle:
static int numGears = 6; (The keyword final could be added to
indicate that the number of gears will never change.)

• Local Variables A method will often store its temporary state in local
variables: e.g. int count = 0; between the opening and closing braces
of a method. Not accessible from the rest of the class.

• Parameters In public static void main(String[] args) the args

variable is the parameter to main method.

7

Arrays

class MultiDimArrayDemo {

public static void main(String[] args) {

String[][] names = {{"Mr. ", "Mrs. ", "Ms. "},

{"Smith", "Jones"}};

System.out.println(names[0][0] + names[1][0]); //Mr. Smith

System.out.println(names[0][2] + names[1][1]); //Ms. Jones

}

}

The output from this program is:

Mr. Smith

Ms. Jones

8

class ArrayCopyDemo {

public static void main(String[] args) {

char[] copyFrom = { ’d’, ’e’, ’c’, ’a’, ’f’, ’f’, ’e’, ’i’, ’n’,

’a’, ’t’, ’e’, ’d’ };

char[] copyTo = new char[7];

System.arraycopy(copyFrom, 2, copyTo, 0, 7);

System.out.println(new String(copyTo));

}

}

The output from this program is:

caffein

9

Statements

void applyBrakes(){

if (isMoving) currentSpeed--;

}

class IfElseDemo {

public static void main(String[] args) {

int testscore = 76;

char grade;

if (testscore >= 90) {

grade = ’A’;

} else if (testscore >= 80) {

grade = ’B’;

} else if (testscore >= 70) {

grade = ’C’;

} else if (testscore >= 60) {

grade = ’D’;

} else {

grade = ’F’;

}

System.out.println("Grade = " + grade);

}

}

10

class SwitchDemo2 {

public static void main(String[] args) {

int month = 2;

int year = 2000;

int numDays = 0;

switch (month) {

case 1: case 3: case 5: case 7:

case 8: case 10: case 12:

numDays = 31;

break;

case 4: case 6: case 9: case 11:

numDays = 30;

break;

case 2:

if (((year % 4 == 0) && !(year % 100 == 0))

|| (year % 400 == 0))

numDays = 29;

else

numDays = 28;

break;

default:

System.out.println("Invalid month.");

break;

}

System.out.println("Number of Days = " + numDays);

}

}

11

public class StringSwitchDemo {

public static int getMonthNumber(String month) {

int monthNumber = 0;

if (month == null) { return monthNumber; }

switch (month.toLowerCase()) {

case "january": monthNumber = 1; break;

case "february": monthNumber = 2; break;

case "march": monthNumber = 3; break;

case "april": monthNumber = 4; break;

case "may": monthNumber = 5; break;

case "june": monthNumber = 6; break;

case "july": monthNumber = 7; break;

case "august": monthNumber = 8; break;

case "september": monthNumber = 9; break;

case "october": monthNumber = 10; break;

case "november": monthNumber = 11; break;

case "december": monthNumber = 12; break;

default: monthNumber = 0; break;

}

return monthNumber;

}

public static void main(String[] args) {

String month = "August";

int returnedMonthNumber = StringSwitchDemo.getMonthNumber(month);

if (returnedMonthNumber == 0) System.out.println("Invalid month");

else System.out.println(returnedMonthNumber);

}}

12

class EnhancedForDemo {

public static void main(String[] args){

int[] numbers = {1,2,3,4,5,6,7,8,9,10};

for (int item : numbers) {

System.out.println("Count is: " + item);

}

}

}

13

Questions

Questions: variables

1. The term "instance variable" is another name for ___.

2. The term "class variable" is another name for ___.

3. A local variable stores temporary state; it is declared inside a ___.

4. A variable declared within the opening and closing parenthesis of a
method signature is called a ____.

5. What are the eight primitive data types supported by the Java program-
ming language?

6. Character strings are represented by the class ___.

7. An ___ is a container object that holds a fixed number of values of a
single type.

14

Questions: operators

1. Consider the following code snippet.

arrayOfInts[j] > arrayOfInts[j+1]

Which operators does the code contain?

2. Consider the following code snippet.

int i = 10;

int n = i++%5;

a. What are the values of i and n after the code is executed?

b. What are the final values of i and n if instead of using the postfix increment oper-

ator (i++), you use the prefix version (++i))?

3. To invert the value of a boolean, which operator would you use?

4. Which operator is used to compare two values, = or == ?

5. Explain the following code sample: result = someCondition ?

value1 : value2;

15

Questions: expressions, statements

1. Operators may be used in building ___, which compute values.

2. Expressions are the core components of ___.

3. Statements may be grouped into ___.

4. The following code snippet is an example of a ___ expression.

1 * 2 * 3

5. Statements are roughly equivalent to sentences in natural languages, but
instead of ending with a period, a statement ends with a ___.

