
Course of Programming in Java

by Łukasz Stafiniak

Email: lukstafi@gmail.com, lukstafi@ii.uni.wroc.pl

Web: www.ii.uni.wroc.pl/~lukstafi

The Java Programming Language

Chapter 12: Exceptions and Assertions

Chapter 18: Packages

Chapter 19: Documentation Comments

by Ken Arnold, James Gosling, David Holmes

1

Exceptions

• Exceptions are objects whose classes inherit from Throwable

• Error and RuntimeException exceptions are not checked by the com-
piler (unchecked), remaining exceptions need to be provided in the
throws clause if they can arise but are not caught.

• For unchecked exceptions, you should be able to find some existing
RuntimeException. For application exceptions, define checked ones.

2

public class NoSuchAttributeException extends Exception {

public final String attrName;

public NoSuchAttributeException(String name) {

super("No attribute named "" + name + "" found");

attrName = name;

}

}

...

public void replaceValue(String name, Object newValue)

throws NoSuchAttributeException

{

Attr attr = find(name); // look up the attr

if (attr == null) // it isn’t found

throw new NoSuchAttributeException(name);

attr.setValue(newValue);

}

3

• Execution is terminated immediately: no computations “to the right” of a
computed throw expression are performed.

• Exceptions can be of a subclass of one of classes listed after throws.

• If you invoke a method that lists a checked exception in its throws

clause, you can:

◦ Catch the exception and handle it.

◦ Catch the exception and map it into one of your exceptions by
throwing an exception of a type declared in your own throws clause.

◦ Declare the exception in your throws clause and let the exception
pass through your method.

• En overriding or implementing method cannot declare more checked
exceptions in the throws clause than the inherited method does.

4

Object value = new Integer(8);

try {

attributedObj.replaceValue("Age", value);

} catch (NoSuchAttributeException e) {

// shouldn’t happen, but recover if it does

Attr attr = new Attr(e.attrName, value);

attributedObj.add(attr);

} catch (Exception e) {

System.err.println ("Unexpected exn. in

replaceValue.");

throw e;

}

• Multiple catch clauses are tried in order: always put a more specific
exception in front of a more general one (a superclass).

5

public boolean searchFor(String file, String word)

throws StreamException

{

Stream input = null;

try {

input = new Stream(file);

while (!input.eof())

if (input.next().equals(word))

return true;

return false; // not found

} finally {

if (input != null)

input.close();

}

}

• finally clause is run at every exit from the try block: can also be used
to clean up for break, continue, and return

6

• finally “remembers” the reason it was reached: normal flow of execu-
tion, an exception, a return, break or continue, and proceeds with
that reason after it finishes

– but any transfer of control triggered inside the finally block super-
sedes the initial reason:

try {

// ... do something ...

return 1;

} finally {

return 2;

}

7

public double[] getDataSet(String setName)

throws BadDataSetException

{

String file = setName + ".dset";

FileInputStream in = null;

try {

in = new FileInputStream(file);

return readDataSet(in);

} catch (IOException e) {

throw (BadDataSetException)

new BadDataSetException().initCause(e);

} finally {

try {

if (in != null)

in.close();

} catch (IOException e) {

; // ignore: we either read the data OK

// or we’re throwing BadDataSetException

}

}

}

// ... definition of readDataSet ...

8

(Exercise 12.2 in the book) Decide which way the following conditions should
be communicated to the programmer:

• Someone tries to set the capacity of a PassengerVehicle object to a
negative value.

• A syntax error is found in a configuration file that an object uses to set
its initial state.

• A method that searches for a programmer-specified word in a string array
cannot find any occurrence of the word.

• A file provided to an "open" method does not exist.

• A file provided to an "open" method exists, but security prevents the
user from using it.

• During an attempt to open a network connection to a remote server pro-
cess, the remote machine cannot be contacted.

• In the middle of a conversation with a remote server process, the network
connection stops operating.

9

Assertions

public boolean remove(Object value) {

assert count >= 0 : "count below zero";

if (value == null)

throw new NullPointerException("value");

int orig = count;

boolean foundIt = false;

try {

// remove element from list (if it’s there)

return foundIt;

} finally {

assert ((!foundIt && count == orig) ||

count == orig - 1);

}

}

Do not execute side-effects inside assert:
assertions are turned off by default. Turn on by passing:

java -enableassertions or java -ea.

10

Packages

• Groups of related interfaces and classes.

• Create namespaces that help avoid naming conflicts between types (allow
popular names like List and Constants).

• Provide a protection domain for developing application frameworks (can
restrict access “exported” to the outside world).

• At the top of a .java source file for package attr:

package attr;

• Below the package declarations:

import java.util.*;

• Packages often named after Internet domains associated with the project:

package com.magic.japan.attr;

• Recall the default – package – access level. Only accessible methods are
overridden in subclasses (e.g. only protected and public from a dif-
ferent package).

• Nesting of packages does not provide additional functionality.

11

Multiple File Projects

• A compiled class C of nested package a.b should be in file
path/a/b/C.class, where path is either the current directory, or the
system variable CLASSPATH if set, or is given by the command-line option
-cp path or -classpath path if provided.

◦ Compiler looks for source files there also, or under -sourcepath if
provided.

• Several alternative paths can be provided, separated by ; under Windows
and : under Linux.

• The compiler puts files in the same directory as the source file, unless
passed option -d cpath , then puts a class C of nested package a.b into
file cpath/a/b/C.class, etc.

• An inner class N of class C is put into its own file N$C.class.

