
Course of Programming in Java

by Łukasz Stafiniak

Email: lukstafi@gmail.com, lukstafi@ii.uni.wroc.pl

Web: www.ii.uni.wroc.pl/~lukstafi

Thinking in Java

Chapter 22. Concurrency

The Java Programming Language

Chapter 14. Threads

1

Concurrency

• Concurrency means organizing a program into threads that are / appear
to be simultaneous threads of computation.

• Parallelism is employing multiple processors to speed up computation.

• Distributed computing deals with parallelism across multiple machines.

• Multithreading is a form of concurrency with threads operating on
shared objects.

• Cooperative multithreading works without help of the system, like in
our Settlers simulation. Pieces of code in a single method are atomic .

• In Java, threads are based on system pthreads (POSIX threads).

• A race hazard exists when two threads can potentially modify the same
piece of data in an interleaved way that can corrupt data.

◦ In a bank example, imagine that two costumers walk up to two bank tellers to

deposit money into the same account. Each teller goes to the filing cabinet to get

the current account balance and gets the same information. Then...

2

Applications of Concurrency

• Simulation.

• User interfaces.

• (In particular) Interactive content. Reactive systems.

• Input / Output. (Especially over internet.)

• Web servers.

• Speeding-up computation (parallelization).

• ...

3

Creating Threads

public class PingPong extends Thread {

private String word; // what word to print

private int delay; // how long to pause

public PingPong(String whatToSay, int delayTime) {

word = whatToSay;

delay = delayTime;

}

public void run() {

try {

for (;;) {

System.out.print(word + " ");

Thread.sleep(delay); // wait until next time

}

} catch (InterruptedException e) {

return; // end this thread

}

}

public static void main(String[] args) {

new PingPong("ping", 33).start(); // 1/30 second

new PingPong("PONG", 100).start(); // 1/10 second

}

}

4

• First configure a task (its priority, whether it is a daemon).

• Then invoke start, only once for each thread (invoking it again results
in an IllegalThreadStateException).

• The standard implementation of Thread.run does nothing. To get a
thread that does something you must either extend Thread to provide a
new run method,

• or create a Runnable object and pass it to the thread’s constructor. This
lets you extend a base class not extending Thread.

• You can obtain the Thread object for the currently running thread by
invoking the static method Thread.currentThread.

• Starting a thread in a constructor is handy but can be risky if a class can
be extended.

• Thread objects are only garbage-collected when they stop running.

◦ Daemon threads are terminated when remaining threads end.

• java.util.concurrent provides some higher-level approaches to
arrange concurrent computation.

5

Using an inner Runnable class, run() is not exposed outside of its thread.

class PrintServer2 {

private final PrintQueue requests = new PrintQueue();

public PrintServer2() {

Runnable service = new Runnable() {

public void run() {

for(;;)

realPrint(requests.remove());

}

};

new Thread(service).start();

}

public void print(PrintJob job) {

requests.add(job);

}

private void realPrint(PrintJob job) {

// do the real work of printing

}

}

6

Thread Scheduling

• Do not rely on thread priority for algorithm correctness. (It is only to
tune efficiency.)

◦ If you use priorities at all, the continuously running part of your appli-
cation should run in a lower-priority thread than the thread dealing
with rarer events such as user input.

◦ A thread that does continual updates is often set to NORM_PRI-

ORITY-1 so that it doesn’t hog all available cycles, while a user inter-
face thread is often set to NORM_PRIORITY+1.

• Assume that a thread could be pre-empted at any time, and so you need
to always protect access to shared resources.

• sleep(long delay) throws InterruptedException puts the cur-
rently executing thread to sleep for at least the specified time.

• yield() provides a hint to the scheduler that the current thread need
not run at the present time.

7

Synchronization

• Critical sections or critical regions: objects / resources that are suspect
to interference of operations by different threads.

• Acquiring a lock.

◦ In the bank, tellers synchronize their actions by putting notes in the files and

agreeing to the protocol that a note in the file means that the file can’t be used.

• synchronized methods

8

• Locks are owned per thread, so invoking a synchronized method from
within another method synchronized on the same object will proceed
without blocking, releasing the lock only when the outermost synchro-
nized method returns.

• The lock is released as soon as the synchronized method terminates.

• Use getter and setter methods with private fields to synchronize on them.

public class BankAccount {

private long number; // account number

private long balance; // current balance (in cents)

public BankAccount(long initialDeposit) {

balance = initialDeposit;

}

public synchronized long getBalance() {

return balance;

}

public synchronized void deposit(long amount) {

balance += amount;

}

}

9

• A static synchronized method acquires the lock of the Class object for
its class. Two threads cannot execute static synchronized methods of the
same class at the same time, just as two threads cannot execute synchro-
nized methods on the same object at the same time.

