
Course of Programming in Java:

Model-View-Controller

by Łukasz Stafiniak

Email: lukstafi@gmail.com, lukstafi@ii.uni.wroc.pl

Web: www.ii.uni.wroc.pl/~lukstafi

Head First Design Patterns

Chapter 12. Compound Patterns

A Swing Architecture Overview

The Inside Story on JFC Component Design By Amy Fowler

1

MVC from Head First Design Patterns

2

3

4

5

6

7

8

9

10

11

DJ example: source code

• BeatModelInterface.java

• BeatModel.java

• DJView.java

• ControllerInterface.java

• BeatController.java

• DJTestDrive.java

• HeartAdapter.java

• HeartController.java

• HeartTestDrive.java

12

Architecture of Swing

Design Goals

1. Be implemented entirely in Java to promote cross-platform consistency
and easier maintenance.

2. Provide a single API capable of supporting multiple look-and-feels so
that developers and end-users would not be locked into a single look-and-
feel.

3. Enable the power of model-driven programming without requiring it in
the highest-level API.

4. Adhere to JavaBeans design principles to ensure that components behave
well in IDEs and builder tools.

5. Provide compatibility with AWT APIs where there is overlapping, to

leverage the AWT knowledge base and ease porting .

13

Roots in MVC

Swing architecture is rooted in the model-view-controller (MVC) design
that dates back to SmallTalk. MVC architecture calls for a visual application
to be broken up into three separate parts:

• A model that represents the data for the application.

• The view that is the visual representation of that data.

• A controller that takes user input on the view and translates that to
changes in the model.

14

The delegate

We quickly discovered that MVC split didn’t work well in practical terms
because the view and controller parts of a component required a tight cou-
pling (for example, it was very difficult to write a generic controller that
didn’t know specifics about the view). So we collapsed these two entities
into a single UI (user-interface) object, as shown in this diagram:

The UI object shown in this picture is sometimes called UI delegate.

This new quasi-MVC design is sometimes referred to a separable model

architecture.

15

To MVC or not to MVC?

• Component’s view/controller responsibilities as being handled by the
generic component class (such as. JButton, JTree, and so on).

◦ E.g. the code that implements double-buffered painting is in Swing’s
JComponent class (the "mother" of most Swing component classes).

• Look-and-feel-specific aspects of those responsibilities to the UI object
that is provided by the currently installed look-and-feel.

◦ E.g. the code that renders a JButton’s label is in the button’s UI

delegate class.

16

Separable model architecture

Swing defines a separate model interface for each component that has a log-
ical data or value abstraction. This separation provides programs with the
option of plugging in their own model implementations for Swing compo-
nents.

17

Component Model Interface Model Type

JButton ButtonModel GUI

JToggleButton ButtonModel GUI/data

JCheckBox ButtonModel GUI/data

JRadioButton ButtonModel GUI/data

JMenu ButtonModel GUI

JMenuItem ButtonModel GUI

JCheckBoxMenuItem ButtonModel GUI/data

JRadioButtonMenuItem ButtonModel GUI/data

JComboBox ComboBoxModel data

JProgressBar BoundedRangeModel GUI/data

JScrollBar BoundedRangeModel GUI/data

JSlider BoundedRangeModel GUI/data

JTabbedPane SingleSelectionModel GUI

JList ListModel data

JList ListSelectionModel GUI

JTable TableModel data

JTable TableColumnModel GUI

JTree TreeModel data

JTree TreeSelectionModel GUI

JEditorPane Document data

JTextPane Document data

JTextArea Document data

JTextField Document data

JPasswordField Document data
18

GUI-state vs. application-data models

• GUI-state models are interfaces that define the visual status of a GUI
control, such as whether a button is pressed or armed, or which items are
selected in a list.

• It is possible to manipulate the state of a GUI control through top-level
methods on the component, without any direct interaction with the
model at all.

• Application-data models are interfaces that represent some quantifiable
data that has meaning primarily in the context of the application, such as
the value of a cell in a table or the items displayed in a list.

• Provide clean separation between their application data/logic and their
GUI. For truly data-centric Swing components, such as JTree and
JTable, interaction with the data model is strongly recommended.

