Damas-Milner Type System: type inference and term generation.

Definition 1. Generalization

$$
\boldsymbol{G}(\tau, E)=\forall \alpha_{1}, \ldots, \alpha_{n} \cdot \tau
$$

where $\alpha_{1}, \ldots \alpha_{n}$ are exactly these free variables of τ, which do not occur in E. If $E=\left[x_{1}: \tau_{1} ; x_{2}: \tau_{2} ; \ldots ; x_{k}: \tau_{k}\right]$, and $1 \leqslant n \leqslant k$ then we write $E(n)=x_{n}: \tau_{n}$ and $E\left(x_{n}\right)=\tau_{n}$. For length we write $\bar{E}=k$.

Definition 2. Specialization of a type for a variable from environment: τ is a specialization of a type of variable x from environment E

$$
\tau \leqslant E(x) \equiv E=\ldots ; x: \forall \alpha_{1} \ldots \alpha_{n} . \sigma ; \ldots \text { and } \tau=\left[\tau_{1} / \alpha_{1} ; \ldots ; \tau_{n} / \alpha_{n}\right] \sigma
$$

for some $\tau_{1}, \ldots, \tau_{n}$. A type σ is more general than τ

$$
\tau \leqslant \sigma \equiv \tau=\forall \gamma_{1} \ldots \gamma_{m} \cdot \tau^{\prime} \wedge \sigma=\forall \alpha_{1} \ldots \alpha_{n} \cdot \sigma^{\prime} \wedge \tau^{\prime}=\left[\tau_{1} / \alpha_{1} ; \ldots ; \tau_{n} / \alpha_{n}\right] \sigma^{\prime}
$$

for some $\tau_{1}, \ldots \tau_{n}$. Substitution $T=\left[\tau_{1} / \alpha_{1} ; \ldots ; \tau_{n} / \alpha_{n}\right]$ denotes replacement of free occurrences of variables α_{i} by corresponding types τ_{i}.

Definition 3. Typing rules for the Mini-ML language:

1. VAR: Variables.

$$
\frac{\tau \leqslant E(x)}{E \vdash x: \tau}
$$

2. FIX: Functions.

$$
\frac{E . f: \sigma \rightarrow \tau . x: \sigma \vdash e: \tau}{E \vdash(\operatorname{fix} f x . e): \sigma \rightarrow \tau}
$$

3. APP: Applications.

$$
\frac{E \vdash e: \sigma \rightarrow \tau \quad E \vdash e^{\prime}: \sigma}{E \vdash e e^{\prime}: \tau}
$$

4. LET: Local bindings.

$$
\frac{E \vdash e^{\prime}: \sigma \quad E . x: \boldsymbol{G}(\sigma, E) \vdash e: \tau}{E \vdash\left(\operatorname{let} x=e^{\prime} \operatorname{in} e\right): \tau}
$$

Lemma 4. When $E \vdash \tau$ and type constants d_{1}, \ldots, d_{n} do not occur in E, then

$$
E \vdash \forall \alpha_{1} \ldots \alpha_{n} \cdot\left[\alpha_{1} / d_{1} ; \ldots ; \alpha_{n} / d_{n}\right] \tau
$$

Type inference algorithm \mathcal{W} and term generation algorithm \mathcal{C}.

Definition 5. $\mathcal{W}(E, e, V)=\left(T, \tau, V^{\prime}\right)$, where match e with:

1. $e=x$ (VAR: Variables). $T=\varnothing$ and for $x: \forall \alpha_{1} \ldots \alpha_{n} \cdot \sigma \in E$ let

$$
\begin{aligned}
\tau & =[\vec{\beta} / \vec{\alpha}] \sigma \\
V^{\prime} & =V^{\prime} \backslash \vec{\beta} \\
T & =\varnothing
\end{aligned}
$$

2. $e=$ fix $f x . e_{1}$ (FIX: Functions). Let

$$
\begin{aligned}
V & =\left\{\beta, \beta_{1}\right\} \dot{\cup} V^{\prime \prime} \\
\left(R, \rho, V^{\prime}\right) & =\mathcal{W}\left(E \cdot f: \beta_{1} \rightarrow \beta \cdot x: \beta_{1}, e_{1}, V^{\prime \prime}\right) \\
U & =\boldsymbol{U}(R \beta, \rho) \\
T & =U R \\
\tau & =U R\left(\beta_{1} \rightarrow \beta\right)
\end{aligned}
$$