• The synchronized statement enables you to execute synchronized code
that acquires the lock of any object, not just the current object, or for
durations less than the entire invocation of a method.

/** make all elements in the array non-negative */

public static void abs(int[] values) {

synchronized (values) {

for (int i = 0; i < values.length; i++) {

if (values[i] < 0)

values[i] = -values[i];

}

}

}

10

Benefits of the synchronized statement

• Synchronization affects performance – a general rule is to hold locks for
as short a period as possible.

• Different groups of methods within a class can act on different data
within that class. Instead of making all the methods synchronized, define
separate objects to be used as locks for each such group.

class SeparateGroups {

private double aVal = 0.0;

private double bVal = 1.1;

protected final Object lockA =

new Object();

protected final Object lockB =

new Object();

public double getA() {

synchronized (lockA) {

return aVal;

}

}

public void setA(double val) {

synchronized (lockA) {

aVal = val;

}

}

public double getB() {

synchronized (lockB) {

return bVal;

}

}

public void setB(double val) {

synchronized (lockB) {

bVal = val;

}

}

public void reset() {

synchronized (lockA) {

synchronized (lockB) {

aVal = bVal = 0.0;

}

}

}

}

11

• Synchronize an inner object with the enclosing object.

public class Outer {

private int data;

// ...

private class Inner {

void setOuterData() {

synchronized (Outer.this) {

data = 12;

}

}

}

}

• If you need to protect access to static data from within non-static code
(or synchronize with static methods):

Body() {

synchronized (Body.class) {

idNum = nextID++;

}

}

◦ We could also define a static synchronized method getNextID.

12

• When you need to synchronize operations on multiple objects, the syn-
chronize statement is most practical.

• Synchronized methods are more “object-oriented” – the object protects
itself (better encapsulation, not relying on the caller).

• synchronized statement approach is called client-side synchronization

and synchronized methods approach is server-side synchronization.

• java.util.concurrent.locks has explicit Lock objects (implemented
by ReentrantLock) with lock() and unlock() methods, for flexible
control over synchronization.

◦ E.g. acquiring lock for the next object right before releasing lock for
a given object.

13

Synchronizing fields

• Without synchronization on access, there are no guarantees on what
another thread reads (can read an old value due to cache effects)

• volatile fields synchronize between writes and reads (but do not
provide atomicity for more complex operations).

• ”Life events” of threads (creating, ending) synchronize with those who
observe them (e.g. after join() the results of the ended thread are syn-
chronized).

14

Synchronizing Data Structures

• Just as reading and writing of fields, getting and putting data into data
structures needs to be synchronized.

• Standard collections are not synchronized, for efficiency.

• Collections.synchronizedCollection and related wrappers (e.g.
Collections.synchronizedSet) return variants of collections with
synchronized (therefore “atomic”) operations.

• Now you can synchronize on the collection to prevent interference

Map m = Collections.synchronizedMap(new HashMap());

// ...

synchronized (m) { if (!m.containsKey(key)) m.put(key, value); }

◦ Even if outside code does not use synchronized (m), it will not
interfere with the above block.

• Iterators must be used inside synchronized blocks.

• If you need synchronized maps or queues, consider lock-free containers

ConcurrentHashMap and ConcurrentLinkedQueue from
java.util.concurrent.

15

ThreadLocal Variables

• ThreadLocal<T> is a variable that has independent values in each sepa-
rate thread – like a new field in each thread class, but without the need
to actually change any thread class.

• Accessor methods get() and set(), initialized by initialValue()

(default: null).

• Local variables inside run() are already thread-local, but ThreadLocal

provides global thread-local variables.

◦ ThreadLocal also allows a shared structure to have unshared (i.e.
thread-local) parts.

• Caution: with thread-pooling, running a new task does not re-initialize
ThreadLocal variables.

16

public class Operations {

static Operations userOps = new Operations(); // global thread-local variable

private static ThreadLocal<User> users =

new ThreadLocal<User>() {

/** Initially start as the "unknown user". */

protected User initialValue() {

return User.UNKNOWN_USER;

}

};

public static void setUser(User newUser) {

validate(newUser); users.set(newUser);

}

public void setValue(int newValue) {

User user = currentUser();

if (!canChange(user)) throw new SecurityException();

// ... modify the value ...

