
Course of Programming in Java

by Łukasz Stafiniak

Email: lukstafi@gmail.com, lukstafi@ii.uni.wroc.pl

Web: www.ii.uni.wroc.pl/~lukstafi

The Java Programming Language

Chapter 11: Generic Types

Chapter 21: Collections

by Ken Arnold, James Gosling, David Holmes

1



Covariance and Contravariance

class Fruit { }

class Apple extends Fruit {

public void bite () {

System.out.println ("Apple.bite");

}

}

class Farmer {

public Apple sell () {

return new Apple();

}

}

class Gardener extends Farmer {

public Fruit sell () {

return new Fruit(); // does not compile
}

}

public class Lec6a {

static void tasteFrom (Farmer f) {

Apple a = f.sell ();

a.bite ();

}

public static void main (String[] args) {

tasteFrom (new Gardener ()); }

}

2



• class S extends T means S is a subtype of T

◦ type theorists write this S <: T

◦ "any term of type S can safely be used in a context where a term of
type T is expected" or "every value described by S is also described
by T"

• Covariant - Covariance is when a more specific type, S, can be used
when a more generic type, T, is specified.

◦ A function that returns S can be used in the same context as a func-
tion that returns T.

• Contravariant - When the more generic type, T, can be used where the
more specific type, S, is specified.

◦ A function that takes a T can be used in the same context as a func-
tion that takes a S.

• Invariant - The type specified is the only type that can be used.

3



Covariance example (covariant in return type) (fixed)

class Fruit { }

class Apple extends Fruit {

public void bite () {

System.out.println ("Apple.bite");

}

}

class Farmer {

public Fruit sell () {

return new Fruit();

}

}

class Gardener extends Farmer {

public Apple sell () {

return new Apple();

}

}

public class Lec6a {

static void tasteFrom (Farmer f) {

Fruit a = f.sell ();

// a.bite ();

}

public static void main (String[] args) {

tasteFrom (new Gardener ());

}

}

4



Contravariance example (broken)

class Vegetables {

public void plate () {

System.out.println ("Plate of vegetables.");

}

}

class FishWithVegs extends Vegetables {

public void plate () {

System.out.println ("Fish on a plate.");

}

}

class Vegetarian {

public void eat (Vegetables vegs) {

vegs.plate();

}

}

class Pescatarian extends Vegetarian {

public void eat (FishWithVegs fish) {

fish.plate();

}

}

public class Lec6b {

public static void main (String[] args) {

(new Vegetarian()).eat (new FishWithVegs ());

}

}

5



Contravariance example (contravariant in argument type) (fixed)

class FishOrVegs {

public void plate () {

System.out.println ("Fish on a plate.");

}

}

class Vegetables extends FishOrVegs {

public void plate () {

System.out.println ("Plate of vegetables.");

}

}

class Vegetarian {

public void eat (Vegetables vegs) {

vegs.plate();

}

}

class Pescatarian extends Vegetarian {

public void eat (FishOrVegs fish) {

fish.plate();

}

}

public class Lec6c {

public static void main (String[] args) {

(new Pescatarian()).eat (new Vegetables ());

}

}

6



Well, but it still does not work as expected!

class FishOrVegs {

public void plate () {

System.out.println ("Fish on a plate.");

}

}

class Vegetables extends FishOrVegs {

public void plate () {

System.out.println ("Plate of vegetables.");

}

}

class Vegetarian {

public void eat (Vegetables vegs) {

System.out.print ("Vegetarian: ");

vegs.plate();

}

}

class Pescatarian extends Vegetarian {

public void eat (FishOrVegs fish) {

System.out.print ("Pescatarian: ");

fish.plate();

}

}

public class Lec6c {

public static void main (String[] args) {

(new Pescatarian()).eat (new Vegetables ());

}

}

7



Finally a workaround:

class FishOrVegs {

public void plate () {

System.out.println ("Fish on a plate.");

}

}

class Vegetables extends FishOrVegs {

public void plate () {

System.out.println ("Plate of vegetables.");

}

}

class Vegetarian {

public void eat (Vegetables vegs) {

System.out.print ("Vegetarian: ");

vegs.plate();

}

}

class Pescatarian extends Vegetarian {

public void eat (FishOrVegs fish) {

System.out.print ("Pescatarian: ");

fish.plate();

}

public void eat (Vegetables vegs) {

eat ((FishOrVegs)vegs);

}

}

public class Lec6d {

public static void main (String[] args) {

Vegetarian client = new Pescatarian();

client.eat (new Vegetables ()); }

}

8



Generic Types

class Cell<E> {

private Cell<E> next;

private E element;

public Cell(E element) {

this.element = element;

}

public Cell(E element, Cell<E> next) {

this.element = element;

this.next = next;

}

public E getElement() {

return element;

}

public void setElement(E element) {

this.element = element;

}

public Cell<E> getNext() {

return next;

}

public void setNext(Cell<E> next) {

this.next = next;

}

}

9



• E is a type variable, it can be any identifier like ElementType, but single
letters are good style (E for an element type, K for a key type, V for a
value type, T for a general type).