6. A block is a group of zero or more statements between balanced ___
and can be used anywhere a single statement is allowed.

16

Questions: control flow statements

1. The most basic control flow statement supported by the Java program-
ming language is the ___ statement.

2. The ___ statement allows for any number of possible execution paths.

3. The ___ statement is similar to the while statement, but evaluates its
expression at the ___ of the loop.

4. How do you write an infinite loop using the for statement?

5. How do you write an infinite loop using the while statement?

17

Classes

public class Bicycle {

// has three fields

public int cadence;

public int gear;

public int speed;

// has one constructor

public Bicycle(int startCadence, int startSpeed, int startGear) {

gear = startGear;

cadence = startCadence;

speed = startSpeed;

}

// has four methods

public void setCadence(int newValue) {

cadence = newValue;

}

public void setGear(int newValue) {

gear = newValue;

}

public void applyBrake(int decrement) {

speed -= decrement;

}

public void speedUp(int increment) {

speed += increment;

}

}

18

A class declaration for a MountainBike class that is a subclass of Bicycle might look like

this:

public class MountainBike extends Bicycle {

// has one field

public int seatHeight;

// has one constructor

public MountainBike(int startHeight, int startCadence, int

startSpeed, int startGear) {

super(startCadence, startSpeed, startGear);

seatHeight = startHeight;

}

// has one method

public void setHeight(int newValue) {

seatHeight = newValue;

}

}

19

Creating Objects

Instantiating a class means the same thing as creating an object – the
object needs to be initialized afterwards by initialization blocks and the
constructor.

Point originOne;

Point originOne = new Point(23, 94);

20

Rectangle rectOne = new Rectangle(originOne, 100, 200);

System.out.println("Width of rectOne: " + rectOne.width);

System.out.println("Height of rectOne: " + rectOne.height);

int height = new Rectangle().height;

System.out.println("Area of rectOne: " + rectOne.getArea());

int areaOfRectangle = new Rectangle(100, 50).getArea();

21

Explicit constructor invocation

public class Rectangle {

private int x, y;

private int width, height;

public Rectangle() {

this(0, 0, 0, 0);

}

public Rectangle(int width, int height) {

this(0, 0, width, height);

}

public Rectangle(int x, int y, int width, int height) {

this.x = x;

this.y = y;

this.width = width;

this.height = height;

}

...

}

22

Controlling Access to Members of a Class

Modifier Class Package Subclass World
public Y Y Y Y
protected Y Y Y N
no modifier Y Y N N
private Y N N N

23

Garbage Collector

• An object is eligible for garbage collection when there are no more refer-
ences to that object.

• References that are held in a variable are usually dropped when the vari-
able goes out of scope.

• Or, you can explicitly drop an object reference by setting the variable to
the special value null.

24

Class Members (i.e. static)

public class Bicycle{

private int cadence;

private int gear;

private int speed;

private int id;

private static int numberOfBicycles = 0;

public Bicycle(int startCadence, int startSpeed, int startGear){

gear = startGear;

cadence = startCadence;

speed = startSpeed;

// increment number of Bicycles and assign ID number

id = ++numberOfBicycles;

}

// new method to return the ID instance variable

public int getID() { return id; }

public static int getNumberOfBicycles() {

return numberOfBicycles;

} ...

}

25

Initializing Class Members

Either:

class Whatever {

public static varType myVar[] = new varType[7];

static {

//initialization code goes here

}

}

or:

class Whatever {

public static varType myVar[] = initializeClassVar();

private static varType initializeClassVar() {

//initialization code goes here

}

}

26

Initializing Instance Members

Either:

class Whatever {

public varType myVar[] = new varType[7];

{

//initialization code goes here

}

}

or:

class Whatever {

public varType myVar[] = initializeMemberVar();

protected final varType initializeMemberVar() {

//initialization code goes here

}

}

27

Annotations

Annotations provide data about a program that is not part of the program.

@Author(

name = "Benjamin Franklin",

date = "3/27/2003"

)

class MyClass() { }

...