} // ...

}

public class Console implements Runnable {

User user;

public void run () {

Operations.userOps.setUser (user);

while (!Thread.currentThread().isInterrupted()) {

// ...

}

} // ...

}

17

Deadlocks

class Friendly {

private Friendly partner;

private String name;

public Friendly(String name) { this.name = name; }

public synchronized void hug() {

System.out.println(Thread.currentThread().getName()+

" in " + name + ".hug() trying to invoke " +

partner.name + ".hugBack()");

partner.hugBack();

}

private synchronized void hugBack() {

System.out.println(Thread.currentThread().getName()+

" in " + name + ".hugBack()");

}

public void becomeFriend(Friendly partner) { this.partner = partner; }

}

...

final Friendly jareth = new Friendly("jareth");

final Friendly cory = new Friendly("cory");

jareth.becomeFriend(cory); cory.becomeFriend(jareth);

new Thread(new Runnable() {

public void run() { jareth.hug(); } }, "Thread1").start();

new Thread(new Runnable() {

public void run() { cory.hug(); } }, "Thread2").start();

18

• The following scenario is possible:

1. Thread number 1 invokes synchronized method jareth.hug.
Thread number 1 now has the lock on jareth.

2. Thread number 2 invokes synchronized method cory.hug. Thread
number 2 now has the lock on cory.

3. Now jareth.hug invokes synchronized method cory.hugBack.
THRead number 1 is now blocked waiting for the lock on cory (cur-
rently held by thread number 2) to become available.

4. Finally, cory.hug invokes synchronized method jareth.hugBack.
Thread number 2 is now blocked waiting for the lock on jareth (cur-
rently held by thread number 1) to become available.

• One common technique to avoid deadlocks is resource ordering: assign an
order on all locks and always acquire them in that order.

◦ E.g. once one thread has the first lock, the second thread will block
trying to acquire that lock, and then the first thread can safely
acquire the second lock.

19

Interrupting work

• interrupt() sets the isInterrupted() flag – interrupted() checks
and resets the flag.

• Check proactively for interruption, at points where partial results can be
prepared, or where stopping and cleaning-up is most reasonable.

• InterruptedException raised by sleep(), wait(), join() when
interrupt() called on a thread and when it already isInterrupted.

◦ remember to handle interruption in your methods “manually”, e.g. by raising

InterruptedException

void tick(int count, long pauseTime) {

try {

for (int i = 0; i < count; i++) {

System.out.println(’.’); System.out.flush();

Thread.sleep(pauseTime);

}

} catch (InterruptedException e) {

Thread.currentThread().interrupt();

}

}

20

double output = 0.0;

public void run () {

double sign = 1.0;

for (double i=0.0; i < count && !Thread.interrupted(); i += 1.0) {

output += sign / (2.0*i + 1.0);

sign *= -1.0;

}

output *= 4.0;

}

• Unfortunately, interrupt() does not raise InterruptedException in
threads blocked at entrance to synchronized method or statement,
therefore cannot be used to break out of deadlocks.

• interrupt() does not interrupt standard IO as well.

◦ One way to force interrupt is to close() IO streams from outside the
thread.

◦ Another is to use the java.nio (Non-blocking Input-Output)
package, which handles interrupts.

• Recall ReentrantLock with lock() and unlock() methods – blocking
using its method lockInterruptibly() does handle interrupts.

21

Waiting for a Thread to Complete

class CalcThread extends Thread {

private double result;

public void run() { result = calculate(); }

public double getResult() { return result; }

public double calculate() {

// ... calculate a value for "result"

}

}

class ShowJoin {

public static void main(String[] args) {

CalcThread calc = new CalcThread();

calc.start();

doSomethingElse();

try {

calc.join(); // guarantees that calc.run() finished

System.out.println("result is " + calc.getResult());

} catch (InterruptedException e) {

System.out.println("No answer: interrupted");

}

} // ... definition of doSomethingElse ...

}

22

Threads as Functions

• Callable<T> can be used in place of Runnable to compute a value.

• call() (instead of run()) returns the value of type T.

• Must be invoked using an ExecutorService submit() (instead of its
own start() or of ExecutorService execute())

• that produces a Future<T> object, which can be checked with
isDone(), and the result extracted with get() (which blocks until the
computation finishes).

• For example, while waiting to get() one of several results, all of them
are being computed in parallel.