• A generic type declaration can contain multiple type parameters, sepa-
rated by commas, e.g. interfaceMap<K, V>

• Cell<E> is read as "Cell of E".

• To create an actual Cell tell what specific type to replace E with, e.g.

Cell<String> strCell = new Cell<String>("Hello");

• Cell<String> and Cell<Number> are not two separate classes.

◦ At runtime, no generic type information is present in objects.

10



class SingleLinkQueue<E> {

protected Cell<E> head;

protected Cell<E> tail;

public void add(E item) {

Cell<E> cell = new

Cell<E>(item);

if (tail == null)

head = tail = cell;

else {

tail.setNext(cell);

tail = cell;

}

}

public E remove() {

if (head == null)

return null;

Cell<E> cell = head;

head = head.getNext();

if (head == null)

tail = null; //empty queue

return cell.getElement();

}

}

...

SingleLinkQueue<String> queue =

new SingleLinkQueue<String>();

queue.add("Hello");

queue.add("World");

Now there is no need for a cast when invoking
remove:

String hello = queue.remove();

Nor is it possible to add the wrong kind of ele-
ment to the queue:

queue.add(25); // INVALID

11



Limitations Related to Type Erasure

• A generic class with a type parameter E cannot use E in the type of a
static field or anywhere within a static method or static initializer.

• If SingleLinkQueue<E> has a static merge method, it must be invoked
as SingleLinkQueue.merge.

• You cannot instantiate E or create an array of E: There is a single class
with a single definition of toArray below, and the compiler has to know
at compile time what code to generate to create any objects or arrays.

Question 1. Why creating an array here is a problem? It doesn’t need to create an E object

since “arrays are initialized to null”.

class SingleLinkQueue<E> {

// ...

public E[] toArray() {

int size = 0;

for (Cell<E> c = head; c != null; c = c.getNext())

size++;

E[] arr = new E[size]; // INVALID: won’t compile

// ... copy in elements ...

}

}

12



In an inner class, the type variables of the outer class declaration are acces-
sible to it and can be used directly, e.g.:

class SingleLinkQueue<E> {

class Cell {

private Cell next;

private E element;

public Cell(E element) {

this.element = element;

}

public Cell(E element,

Cell next) {

this.element = element;

this.next = next;

}

public E getElement() {

return element;

}

/* ..rest of Cell methods.. */

}

protected Cell head;

protected Cell tail;

public void add(E item) {

Cell cell = new Cell(item);

if (tail == null)

head = tail = cell;

else {

tail.setNext(cell);

tail = cell;

}

}

public E remove() {

if (head == null)

return null;

Cell cell = head;

head = head.getNext();

if (head == null)

tail = null; //empty queue

return cell.getElement();

}

/* ... rest of methods ... */

}

13



Bounded Type Parameters and Variance

• A sorted collection would restrict its type parameter to be a type that
implements Comparable (Comparable is an upper bound of E below):

interface SortedCollection<E extends Comparable<E>> {

// ... sorted collection methods ...

}

• Generic type parameters are invariant: even though Integer is a subtype
of Number, List<Integer> is not a subtype of List<Number>. Contrast
this with arrays, where Integer[] is a subtype of Number[].

• We can declare a List of an arbitrary element type that is compatible
with Number using the type argument wildcard ’?’:

static double sum(List<? extends Number> list) {

double sum = 0.0;

for (Number n : list)

sum += n.doubleValue();

return sum;

}

14



• Wildcard upper bounds <? extends E> are covariant, just like arrays

• Wildcard lower bounds <? super E> are contravariant: when the bound
gets more concrete, the type gets more general.

interface SortedCollection<E extends Comparable<? super E>> {

// ... sorted collection methods ...

}

If class Value implements Comparable<Object> then it can still correctly compare two

Value objects, in fact it can do more than that.

15



• Because the wildcard represents an unknown type, you can’t do anything
that requires the type to be known (unbounded or upper-bounded case):

SingleLinkQueue<?> strings =

new SingleLinkQueue<String>();

strings.add("Hello"); // INVALID: won’t compile

SingleLinkQueue<? extends Number> numbers =

new SingleLinkQueue<Number>();

numbers.add(Integer.valueOf(25)); // INVALID: won’t compile

• Given a lower-bound, the wildcard is known to be the same as, or a super
type of, the bound:

static void addString(SingleLinkQueue<? super String>

sq) {

sq.add("Hello"); // OK: sq handles strings (or more)

}

16



Example: Producer Extends

public class Stack<E> {

public Stack() { /* ... */ }

public void push(E e) { /* ... */ }

public E pop() { /* ... */ }

public boolean isEmpty() { /* ... */ }

// Wildcard type for parameter that is an E producer

public void pushAll(Iterable<? extends E> src) {

for (E e : src) push(e);

}

}

// ...