@SuppressWarnings(value = "unchecked")

void myMethod() { }

If there is just one element named "value," then the name may be omitted:

@SuppressWarnings("unchecked")

void myMethod() { }

If an annotation has no elements, the parentheses may be omitted:

@Override

void mySuperMethod() { }

28

Questions: Classes and Objects

1. Consider the following class:

public class IdentifyMyParts {

public static int x = 7;

public int y = 3;

}

a. What are the class variables?

b. What are the instance variables?

c. What is the output from the following code:

IdentifyMyParts a = new IdentifyMyParts();

IdentifyMyParts b = new IdentifyMyParts();

a.y = 5; b.y = 6;

a.x = 1; b.x = 2;

System.out.println("a.y = " + a.y);

System.out.println("b.y = " + b.y);

System.out.println("a.x = " + a.x);

System.out.println("b.x = " + b.x);

System.out.println("IdentifyMyParts.x = " + IdentifyMyParts.x);

29

2. What’s wrong with the following program?

public class SomethingIsWrong {

public static void main(String[] args) {

Rectangle myRect;

myRect.width = 40;

myRect.height = 50;

System.out.println("myRect’s area is " + myRect.area());

}

}

3. The following code creates one array and one string object. How many
references to those objects exist after the code executes? Is either object
eligible for garbage collection?

...

String[] students = new String[10];

String studentName = "Peter Parker";

students[0] = studentName;

studentName = null;

...

4. How does a program destroy an object that it creates?

30

5. What is wrong with the following interface?

public interface House {

@Deprecated

void open();

void openFrontDoor();

void openBackDoor();

}

6. Consider this implementation of the House interface, shown in Question
1.

public class MyHouse implements House {

public void open() {}

public void openFrontDoor() {}

public void openBackDoor() {}

}

If you compile this program, the compiler complains that open has been
deprecated (in the interface). What can you do to get rid of that
warning?

31

Nested Classes

class OuterClass {

...

static class StaticNestedClass {

...

}

class InnerClass {

...

}

}

As a member of the OuterClass, a nested class can be declared private,
public, protected, or package private. (Recall that outer classes can only
be declared public or package private.)

OuterClass.StaticNestedClass nestedObject =

new OuterClass.StaticNestedClass();

32

33

Inner Classes

An instance of InnerClass has direct access to the methods and fields of
its enclosing instance of OuterClass.

OuterClass.InnerClass innerObject =

outerObject.new InnerClass();

34

public class DataStructure {

//create an array

private final static int SIZE = 15;

private int[] arrayOfInts = new int[SIZE];

public DataStructure() {

//fill the array with ascending ints

for (int i = 0; i < SIZE; i++) {

arrayOfInts[i] = i;

}

}

public void printEven() {

//print out values of even indices

InnerEvenIterator iterator =

this.new InnerEvenIterator();

while (iterator.hasNext()) {

System.out.println(

iterator.getNext() + " ");

}

}

//inner class implements

// the Iterator pattern

private class InnerEvenIterator {

//start stepping from the beginning

private int next = 0;

public boolean hasNext() {

//check if the current element

// is the last in the array

return (next <= SIZE - 1);

}

public int getNext() {

//record a value of an even index

int retValue = arrayOfInts[next];

//get the next even element

next += 2;

return retValue;

}

}

public static void main(String s[]) {

//fill the array with integer values

//print out only values of even indices

DataStructure ds = new DataStructure();

ds.printEven();

}

}

35

Enums

public enum Planet {

MERCURY (3.303e+23, 2.4397e6),

VENUS (4.869e+24, 6.0518e6),

EARTH (5.976e+24, 6.37814e6),

MARS (6.421e+23, 3.3972e6),

JUPITER (1.9e+27, 7.1492e7),

SATURN (5.688e+26, 6.0268e7),

URANUS (8.686e+25, 2.5559e7),

NEPTUNE (1.024e+26, 2.4746e7);

private final double mass; // in kilograms

private final double radius; // in meters

Planet(double mass, double radius) {

this.mass = mass;

this.radius = radius;

}

private double mass() { return mass; }

private double radius() { return radius; }

// universal gravitational constant

public static final double G = 6.673E-11;

double surfaceGravity() {

return G * mass / (radius * radius);

}

double surfaceWeight(double otherMass) {

return otherMass * surfaceGravity();

}

public static void main(String[] args) {

if (args.length != 1) {

System.err.println(

"Usage: java Planet <weight>");

System.exit(-1);

}

double earthWeight =

Double.parseDouble(args[0]);

double mass =

earthWeight/EARTH.surfaceGravity();

for (Planet p : Planet.values())

System.out.printf(

"Your weight on %s is %f%n", p,

p.surfaceWeight(mass));

}

}

36

Questions

1. The program Problem.java doesn’t compile. What do you need to do
to make it compile? Why?

public class Problem {

String s;

static class Inner {

void testMethod() {

s = "Set from Inner";

}

}

}

2. Use the Java API documentation for the Box class (in the javax.swing

package) to help you answer the following questions.

a. What static nested class does Box define?

b. What inner class does Box define?

c. What is the superclass of Box’s inner class?

d. Which of Box’s nested classes can you use from any class?

e. How do you create an instance of Box’s Filler class?