3. $e=f g$ (APP: Applications). Let

$$
\begin{aligned}
\left(R, \rho, V_{1}\right) & =\mathcal{W}(E, f, V) \\
\left(S, \sigma, V_{2}\right) & =\mathcal{W}\left(R E, g, V_{1}\right) \\
U & =\boldsymbol{U}(S \rho, \sigma \rightarrow \beta) \\
V^{\prime} & =V_{2} \backslash\{\beta\} \\
T & =U S R \\
\tau & =U \beta
\end{aligned}
$$

4. $e=\operatorname{let} x=f$ in g (LET: Local bindings). Let

$$
\begin{aligned}
\left(R, \rho, V_{1}\right) & =\mathcal{W}(E, f, V) \\
\left(S, \sigma, V^{\prime}\right) & =\mathcal{W}\left(R E \cdot x: \boldsymbol{G}(\rho, R E), g, V_{1}\right) \\
T & =S R \\
\tau & =\sigma
\end{aligned}
$$

Definition 6. $\mathcal{C}(E, \tau, V, \vec{w})=\left(T, e, V^{\prime}, \vec{w}^{\prime}\right)$, where for $\left(w_{1} \bmod 4\right)$ equal

1. VAR: Variables. For $E\left(w_{2} \bmod \bar{E}\right)=x: \forall \alpha_{1} \ldots \alpha_{n} . \sigma$ let

$$
\begin{aligned}
U & =\boldsymbol{U}\left(\tau,\left[\beta_{1} / \alpha_{1}\right] \ldots\left[\beta_{n} / \alpha_{n}\right] \sigma\right) \\
V & =\left\{\beta_{i} \mid 1 \leqslant i \leqslant n\right\} \dot{\cup} V^{\prime} \\
e & =x \\
T & =U \\
w_{i}^{\prime} & =w_{i+2}
\end{aligned}
$$

If the unifier does not exist, \mathcal{C} is undefined.
2. FIX: Functions. If $\tau=\sigma \rightarrow \rho$, let

$$
\begin{aligned}
\left(R, e_{1}, V^{\prime}, \vec{w}_{1}\right) & =\mathcal{C}\left(E \cdot f: \tau \cdot x: \sigma, \rho, V,\left(w_{i+1}\right)\right) \\
T & =R \\
e & =\text { fix } f x \cdot e_{1} \\
\vec{w}^{\prime} & =\vec{w}_{1}
\end{aligned}
$$

where f, x are new variables. If $\tau=\alpha$, where α is a type variable, for $\beta_{1}, \beta \in V$ let

$$
\begin{aligned}
R & =\left[\beta_{1} \rightarrow \beta / \alpha\right] \\
\left(S, e_{1}, V^{\prime}, \vec{w}_{1}\right) & =\mathcal{C}\left(R E . f: \beta_{1} \rightarrow \beta \cdot x: \beta_{1}, \beta, V \backslash\left\{\beta_{1}, \beta\right\},\left(w_{i+1}\right)\right) \\
T & =S R \\
e & =\text { fix } f x . e_{1}
\end{aligned}
$$

where f, x are new variables. If τ has a different form, \mathcal{C} is undefined.
3. APP: Applications. For $\beta \in V$ let

$$
\begin{aligned}
\left(R, f, V_{1}, \vec{w}_{1}\right) & =\mathcal{C}\left(E, \beta \rightarrow \tau, V \backslash\{\beta\},\left(w_{i+1}\right)\right) \\
\left(S, g, V^{\prime}, \vec{w}_{2}\right) & =\mathcal{C}\left(R E, R \beta, V_{1}, \vec{w}_{1}\right) \\
T & =S R \\
e & =f g \\
\vec{w}^{\prime} & =\vec{w}_{2}
\end{aligned}
$$

4. LET: Local bindings. For $\beta \in V$ let

$$
\begin{aligned}
\left(R, f, V_{1}, \vec{w}_{1}\right) & =\mathcal{C}\left(E, \beta, V \backslash\{\beta\},\left(w_{i+1}\right)\right) \\
\left(S, g, V^{\prime}, \vec{w}_{2}\right) & =\mathcal{C}\left(R E \cdot x: \boldsymbol{G}(R \beta, R E), R \tau, V_{1}, \vec{w}_{1}\right) \\
T & =S R \\
e & =\operatorname{let} x=f \operatorname{in} g \\
\vec{w}^{\prime} & =\vec{w}_{2}
\end{aligned}
$$

Soundness.