Stack<Number> numberStack = new Stack<Number>();

Iterable<Integer> integers = ... ;

numberStack.pushAll(integers);

17



Example: Consumer Super

public class Stack<E> {

public Stack() { /* ... */ }

public void push(E e) { /* ... */ }

public E pop() { /* ... */ }

public boolean isEmpty() { /* ... */ }

// Wildcard type for parameter that is an E consumer

public void popAll(Collection<? super E> dst) {

while (!isEmpty())

dst.add(pop());

}

}

// ...

Stack<Number> numberStack = new Stack<Number>();

Collection<Object> objects = ... ;

numberStack.popAll(objects);

18



Generic Methods and Constructors

• associating parameter type with return type:

public <T> T[] toArray(T[] arr) {

Object[] tmp = arr;

int i = 0;

for (Cell<E> c = head;

c != null && i < arr.length;

c = c.getNext())

tmp[i++] = c.getElement();

return arr;

}

• associating two parameter types::

public static <E> void merge(SingleLinkQueue<E> d,

SingleLinkQueue<? extends E> s)

{ /* ... merge s elements into d ... */ }

• Type parameters for methods are inferred, but can be passed explicitly: it
requires using qualified names (e.g. with a variable, this, or super)

SingleLinkQueue<String> q = this.<String>merge(d, s);

19



• Raw types: for compatibility with old code, type parameters can be
omitted: List is roughly equivalent to List<?> (use the generic form in
new code).

• The erasure of a type variable is the erasure of its bound (for unbounded,
Object); signature erasures:

class Base<T> {

void m(int x) { }

void m(T t) { }

void m(String s) { }

<N extends Number> void m(N n)

{ }

void m(SingleLinkQueue<?> q)

{ }

}

Resulting run-time method signatures:

void m(int x) { }

void m(Object t) { }

void m(String s) { }

void m(Number n) { }

void m(SingleLinkQueue q) { }

• A class cannot have several methods with the same signature erasure.

• Cannot override a nongeneric method with generic one.

• Informally, one method is more specific than another if all calls to the
first method could be handled by the second. Most specific is selected.

20



Example (argument type covariant in method type parameter)

public class Union {

public static <E> Set<E> union(Set<? extends E> s1,

Set<? extends E> s2)

{ /* ... */ }

}

we can:

Set<Integer> integers = ... ;

Set<Double> doubles = ... ;

Set<Number> numbers =

Union.<Number>union(integers, doubles);

(We need to provide above the type parameter using Union.<Number>union

because type inference is insufficient.)

21



Class Extension and Generic Types

• General extension:

class GeneralList<E> implements List<E> { /* ... */ }

• Nongeneric extension of a particular instance:

class StringList implements List<String> { /* ... */ }

• Generic extension of nongeneric type:

class LocalEventService<T extends Event> extends

AbstractEventService { /* ... */ }

• A class can implement only one raw variant of a generic interface.

class Value implements Comparable<Value> { /* ... */ }

class ExtendedValue extends Value

implements Comparable<ExtendedValue> { /* INVALID! */ }

◦ Here it should be class Value implements Comparable<? super Value>

22



Collections

Collections (aka. containers) are mostly in the java.util package. It has
interfaces:

• Collection<E> provides add, remove, size, toArray...

• Set<E>: no duplicate elements can be present, elements not necessarily
stored in any particular order.

• SortedSet<E> A set whose elements are sorted (extends Set<E>).

• List<E>: stay in a particular order unless the list is modified.

• Queue<E> A collection with an implied ordering in its elements, has a
head element and operations like peek and poll.

• Map<K,V> A mapping from keys to at most one value each (does not
extend Collection, although maps can be viewed as collections.)

• SortedMap<K,V> A map whose keys are sorted (extends Map<K,V>).

• Iterator<E> An interface for objects that return elements from a collec-
tion one at a time.

23



• ListIterator<E> An iterator for List objects that adds useful List-
related methods. Returned by List.listIterator.

• Iterable<E> An object that provides an Iterator and so can be used
in an enhanced for statement. (Defined in the java.lang package.)

Specific implementations can refuse to execute some operations by throwing
the unchecked java.lang.UnsupportedOperationException.

• HashSet<E> General-purpose implementation for Set: searching, adding,
and removing are mostly insensitive to the size of the contents.

• TReeSet<E> A SortedSet implemented as a balanced binary tree.

• ArrayList<E> A List implemented using a resizable array.

• LinkedList<E> A doubly linked List and Queue implementation.

• HashMap<K,V> Cheap lookup and insertion times.

• TreeMap<K,V> SortedMap as a balanced binary tree ordered by key.

Methods that return individual elements of a collection will give you a
NoSuchElementException if the collection is empty.

24



25



Iteration

Collection<E> extends Iterable<E>, which defines an iterator method
that returns an object that implements the Iterator<E> interface:

public boolean hasNext()

Returns true if the iteration has more elements.

public E next()

Returns the next element in the iteration, or
throws NoSuchElementException.

public void remove()

Removes the element returned most recently.
Can be called only once per call of next, other-
wise throws IllegalStateException. Optional.