12

Example Separating Source and Class Files: Windows

C:> dir

classes\ lib\ src\

C:> dir src

farewells\

C:> dir src\farewells

Base.java GoodBye.java

C:> dir lib

Banners.jar

C:> dir classes

C:> javac -sourcepath src -classpath classes;lib\Banners.jar\

src\farewells\GoodBye.java -d classes

C:> dir classes

farewells\

C:> dir classes\farewells

Base.class GoodBye.class

13

Example Separating Source and Class Files: Linux

% ls classes/

lib/ src/

% ls src

farewells/

% ls src/farewells

Base.java GoodBye.java

% ls lib

Banners.jar

% ls classes

% javac -sourcepath src -classpath classes:lib/Banners.jar \

src/farewells/GoodBye.java -d classes

% ls classes

farewells/

% ls classes/farewells

Base.class GoodBye.class

14

Java ARchive files

• The Java Archive (JAR) file format enables you to bundle multiple files
into a single archive file. Typically a JAR file contains the class files and
auxiliary resources associated with applets and applications.

• The files are compressed based on the ZIP format.

• The input-file(s) argument can contain the wildcard * symbol. Con-
tents of directories are added to the archive recursively. main-class

contains the public static void main(String[] args) method.

• jar cfe myapp.jar mypack.MyApp mypack / java -jar myapp.jar

Operation Command
To create a JAR file jar cfe jar-file main-class input-file(s)

To view the contents of a JAR file jar tf jar-file

To extract the contents of a JAR file jar xf jar-file

To extract specific files from a JAR file jar xf jar-file archived-file(s)

To run an application packaged as a JAR file
(requires the Main-class manifest header)

java -jar app.jar

To invoke an applet packaged as a JAR file <applet code=AppletClassName.class

archive="JarFileName.jar"

width=width height=height

>

</applet>

15

Documentation Comments

/**

* The first sentence of a javadoc comment should be a

good

* summary of the identifier. The spaces and stars that

can

* start a comment line are ignored.

*/

public void identifier() throws IntentUnknownException;

• The javadoc comments are the comments between /** and */.

• Standard HTML tags can be used.

◦ To insert the character <, >, or & use <, >, or &.

For @ at the beginning of a line, use @.

• Only doc comments that immediately precede a class, interface, method,
or field are processed.

16

Javadoc Tags

• Block tags start with @, as in @see or @deprecated and mark special
paragraphs, links to other documentation, etc.

• In-line tags {@tag-name args} can occur anywhere within a documen-
tation comment and are used to apply special formatting, such as
{@code}, or to produce special text, such as a hypertext link using
{@link}.

• The @see tag creates a cross-reference link to other javadoc-documented
identifier. Specify members of types by a # before the member name.
Overloaded methods need their signatures (argument types).

@see #getName

@see Attr

@see com.magic.attr.Attr

@see com.magic.attr.Deck#DECK_SIZE

@see com.magic.attr.Attr#getName

@see com.magic.attr.Attr#Attr(String)

@see com.magic.attr.Attr#Attr(String, Object)

@see com.magic.attr

@see attribute Specification

@see "The Java Developer’s Almanac"

17

• {@link package.class#member [label]} works like @see, but
embedded in text, e.g.

Changes the value returned by calls to {@link

#getValue}.

• The @param tag documents a single parameter to a method or con-
structor, or else a type parameter in a class, interface, or generic method:

@param max The maximum number of words to read.

When documenting type parameters you should use < and > around the
type parameter name:

@param <E> The element type of this List

• Documenting the @return value of a method.

18

• Equivalent: a method @throws an @exception:

@throws UnknownName The name is unknown.

@throws java.io.IOException

Reading the input stream failed; this exception

is passed through from the input stream.

@throws NullPointerException

The name is <code>null</code>.

• Code using a @deprecated (unfit for continued use) type, constructor,
method, or field may generate a warning when compiled.

/**

* Do what the invoker intends.

*

* @deprecated You should use dwishm instead

* @see #dwishm

*/

@Deprecated // annotation is upper-case

public void dwim() throws IntentUnknownException;

◦ using together with @Deprecated annotation guarantees the compiler
warning

• You can specify as many @author paragraphs as you desire.

19

• Specify @version for a class or interface. The @since tag lets you
specify at which versionthe tagged entity was added to your system.

• In {@literal text} the text is not interpreted as HTML source (can use
can use &, <, and >).

• The {@code text} in-line tag behaves like {@literal text} except
that text is printed in code font.

• The {@value static-field-name} tag is replaced by the actual value
of the specified constant static field. (Syntax as in @see.)

The valid range is 0 to {@value java.lang.Short#MAX_VALUE}.

◦ Value of constant static field being documented is just {@value}.

• The {@docRoot} tag will be replaced with a relative path to the top of
the generated documentation tree.

Check out our license.

20

• Not supplying a comment for a subclass/subinterface or its overriding
method, copies the comment from the superclass.

◦ The {@inheritDoc} tag copies a documentation comment from the
supertype – which you can refine providing more information.

/**

* @return {@inheritDoc}

* This implementation never returns null.

*/

◦ @throws comments are inherited only for exceptions still present in
the throws clause.

• A package-info.java file should contain a single package statement,
preceded by a doc comment – documentation for the overall package
(part of the package summary page that is produced by javadoc).

◦ Any @see or {@link} tag that names a language element must use
the fully qualified form of the entity’s name, even for classes and
interfaces within the package itself.

21

Usage: javadoc

• -d: directory where the documentation will be placed

• -sourcepath: where to find sources (if other than current directory)

• -subpackages: run on subpackages recursively

• packages, or class files (e.g. C.java); can have wildcards *

• -exclude: do not process given packages

% javadoc -d /home/html -sourcepath /home/src -subpackages

java -exclude java.net:java.lang

22