37

Interfaces

public interface OperateCar {

// constant declarations, if any

// method signatures

int turn(Direction direction, // An enum with values RIGHT, LEFT

double radius, double startSpeed, double endSpeed);

int changeLanes(Direction direction, double startSpeed, double endSpeed);

int signalTurn(Direction direction, boolean signalOn);

int getRadarFront(double distanceToCar, double speedOfCar);

int getRadarRear(double distanceToCar, double speedOfCar);

......

// more method signatures

}

Interfaces can be implemented by classes or extended by other interfaces.

public class OperateBMW760i implements OperateCar {

// the OperateCar method signatures, with implementation

int signalTurn(Direction direction, boolean signalOn) {

//code to turn BMW’s LEFT/RIGHT turn indicator lights on/off

}

// other members, as needed -- for example, helper classes

// not visible to clients of the interface

}

38

Uses of interfaces:

• The robotic car example shows an interface being used as an industry
standard Application Programming Interface (API).

• APIs are also common in commercial software products. E.g. a
package of digital image processing methods that are sold to companies
making end-user graphics programs.

• Interfaces allow multiple inheritance by (for example) forwarding.

• Interfaces simplify the use of “plug-in style” alternative implementations.

While a class can extend only a single class, an interface can extend, and a
class can implement, multiple interfaces.

39

public interface Relatable {

// this (object calling isLargerThan) and

// other must be instances of the same

class

// returns 1, 0, -1 if this is greater

// than, equal to, or less than other

public int isLargerThan(Relatable other);

}

public class RectanglePlus implements

Relatable {

public int width = 0;

public int height = 0;

public Point origin;

// four constructors

public RectanglePlus() {

origin = new Point(0, 0);

}

public RectanglePlus(Point p) {

origin = p;

}

public RectanglePlus(int w, int h) {

origin = new Point(0, 0);

width = w;

height = h;

}

public RectanglePlus(Point p,

int w, int h) {

origin = p;

width = w;

height = h;

}

// a method for moving the rectangle

public void move(int x, int y) {

origin.x = x;

origin.y = y;

}

// a method for computing the area

// of the rectangle

public int getArea() {

return width * height;

}

// a method required to implement the

// Relatable interface

public int isLargerThan(Relatable other) {

RectanglePlus otherRect =

(RectanglePlus)other;

if (this.getArea() >

otherRect.getArea())

return 1;

else return 0;

}

}

40

Inheritance

A class that is derived from another class is called a subclass (also a derived
class, extended class, or child class). The class from which the subclass is
derived is called a superclass (also a base class or a parent class).

public class MountainBike extends Bicycle {

// the MountainBike subclass adds one field

public int seatHeight;

// the MountainBike subclass has one constructor

public MountainBike(int startHeight, int startCadence, int

startSpeed,

int startGear) {

super(startCadence, startSpeed, startGear);

seatHeight = startHeight;

}

// the MountainBike subclass adds one method

public void setHeight(int newValue) {

seatHeight = newValue;

}

}

41

42

• The inherited fields can be used directly, just like any other fields.

• You can declare a field in the subclass with the same name as the one in
the superclass, thus hiding it (not recommended).

• You can declare new fields in the subclass that are not in the superclass.

• The inherited methods can be used directly as they are.

• You can write a new instance method in the subclass that has the same
signature as the one in the superclass, thus overriding it.

• You can write a new static method in the subclass that has the same sig-
nature as the one in the superclass, thus hiding it.

• You can declare new methods in the subclass that are not in the super-
class.

• You can write a subclass constructor that invokes the constructor of the
superclass, either implicitly or by using the keyword super.

43

• using a subtype in context of a supertype

Bicycle bike = new MountainBike(); // implicit cast

if (bike instanceof MountainBike) {

MountainBike myBike = (MountainBike)obj; //explicit

cast

}

• An overriding method can return a subtype of the type returned by the
overridden method (covariant return type).

• Using the @Override annotation, if the compiler detects that the
method does not exist in one of the superclasses, it will generate an
error.