26



Enhanced for loop cannot be used when removing elements.

public void removeLongStrings

(Collection<? extends String> coll, int maxLen) {

Iterator<? extends String> it = coll.iterator();

while (it.hasNext()) {

String str = it.next();

if (str.length() > maxLen)

it.remove();

}

}

Do not modify a collection outside of an iterator when it is in use.

Many iterators are fail-fast: throw ConcurrentModificationException

rather than risk performing an action after collection has been modified out-
isde of the iterator.

27



ListIterator

You can iterate forward using hasNext and next, backward using hasPre-

vious and previous, or index into positions from 0 to list.size()-1.

ListIterator<String> it = list.listIterator(list.size());

while (it.hasPrevious()) {

String obj = it.previous();

System.out.println(obj);

// ... use obj ...

}

nextIndex or previousIndex get the index of the element returned by
subsequent next or previous call.

28



More in ListIterator:

public void set(E elem)

Replaces the last element returned by next or
previous with elem. Optional.

public void add(E elem)

Inserts elem into the list in front of the next
element that would be returned, or at the end if
hasNext returns false. The iterator is moved
forward; if you invoke previous after an add

you will get the added element. Optional.

29



Ordering with Comparable and Comparator

The interface java.lang.Comparable<T>:

public int compareTo(T other)

Returns a value that is less than, equal to, or
greater than zero as this object is less than,
equal to, or greater than the other object.
Return zero only if equals with the same object
would return true.

The ordering defined by compareTo is a class’s natural ordering.

If a given class does not implement Comparable or if its natural ordering is
wrong for some purpose, you can often provide a java.util.Comparator

object instead. The Comparator<T> interface has the method

public int compare(T o1, T o2)

Ordering as in Comparable.compareTo.

30



Using Hashed Collections (HashSet & HashMap)

• Hashed collections are based on equals and hashCode methods, whose
default implementations in the class Object use physical identity.

• Library classes like String implement equals and hashCode using “nat-
ural equivalence”, e.g. comparing the content of the objects.

• equals should be reflexive, symmetric , transitive, and consistent (over
time), and should return false on null.

◦ Do not handle objects of a superclass specially! (breaks symmetry)

@Override public boolean equals(Object o) {

return o instanceof CaseInsensitiveString && // no special treatment for String

((CaseInsensitiveString) o).s.equalsIgnoreCase(s); }

◦ Unfortunately, there is no way to extend an instantiable class
and add a value component while preserving the requirements,
so be careful (or use composition). (Effective Java by Joshua Bloch item 8)

• Always override hashCode when you override equals (Effective Java by
Joshua Bloch item 9):

31



1. Store a constant nonzero value, say, 17, in an int variable called result.

2. For each significant field f in your object (each field taken into account
by the equals method, that is), do the following:

a. Compute an int hash code c for the field:

i. If the field is a boolean, compute (f ? 1 : 0).

ii. If the field is a byte, char, short, or int, compute (int) f.

iii. If the field is a long, compute (int) (f ^ (f >>> 32)).

iv. If the field is a float, compute Float.floatToIntBits(f).

v. If the field is a double, compute
Double.doubleToLongBits(f), and then hash the resulting long
as in step 2.a.iii.

vi. If the field is an object reference and this class’s equals method
compares the field by recursively invoking equals, recursively
invoke hashCode on the field.

32



vii. If a more complex comparison is required, compute a “canonical
representation” for this field and invoke hashCode on the canon-
ical representation. If the value of the field is null, return 0 (or
some other constant, but 0 is traditional).

viii. If the field is an array, treat it as if each element were a separate
field, or (if every element is significant) use one of the
Arrays.hashCode methods added in release 1.5.

b. Combine the hash code c computed in step 2.a into result as follows:
result = 31 * result + c;

3. Return result.

4. When you are finished writing the hashCode method, ask yourself
whether equal instances have equal hash codes. Write unit tests to verify
your intuition! If equal instances have unequal hash codes, figure out
why and fix the problem.

33



The Collection Interface

public int size()

Returns the number of elements the collection
currently holds.

public boolean isEmpty()

public boolean contains(Object elem)

Returns true if this collection has an element
on which invoking equals with elem returns
true.

public Iterator<E> iterator()

Returns an iterator that steps through the ele-
ments of this collection.

public Object[] toArray()

34



public <T> T[] toArray(T[] dest)

Returns an array that contains all the elements
of this collection, either dest or a new one if
dest is too small.

public boolean add(E elem)

Makes sure that this collection contains the
object elem, returning true if this required
changing the collection – always if the collection
allows duplicates. Optional.

public boolean remove(Object elem)

Removes a single instance of elem from the col-
lection, returning true if the element existed in
this collection. Optional.

35



Preserving types when converting to arrays: either

String[] strings = new String[collection.size()];

strings = collection.toArray(strings);

or

String[] strings = collection.toArray(new String[0]);

36



Operating in bulk

public boolean containsAll(Collection<?> coll)

true if the collection contains each of the elements in coll.

public boolean addAll(Collection<? extends E> coll)

Adds each element of coll to this collection, returning true if

any addition required changing the collection. Optional.

public boolean removeAll(Collection<?> coll)

true if any removal required changing the collection. Optional

public boolean retainAll(Collection<?> coll)

Removes from this collection all elements that are not ele-

ments of coll, returning true if any removal required

changing the collection. Optional.

public void clear()

Removes all elements from this collection. Optional.