• For some components the model categorization falls in between GUI
state models and application-data models, depending on the context in
which the model is used. E.g. BoundedRangeModel on JSlider or
JProgressBar.

19

Shared model definitions

Common models enable automatic connectability between component types.
For example, because both JSlider and JScrollbar use the Bounde-

dRangeModel interface, a single BoundedRangeModel instance could be
plugged into both a JScrollbar and a JSlider and their visual state would
always remain in sync.

20

The separable-model API

If you don’t set your own model, a default is created and installed internally
in the component. The naming convention for these default model classes is
to prepend the interface name with "Default." For JSlider, a Default-

BoundedRangeModel object is instantiated in its constructor:

public JSlider(int orientation, int min, int max,

int value) {

checkOrientation(orientation);

this.orientation = orientation;

this.model =

new DefaultBoundedRangeModel(value, 0, min, max);

this.model.addChangeListener(changeListener);

updateUI();

}

21

If a program subsequently calls setModel(), this default model is replaced,
as in the following example:

JSlider slider = new JSlider();

BoundedRangeModel myModel =

new DefaultBoundedRangeModel() {

public void setValue(int n) {

System.out.println("SetValue: "+ n);

super.setValue(n);

}

});

slider.setModel(myModel);

For more complex models (such as those for JTable and JList), an
abstract model implementation is also provided to enable developers to
create their own models without starting from scratch. These classes are
prepended with "Abstract".

For example, JList’s model interface is ListModel, which provides both
DefaultListModel and AbstractListModel classes.

22

Model change notification

Models must be able to notify any interested parties (such as views) when
their data or value changes. Swing models use the JavaBeans Event model .
There are two approaches for this notification used in Swing:

• Send a lightweight notification that the state has "changed" and require
the listener to respond by sending a query back to the model to find out
what has changed. The advantage of this approach is that a single event
instance can be used for all notifications from a particular model – which
is highly desirable when the notifications tend to be high in frequency
(such as when a JScrollBar is dragged).

• Send a stateful notification that describes more precisely how the model
has changed. This alternative requires a new event instance for each
notification. It is desirable when a generic notification doesn’t provide the
listener with enough information to determine efficiently what has
changed by querying the model (such as when a column of cells change
value in a JTable).

23

Lightweight notification

The following models in Swing use the lightweight notification, which is
based on the ChangeListener/ChangeEvent API:

Model Listener Event

BoundedRangeModel ChangeListener ChangeEvent
ButtonModel ChangeListener ChangeEvent
SingleSelectionModel ChangeListener ChangeEvent

The ChangeListener interface has a single generic method:

public void stateChanged(ChangeEvent e)

The only state in a ChangeEvent is the event "source."

24

Models that use this mechanism support the following methods to add and
remove ChangeListeners:

public void addChangeListener(ChangeListener l)

public void removeChangeListener(ChangeListener l)

To be notified when the value of a JSlider has changed, e.g.:

JSlider slider = new JSlider();

BoundedRangeModel model = slider.getModel();

model.addChangeListener(new ChangeListener() {

public void stateChanged(ChangeEvent e) {

// need to query the model to get updated value...

BoundedRangeModel m =

(BoundedRangeModel)e.getSource();

System.out.println("model changed: " + m.getValue());

}

});

25

To provide convenience for programs that don’t wish to deal with separate
model objects, some Swing component classes also provide the ability to reg-
ister ChangeListeners directly on the component (so the component can
listen for changes on the model internally and then propagates those events
to any listeners registered directly on the component).

So we could simplify the preceding example to:

JSlider slider = new JSlider();

slider.addChangeListener(new ChangeListener() {

public void stateChanged(ChangeEvent e) {

// the source will be the slider this time...