• Defn. a method with the same signature as a method in a superclass:

Superclass Instance Method Superclass Static Method
Subclass Instance Method Overrides Generates compile-time error
Subclass Static Method Generates compile-time error Hides

44

Another MountainBike:

public class MountainBike extends Bicycle{

private String suspension;

public MountainBike(int startCadence, int startSpeed, int startGear, String

suspensionType){

super(startCadence, startSpeed, startGear);

this.setSuspension(suspensionType);

}

public String getSuspension(){

return this.suspension;

}

public void setSuspension(String suspensionType){

this.suspension = suspensionType;

}

public void printDescription(){

super.printDescription();

System.out.println("The MountainBike has a " + getSuspension()

+ " suspension.");

}

}

45

Another subclass of Bicycle:

public class RoadBike extends Bicycle{

private int tireWidth; // In millimeters (mm)

public RoadBike(int startCadence, int startSpeed, int startGear, int

newTireWidth){

super(startCadence, startSpeed, startGear);

this.setTireWidth(newTireWidth);

}

public int getTireWidth(){

return this.tireWidth;

}

public void setTireWidth(int newTireWidth){

this.tireWidth = newTireWidth;

}

public void printDescription(){

super.printDescription();

System.out.println("The RoadBike has " + getTireWidth()

+ " MM tires.");

}

}

Recall also how super was used in MountainBike’s constructor.

46

public class TestBikes {

public static void main(String[] args){

Bicycle bike01, bike02, bike03;

bike01 = new Bicycle(20, 10, 1);

bike02 = new MountainBike(20, 10, 5, "Dual");

bike03 = new RoadBike(40, 20, 8, 23);

bike01.printDescription();

bike02.printDescription();

bike03.printDescription();

}

}

The following is the output from the test program:

Bike is in gear 1 with a cadence of 20 and travelling at a speed of 10.

Bike is in gear 5 with a cadence of 20 and travelling at a speed of 10.

The MountainBike has a Dual suspension.

Bike is in gear 8 with a cadence of 40 and travelling at a speed of 20.

The RoadBike has 23 MM tires.

47

The Keyword super

public class Superclass {

public void printMethod() {

System.out.println("Printed in Superclass.");

}

}

Here is a subclass, called Subclass, that overrides printMethod():

public class Subclass extends Superclass {

public void printMethod() { //overrides printMethod in Superclass

super.printMethod();

System.out.println("Printed in Subclass");

}

public static void main(String[] args) {

Subclass s = new Subclass();

s.printMethod();

}

}

48

Object as a Superclass

• protected Object clone() throws CloneNotSupportedException

Creates and returns a copy of this object.

• public boolean equals(Object obj)

Indicates whether some other object is "equal to" this one.

• protected void finalize() throws Throwable

Called by the garbage collector on an object when garbage
collection determines that there are no more references to the object

• public final Class getClass()

Returns the runtime class of an object.

• public int hashCode()

Returns a hash code value for the object.

• public String toString()

Returns a string representation of the object.

49

Final Classes and Methods

class ChessAlgorithm {

enum ChessPlayer { WHITE, BLACK }

...

final ChessPlayer getFirstPlayer() {

return ChessPlayer.WHITE;

}

...

}

50

Abstract Methods and Classes

An abstract method is a method that is declared without an implementation:

abstract void moveTo(double deltaX, double deltaY);

If a class includes abstract methods, or inherits abstract methods and does
not implement (override) them, the class itself must be declared abstract:

public abstract class GraphicObject {

// declare fields

// declare non-abstract methods

abstract void draw();

}

A class can implement an interface partially by being abstract.

abstract class X implements Y {

// implements all but one method of Y

}

class XX extends X {

// implements the remaining method in Y

}

51

Abstract classes provide part of functionality, the rest provided by subclasses:

abstract class GraphicObject {

int x, y;

...

void moveTo(int newX, int newY) {

...

}

abstract void draw();

abstract void resize();

}

class Circle extends GraphicObject {

void draw() {

...

}

void resize() {

...

}

}

class Rectangle extends GraphicObject {

void draw() {

...

}

void resize() {

...

}

}

52

Questions

1. What methods would a class that implements the java.lang.CharSe-

quence interface have to implement?

2. What is wrong with the following interface?

public interface SomethingIsWrong {

void aMethod(int aValue){

System.out.println("Hi Mom");

}

}

3. Fix the interface in question 2.

4. Is the following interface valid?

public interface Marker {

}

53

5. Consider the following two classes:

public class ClassA {

public void methodOne(int i) {

}

public void methodTwo(int i) {

}

public static void methodThree(int i) {

}

public static void methodFour(int i) {

}

}

public class ClassB extends ClassA {

public static void methodOne(int i) {

}

public void methodTwo(int i) {

}

public void methodThree(int i) {

}

public static void methodFour(int i) {

}

}

a. Which method overrides a method in the superclass?

b. Which method hides a method in the superclass?

c. What do the other methods do?

54

6. Consider the Card, Deck, and DisplayDeck classes. What Object

methods should each of these classes override?

55