37



Set and SortedSet

Set<E> provides no additional methods, but a Set has no duplicate elements

The iterators on a SortedSet<E> collection will always return the elements
in a specified order (by default, the element’s natural order).

SortedSet<E> adds some methods that make sense in an ordered set:

public Comparator<? super E> comparator()

Returns the Comparator being used by this sorted set, or null

if the elements’ natural order is being used.

public E first()

Returns the first (lowest) object in this set.

public E last()

Returns the last (highest) object in this set.

38



public SortedSet<E> subSet(E min, E max)

Returns a view of the set that contains all the elements of this

set whose values are greater than or equal to min and less

than max. Changes to the collection that fall within the range

will be visible through the returned subset and vice versa.

Cannot modify the returned set to contain an element that is

outside the specified range.

public SortedSet<E> headSet(E max)

As above, but all values which are less than the value of max.

public SortedSet<E> tailSet(E min)

As above, but all values which are greater than or equal to the

value of min.

You can create snapshots by making copies of the view, as in

public <T> SortedSet<T> copyHead(SortedSet<T> set, T max) {

SortedSet<T> head = set.headSet(max);

return new TreeSet<T>(head); // contents from head

}

39



HashSet<E> and LinkedHashSet<E>

public HashSet(int initialCapacity, float loadFactor)

Creates a new HashSet with initialCapacity hash buckets

and the given loadFactor. When the ratio of the number of

elements in the set to the number of hash buckets is greater

than or equal to the load factor, the number of buckets is

increased.

public HashSet(int initialCapacity)

Uses a default load factor.

public HashSet()

Default initial capacity and load factor.

public HashSet(Collection<? extends E> coll)

Creates a new HashSet whose initial contents are the ele-

ments in coll. The initial capacity is based on the size of

coll, and the default load factor is used.

LinkedHashSet iterates over elements in the order they were added.

40



TreeSet<E>

Stores its contents in a balanced tree.

public TreeSet()

Creates a new treeSet that is sorted according to the natural

order of the element types.

public TreeSet(Collection<? extends E> coll)

Use TreeSet() and then add the elements of coll.

public TreeSet(Comparator<? super E> comp)

A new treeSet that is sorted in the comp order.

public TreeSet(SortedSet<E> set)

Creates a new treeSet with the same initial contents and

sorted in the same way as set.

41



List<E>

public E get(int index)

Returns the indexth entry in the list.

public E set(int index, E elem)

Sets the indexth entry in the list to elem, replacing the pre-

vious element and returning it. Optional.

public void add(int index, E elem)

Adds elem to the list at the indexth position, shifting every

element farther in the list down one position. Optional.

public E remove(int index)

Removes and returns the indexth entry in the list, shifting

every element farther in the list up one position. Optional.

42



public int indexOf(Object elem)

Returns the index of the first object in the list that is equal

to elem. Returns -1 if no match is found.

public int lastIndexOf(Object elem)

Returns the index of the last object in the list that is equal to

elem. Returns -1 if no match is found.

public List<E> subList(int min, int max)

Returns a List that is a view on this list over the range,

starting with min up to, but not including, max. Changes

made to the returned list are reflected in this list. Do not

change the underlying list while using a sublist.

public ListIterator<E> listIterator(int index)

Iterate through the list starting at the indexth entry.

public ListIterator<E> listIterator()

Iterate through the list starting at the beginning.

43



ArrayList<E>

• Fast: Adding and removing elements at the end, getting the element at a
specific position.

• Slow: Adding and removing elements from the middle: O(n − i) where n

is the size of the list and i is the position of the element being removed.

public ArrayList()

Creates a new ArrayList with a default capacity.

public ArrayList(int initialCapacity)

Creates a new ArrayList that initially can store initialCa-

pacity elements without resizing.

public ArrayList(Collection<? extends E> coll)

Creates a new ArrayList whose initial contents are the con-

tents of coll. The capacity of the array is initially 110% of

the size of coll to allow for some growth without resizing.

The order is that returned by the collections iterator.

44



public void trimToSize()

Sets the capacity to be exactly the current size of the list

(allocates a smaller array if needed).

public void ensureCapacity(int minCapacity)

Sets the capacity to minCapacity if the capacity is currently

smaller. You can use this to ensure the array will be

reallocated at most once when adding a large number of ele-

ments to the list.

45



LinkedList<E>

• Fast: Adding or removing an element in the middle is O(1) because it
requires no copying.