23

import java.net.*;

import java.io.*;

import java.util.concurrent.*;

import java.util.*;

class ReadWebPage implements Callable<String> {

private String address; private int numLines; private String lineBreak;

public ReadWebPage (String address, int numLines, String lineBreak) {

this.address = address; this.numLines = numLines; this.lineBreak = lineBreak;

}

public String call () {

try {

Scanner in = new Scanner(new URL(address).openStream());

int i = numLines;

StringBuffer result = new StringBuffer ();

while (in.hasNextLine() && --i >= 0) {

String line = in.nextLine();

result.append (line + lineBreak);

}

in.close();

return result.toString ();

} catch (MalformedURLException me) {

System.err.println(me); return "ERROR: Malformed URL "+address;

} catch (IOException ioe) {

System.err.println(ioe); return "ERROR: IO error reading "+address;

}

}

}

24

public class ReadWebPages {

public static void main(String[] args) {

ExecutorService exec = Executors.newCachedThreadPool();

ArrayList<Future<String>> results =

new ArrayList<Future<String>>();

for(String address : args) {

System.out.println ("Reading "+address+"...");

results.add(exec.submit(new ReadWebPage(address, 20, "\n")));

}

for(Future<String> fs : results)

try {

System.out.println ("\n==============================");

// get() blocks until completion:

System.out.println(fs.get());

} catch(InterruptedException e) {

System.out.println(e);

return;

} catch(ExecutionException e) {

System.out.println(e);

} finally {

exec.shutdown();

}

}

}

25

Executors

• ExecutorServices manage groups of threads.

• shutdownNow() interrupts all tasks in a group.

• To interrupt a single task, submit() it instead of execute() to be able
to interact with it using the returned Future<?> f – the task can be
interrupted by f.cancel(true) (does not support partial results).

• ScheduledThreadPoolExecutor can schedule a task at a given time in
the future using schedule(), or to be run periodically (i.e. repeated at a
regular interval) using scheduleAtFixedRate().

26

Cooperation Between Tasks

• wait() stops a thread synchronizing on an object until some other
thread calls notifyAll on this object. Using notify is an optimization
that can be applied only when:

◦ All threads are waiting for the same condition

◦ At most one thread can benefit from the condition being met

◦ This is true for all possible subclasses

class PrintQueue {

private SingleLinkQueue<PrintJob> queue = new SingleLinkQueue<PrintJob>();

public synchronized void add(PrintJob j) {

queue.add(j);

notifyAll(); // Tell waiters: print job added

}

public synchronized PrintJob remove()

throws InterruptedException // wait() can throw it

{

while (queue.size() == 0)

wait(); // Wait for a print job

return queue.remove();

}

}

27

• Wait in a loop checking a condition since there might be spurious wake-
ups, and more importantly the condition can change in the meanwhile

• The lock on the object is released during wait() – e.g. synchronized

methods can be called while some of them are waiting. The thread will
only resume when it can acquire the lock again (so, can be blocked).

◦ This is not the case for sleep() and yield() – they keep the lock.

• public final void wait(long timeout) time-outs waiting if not
woken before the specified number of milliseconds;

◦ but will only resume once it acquires the lock.

• notifyAll() notifies all threads of an object, notify() notifies only
one thread.

• wait can be only called from synchronized code.

◦ IllegalMonitorStateException if you attempt to invoke these
methods on an object when you don’t hold its lock.

• Car Waxing example from “Thinking in Java” : See file WaxOMatic.java.

28

Blocking Queues

• A synchronized queue (a BlockingQueue) only allows one task at a time
to insert or remove an element: synchronizes on its operations.

• A thread trying to take() from an empty BlockingQueue (or
PriorityBlockingQueue) is suspended, and resumes when the queue
becomes non-empty.

◦ ArrayBlockingQueue has a bounded capacity, and a thread trying
to put(e) when the queue is full, is suspended until queue has space.

• No need to use wait() and notifyAll(). See file ToastOMatic.java

from “Thinking in Java”.

• Queues between threads can also serve as message queues: instead of
calling synchronized methods of an object, we can write a thread that
reads messages from a queue and dispatches corresponding actions, and
later send messages to the object (active object, or agent).

29

CyclicBarrier from java.util.concurrent

• CyclicBarrier is used to periodically synchronize several tasks
(together at once).

• A task tells that it is ready by calling await() on a CyclicBarrier.

• When all tasks are ready, CyclicBarrier’s run() is called, and then
the tasks resume (and can call await() again).

• See file HorseRace.java from “Thinking in Java”.

30

Examples

• Queues example from “Thinking in Java”: See file ToastOMatic.java.

• Workload example from “Thinking in Java” : See file
BankTellerSimulation.java.

31