JSlider s = (JSlider)e.getSource();

System.out.println("value changed: " + s.getValue());

}

});

26

Stateful notification

Models that support stateful notification provide event Listener interfaces
and event objects specific to their purpose. The following table shows the
breakdown for those models:

Model Listener Event

ListModel ListDataListener ListDataEvent
ListSelectionModel ListSelectionListener ListSelectionEvent
ComboBoxModel ListDataListener ListDataEvent
TreeModel TreeModelListener TreeModelEvent
TreeSelectionModel TreeSelectionListener TreeSelectionEvent
TableModel TableModelListener TableModelEvent
TableColumnModel TableColumnModel-

Listener
TableColumnModel-
Event

Document DocumentListener DocumentEvent
Document UndoableEditListener UndoableEditEvent

27

The following code dynamically tracks the selected item in a JList:

String items[] = {"One", "Two", "Three");

JList list = new JList(items);

ListSelectionModel sModel = list.getSelectionModel();

sModel.addListSelectionListener

(new ListSelectionListener() {

public void valueChanged(ListSelectionEvent e) {

// get change information directly

// from the event instance...

if (!e.getValueIsAdjusting()) {

System.out.println("selection changed: " +

e.getFirstIndex());

}

}

});

28

Ignoring models completely

As mentioned previously, most components provide the model-defined API
directly in the component class so that the component can be manipulated
without interacting with the model at all. This is considered perfectly
acceptable programming practice (especially for the GUI-state models). For
example, following is JSlider’s implementation of getValue(), which inter-
nally delegates the method call to its model:

public int getValue() {

return getModel().getValue();

}

And so programs can simply do the following:

JSlider slider = new JSlider();

int value = slider.getValue();

//what’s a "model," anyway?

29

Pluggable look-and-feel architecture

A new L&F is a very powerful feature for a subset of applications that want
to create a unique identity. PL&F is also ideally suited for use in building
GUIs that are accessible to users with disabilities, such as visually impaired
users or users who cannot operate a mouse.

In a nutshell, pluggable look-and-feel design simply means that the portion
of a component’s implementation that deals with the presentation (the look)
and event-handling (the feel) is delegated to a separate UI object supplied by
the currently installed look-and-feel, which can be changed at runtime.

30

Look-and-feel management

The UIManager is the API through which components and programs access
look-and-feel information (they should rarely, if ever, talk directly to a
LookAndFeel instance). UIManager is responsible for keeping track of which
LookAndFeel classes are available, which are installed, and which is cur-
rently the default. The UIManager also manages access to the Defaults
Table for the current look-and-feel.

public static LookAndFeel getLookAndFeel()

public static void

setLookAndFeel(LookAndFeel newLookAndFeel)

public static void setLookAndFeel(String className)

As a default look-and-feel, Swing initializes the cross-platform Java look and
feel (formerly known as "Metal"). The following code sample will set the
default Look-and-Feel to be CDE/Motif:

UIManager.setLookAndFeel(

"com.sun.java.swing.plaf.motif.MotifLookAndFeel");

31

The UIManager static methods to programmatically obtain the appropriate
LookAndFeel class names:

public static String

getSystemLookAndFeelClassName()

public static String

getCrossPlatformLookAndFeelClassName()

So, to ensure that a program always runs in the platform’s system look-and-
feel, the code might look like this:

UIManager.setLookAndFeel(

UIManager.getSystemLookAndFeelClassName());

32

Dynamically Changing the Default Look-and-Feel

When a Swing application programmatically sets the look-and-feel (as
described above), the ideal place to do so is before any Swing components

are instantiated . This is because the UIManager.setLookAndFeel()

method makes a particular LookAndFeel the current default by loading and
initializing that LookAndFeel instance, but it does not automatically cause
any existing components to change their look-and-feel.

33

And so if a program needs to change the look-and-feel of a GUI hierarchy
after it was instantiated, the code might look like the following:

// GUI already instantiated, where myframe

// is top-level frame

try {

UIManager.setLookAndFeel(

"com.sun.java.swing.plaf.motif.MotifLookAndFeel");

myframe.setCursor(

Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

SwingUtilities.updateComponentTreeUI(myframe);

myframe.validate();

} catch (UnsupportedLookAndFeelException e) {

} finally {

myframe.setCursor

(Cursor.getPredefinedCursor

(Cursor.DEFAULT_CURSOR));

}

34

public static LookAndFeelInfo[] getInstalledLookAndFeels()

method can be used to programmatically determine which look-and-feel
implementations are available, which is useful when building user interfaces
which allow the end-user to dynamically select a look-and-feel.

35