• Slow: getting the element at a specific position i is O(i) since it requires

starting at one end and walking through the list to the ith element.

public LinkedList()

public LinkedList(Collection<? extends E> coll)

Elements of coll in the order of the collection’s iterator.

public E getFirst()

public E getLast()

public E removeFirst()

public E removeLast()

public void addFirst(E elem)

Adds elem into this list as the first element.

public void addLast(E elem)

46



Queues

The Queue<E> interface extends Collection<E>: defines a head position,
which is the next element that would be removed. Queues often operate as
first-in-first-out, but can also be last-in-first-out (commonly known as
stacks) or have a specific ordering defined by a comparator.

public E element()

Returns, but does not remove, the head of the queue. If the

queue is empty a NoSuchElementException is thrown.

public E peek()

Returns, but does not remove, the head of the queue. If the

queue is empty, null is returned.

public E remove()

Returns and removes the head of the queue. If the queue is

empty a NoSuchElementException is thrown.

public E poll()

Returns and removes the head of the queue. If the queue is

empty, null is returned.

47



The LinkedList class provides the simplest implementation of Queue.

PriorityQueue

PriorityQueue<E> is an unbounded queue, based on a priority heap.

public PriorityQueue(int initialCapacity)

Can store initialCapacity elements without resizing, uses the natural
order of the elements.

public PriorityQueue()

Default initial capacity, uses the natural order of the elements.

public PriorityQueue(int initialCapacity, Comparator<? super E> comp)

Orders the elements according to the supplied comparator.

public PriorityQueue(Collection<? extends E> coll)

Creates a new PriorityQueue whose initial contents are the contents of
coll. The capacity of the queue is initially 110% of the size of coll. If
coll is a SortedSet or another PriorityQueue, then this queue will be
ordered the same way; otherwise, the elements will be sorted according
to their natural order.

48



Map<K,V> and SortedMap<K,V>

public int size()

Returns the size of this map, that is, the number of key/value

mappings it currently holds.

public boolean isEmpty()

public boolean containsKey(Object key)

true if the collection contains a mapping for the given key.

public boolean containsValue(Object value)

the collection contains at least one mapping to the value.

public V get(Object key)

The object to which key is mapped, null if it is not mapped.

49



public V put(K key, V value)

Associates key with the given value in the map. If a map

already exists for key, its value is changed and the original

value is returned. If no mapping exists, put returns null.

Optional.

public V remove(Object key)

Removes any mapping for the key. The return value has the

same semantics as that of put. Optional.

public void putAll(Map< ? extends K, ? extends V> otherMap)

Puts all the mappings in otherMap into this map. Optional.

public void clear()

Removes all mappings. Optional.

containsValue will often be slow, i.e. O(n).

50



Viewing the map using collections:

public Set<K> keySet()

Returns a Set whose elements are the keys of this map.

public Collection<V> values()

A Collection whose elements are the values of this map.

public Set<Map.Entry<K,V>> entrySet()

Returns a Set whose elements are Map.Entry objects that

represent single mappings in the map.

The interface Map.Entry<K,V> defines:

public K getKey()

public V getValue()

public V setValue(V value)

Sets the value for this entry and returns the old value.

51



SortedMap adds methods that make sense in an ordered map:

public Comparator<? super K> comparator()

Returns the comparator being used for sorting this map, or

null if the map is sorted using the keys’ natural order.

public K firstKey()

public K lastKey()

public SortedMap<K,V> subMap(K minKey, K maxKey)

Returns a view of the portion of the map whose keys are

greater than or equal to minKey and less than maxKey.

public SortedMap<K,V> headMap(K maxKey)

As above, but keys are less than maxKey.

public SortedMap<K,V> tailMap(K minKey)

As above, but keys are greater than or equal to minKey.

Changes made to the submap or to the original map are visible to the other.

52



HashMap, LinkedHashMap, IdentityHashMap and WeakHashMap

public HashMap(int initialCapacity, float loadFactor)

public HashMap(int initialCapacity)

public HashMap()

public HashMap(Map<? extends K, ? extends V> map)

Creates a new HashMap whose initial mappings are copied

from map. The initial capacity is based on the size of map; the

default load factor is used.

• When the number of entries in the hash map exceeds the product of the
load factor and the current capacity, the capacity will be doubled: all the
elements be rehashed and stored in the correct new buckets.

• You need to balance the cost of normal operations against the costs of
iteration and rehashing. The default load factor of 0.75 provides a good
general trade-off.

53



• LinkedHashMap<K,V> extends HashMap<K,V> by defining an order to
iterating the entries in the map. By default, return the entries in the
order in which they were added.

• Additionally, LinkedHashMap provides a constructor that takes the initial
capacity, the load factor and a boolean flag accessOrder: if it is true,
then the map is sorted from the most recently accessed entry to the least
recently accessed entry, making it suitable for implementing a Least
Recently Used (LRU) cache. The only methods to count as an access of
an entry are direct use of put, get, and putAll.

• Generally, Map requires that equality for keys be based on equivalence
(i.e. the equals method). IdentityHashMap class uses object identity
(comparison using ==).

• WeakHashMap refers to keys by using WeakReference objects instead of
strong references. Weak references let the objects be collected as
garbage, so you can put an object in a WeakHashMap without the map’s
reference forcing the object to stay in memory. When a key is only
weakly reachable, its mapping may be removed from the map, which also
drops the map’s strong reference to the key’s value object.

54



TreeMap

The TReeMap class implements SortedMap, keeping its keys sorted in the
same way as TReeSet. This makes adding, removing, or finding a key/value
pair O(log n) . So you generally use a TreeMap only if you need the sorting
or if the hashCode method of your keys is poorly written, thereby destroying
the O(1) behavior of HashMap.

public treeMap()

TreeMap sorted according to the natural order of the keys.

public treeMap(Map<? extends K, ? extends V> map)

Add all the key/value pairs of map to a new TreeMap().

public TReeMap(Comparator<? super K> comp)

Creates a new TreeMap that is sorted according to the order

imposed by comp.

public treeMap(SortedMap<K, ? extends V> map)

Creates a new TReeMap whose initial contents will be the same

as those in map and that is sorted the same way as map.

55



enum Collections

enum FieldModifiers { STATIC, FINAL, VOLATILE, TRANSIENT }

public class Field {

public EnumSet<FieldModifiers> getModifiers() {

// ...

}

// ... rest of Field methods ...

}

public static <E extends Enum<E>> EnumSet<E> allOf(Class<E> enumType)

Creates an EnumSet containing all the elements of the given enum type.

public static <E extends Enum<E>> EnumSet<E> noneOf(Class<E> enumType)

Creates an empty EnumSet for the enumType.

public static <E extends Enum<E>> EnumSet<E> copyOf(EnumSet<E> set)

public static <E extends Enum<E>> EnumSet<E> complementOf(EnumSet<E> set)

public static <E extends Enum<E>> EnumSet<E> copyOf(Collection<E> coll)

Creates an EnumSet from the given nonempty collection.

public static <E extends Enum<E>> EnumSet<E> of(E first, E... rest)

Creates an EnumSet containing all the specified enum values.

56



• EnumSet uses a bit-vector internally so it is both compact and efficient.

• The iterator returns the enum values in their natural order: the order in
which the enum constants were declared.

• EnumMap<K extends Enum<K>,V> is internally implemented using arrays

public EnumMap(Class<K> keyType)

An empty EnumMap that can hold keys of the given enum

type.

public EnumMap(EnumMap<K, ? extends V> map)

Copy.

public EnumMap(Map<K, ? extends V> map)

Creates an EnumMap from the given nonempty map.

57



The Collections Utilities

public static <T extends Object & Comparable<? super T>> T

min(Collection<? extends T> coll)

Returns the smallest valued element of the collection based on

the elements’ natural order.

public static <T> T

min(Collection<? extends T> coll, Comparator<? super T> comp)

Returns the smallest valued element of the collection

according to comp.

public static <T extends Object & Comparable<? super T>> T

max(Collection<? extends T> coll)

public static <T> T

max(Collection<? extends T> coll, Comparator<? super T> comp)

58



public static <T> Comparator<T> reverseOrder()

Returns a Comparator that reverses the natural ordering of

the objects it compares.

public static <T> Comparator<T> reverseOrder(Comparator<T> comp)

Returns a Comparator the reverses the order of the given

comparator.

public static <T> boolean

addAll(Collection<? super T> coll, T... elems)

Adds all of the specified elements to the given collection,

returning true if the collection was changed.

public static boolean

disjoint(Collection<?> coll1, Collection<?> coll2)

Returns true if the two given collections have no elements in

common.

59



There are numerous methods for working with lists:

public static <T> boolean

replaceAll(List<T> list, T oldVal, T newVal)

Replaces all occurrences of oldVal in the list with newVal.

Returns true if any replacements were made.

public static void reverse(List<?> list)

Reverses the order of the elements of the list.

public static void shuffle(List<?> list)

Randomly shuffles (permutes) the list.

public static int indexOfSubList(List<?> source, List<?> target)

Returns the index of the start of the first sublist of source

that is equal to target.

60



public static <T extends Comparable<? super T>> void sort(List<T> list)

Sorts list in ascending order, according to its elements’ natural ordering.

public static <T> void sort(List<T> list, Comparator<? super T> comp)

Sorts list according to comp.

public static <T> int

binarySearch(List<? extends Comparable<? super T>> list,T key)

public static <T> int

binarySearch(List<? extends T> list, T key, Comparator<? super T> comp)

Uses a binary search algorithm to find a key object in the list, returning its

index. The list must be in its elements’ natural order / in the order defined

by comp. If the object is not found, if i is the index at which the key could

be inserted and maintain the order, the value returned will be −(i+1).

61



Even more utilities:

public static int frequency(Collection<?> coll, Object elem)

Returns the number of times that the given element appears

in the given collection.

public static <T> Set<T> singleton(T elem)

Returns an immutable set containing only elem.

public static <T> List<T> singletonList(T elem)

Returns an immutable list containing only elem.

public static <K,V> Map<K,V> singletonMap(K key, V value)

Returns an immutable map containing only one entry: a map-

ping from key to value.

62



Collections has static methods that return unmodifiable wrappers:
unmodifiableCollection, unmodifiableSet, unmodifiableSortedSet,
unmodifiableList, unmodifiableMap, and unmodifiableSortedMap.

Modifying methods of the unmodifiable wrapper throw UnsupportedOpera-

tionException. Any changes to the collection will be visible through the
wrapped collection:, the contents of an unmodifiable wrapper can change,
but not through the wrapper itself.

63



The Arrays Utility Class

• sort Sorts an array into ascending order.

• binarySearch Searches a sorted array for a given key. Returns the key’s
index, or a negative value encoding a safe insertion point.

• fill Fills in the array with a specified value.

• equals and deepEquals Return true if the two arrays they are passed
are the same object, are both null, or have the same size and equivalent
contents, using Object.equals on each non-null element of the array.
The deepEquals method recursively takes into account the equivalence
of nested arrays.

• hashCode and deepHashCode Return a hash code based on the contents
of the given array (deepHashCode recursively looks into nested arrays).

• toString and deepToString Return a string representation of the con-
tents of the array: a comma seperated list of the array’s contents,
enclosed by ’[’ and ’]’. The array contents are converted to strings with
String.valueOf.

64



• You can view an array of objects as a List by using the object returned
by the asList method. The result is backed by the passed array, it is
modifiable but not resizable.

public static <T> List<T> asList(T... elems)

65



Writing Iterator Implementations

public class ShortStrings implements Iterator<String> {

private Iterator<String> strings; // source for strings

private String nextShort; // null if next not known

private final int maxLen; // only return strings <=

public ShortStrings(Iterator<String> strings, int maxLen) {

this.strings = strings; this.maxLen = maxLen; nextShort = null; }

public boolean hasNext() {

if (nextShort != null) // found it already

return true;

while (strings.hasNext()) {

nextShort = strings.next();

if (nextShort.length() <= maxLen) return true;

}

nextShort = null; return false; // didn’t find one

}

public String next() {

if (nextShort == null && !hasNext())

throw new NoSuchElementException();

String n = nextShort; // remember nextShort

nextShort = null; // consume nextShort

return n; // return nextShort

}

public void remove() { throw new UnsupportedOperationException(); }

}

66



• hasNext will work if invoked multiple times before a next.

• next works even if programmer using it has never invoked hasNext.

• remove is not allowed because it cannot work correctly. If remove

invoked remove on the underlying iterator, the following legal (although
odd) code can cause incorrect behavior:

it.next();

it.hasNext();

it.remove();

You cannot build a filtering iterator on top of another Iterator object.
You can build one on top of a ListIterator: it allows to back up to the
previously returned short string.

67



Writing Collection Implementations

• AbstractCollection, AbstractSet, AbstractList, AbstractSe-

quentialList, AbstractQueue, and AbstractMap contain skeletal
implementations on which the java.util collections are based.

• AbstractCollection

◦ for an unmodifiable collection provide iterator() and size()

◦ for modifiable, also override add (and the iterator supporting remove)

• AbstractList – for random access “backing store” like an array

◦ for an unmodifiable list provide get(int) and size()

◦ for modifiable, also override set(int, E) and (for variable size)
add(int, E), remove(int)

• AbstractSequentialList – for linear access like a linked list

◦ provide the listIterator(int) method

68



public class ArrayBunchList<E> extends AbstractList<E> {

private final E[][] arrays;

private final int size;

public ArrayBunchList(E[][] arrays) {

this.arrays = arrays.clone();

int s = 0;

for (E[] array : arrays)

s += array.length;

size = s;

}

public int size() {

return size;

}

public E get(int index) {

int off = 0; // offset from start of collection

for (int i = 0; i < arrays.length; i++) {

if (index < off + arrays[i].length)

return arrays[i][index - off];

off += arrays[i].length;

}

throw new ArrayIndexOutOfBoundsException(index);

}

69



public E set(int index, E value) {

int off = 0; // offset from start of collection

for (int i = 0; i < arrays.length; i++) {

if (index < off + arrays[i].length) {

E ret = arrays[i][index - off];

arrays[i][index - off] = value;

return ret;

}

off += arrays[i].length;

}

throw new ArrayIndexOutOfBoundsException(index);

}

}

• ArrayBunchList implements modifiable but not resizable collection

• AbstractList provides Iterator and ListIterator, but based on
get, which is inefficient in the above implementation. Below is an opti-
mized Iterator for ArrayBunchList.

70



private class ABLIterator implements Iterator<E> {

private int off; // offset from start of list

private int array; // array we are currently in

private int pos; // position in current array

ABLIterator() {

off = 0;

array = 0;

pos = 0;

// skip any initial empty arrays (or to end)

for (array = 0; array < arrays.length; array++)

if (arrays[array].length > 0)

break;

}

public boolean hasNext() {

return off + pos < size();

}

71



public E next() {

if (!hasNext())

throw new NoSuchElementException();

E ret = arrays[array][pos++];

// advance to the next element (or to end)

while (pos >= arrays[array].length) {

off += arrays[array++].length;

pos = 0;

if (array >= arrays.length)

break;

}

return ret;

}

public void remove() {

throw new UnsupportedOperationException();

}

}

72