Theorem 7. Let e be an expression, E an environment, V a set of type variables. If $(T, \tau$, $\left.V^{\prime}\right)=\mathcal{W}(E, e, V)$ is defined, then we can derive $T E \vdash e: \tau$.

Theorem 8. Let τ be a type, E an environment, V a set of type variables. If $\left(T, e, V^{\prime}\right)=$ $\mathcal{C}(E, \tau, V)$ is defined, we can derive $T E \vdash e: T \tau$.

Completeness.

Theorem 9. Let e be an expression, E an environment, V an infinite set of variables such, that $V \cap \boldsymbol{F}(E)=\varnothing$. If there exists type τ^{\prime} and substitution T^{\prime} such that $T^{\prime} E \vdash e: \tau^{\prime}$, then $(T$, $\left.\tau, V^{\prime}\right)=\mathcal{W}(E, e, V)$ is defined, and there exists a substitution P such that

$$
\tau^{\prime}=P \tau \quad \text { and } \quad T^{\prime}=P T \text { outside } V
$$

Definition 10. Type σ is more general than τ

$$
\tau \preccurlyeq \sigma \equiv \text { there exists substitution } P: P \sigma=\tau
$$

Substitution S is more general than R

$$
\begin{aligned}
R \preccurlyeq S & \equiv \text { there exists substitution } P: P S=R \\
& \equiv \operatorname{Dom}(S) \subseteq \operatorname{Dom}(R) i \forall \alpha \in \operatorname{Dom}(S): R \alpha \preccurlyeq S \alpha
\end{aligned}
$$

Theorem 11. Let e be an expression, E an environment. For any type τ and substitution T^{\prime} such that $T^{\prime} E \vdash e: T^{\prime} \tau$ and $\boldsymbol{F}\left(T^{\prime}\right) \cap \operatorname{Dom}\left(T^{\prime}\right)=\varnothing$, for infinite set of variables V disjoint with $\boldsymbol{F}(E)$ and $\boldsymbol{F}\left(T^{\prime}\right)$, for some path of choices the following holds: $\left(T, e, V^{\prime}\right)=\mathcal{C}(E, \tau, V)$ and $T^{\prime} \preccurlyeq T$ outside V.

Corollary 12. If β is a type variable not occurring in $E, \beta \notin V$, and $\mathcal{C}(E, \beta, V)=\left(T, e, V_{1}\right)$, then for any type τ and substitution $T^{\prime}, \beta \notin \boldsymbol{F}(\tau) \cup \boldsymbol{F}\left(T^{\prime}\right)$, for which $T^{\prime} E \vdash e: \tau$, we have $T^{\prime} \preccurlyeq T$ outside $V \cup\{\beta\}$ i $\tau \preccurlyeq T \beta$.

Extending the language with the construct case.

Definition 13. Typing rules for the inductive structures:

1. VAR: Variables...
2. FIX: Functions...
3. APP: Applications...
4. LET: Local bindings...
5. CASE: Deconstruction

$$
\frac{E \vdash e^{\prime}: d \vec{\tau} \quad E \vdash e_{i}: \text { Inst }_{c_{i}} \vec{\tau} \rightarrow \theta(1 \leqslant i \leqslant n)}{E \vdash \text { case } e^{\prime} \text { of }\left\{c_{1} \Rightarrow e_{1}|\ldots| c_{n} \Rightarrow e_{n}\right\}: \theta} \text { if } \boldsymbol{C}(d)=\left\{c_{1}, \ldots, c_{n}\right\}
$$

6. Instead of the rule: CONS: Constructor

$$
\overline{E \vdash c: \text { Inst }_{c} \vec{\tau} \rightarrow d \vec{\tau}} \text { if } c \in \boldsymbol{C}(d)
$$

we introduce an assumption on environment E :

$$
(\forall d)(\forall c \in \boldsymbol{C}(d)) \text { let } c: \forall \vec{\alpha} . \text { Inst }_{c} \vec{\alpha} \rightarrow d \vec{\alpha} \in E \text {, where } \# \vec{\alpha} \text { is the arity of } d
$$

where $\boldsymbol{C}(d)$ is a set of constructors of the type $d, \vec{\tau}$ are parameters of the type, $\operatorname{Inst}_{c} \vec{\tau}$ is a vector of argument types of constructor c, when the parametric type d takes parameters $\vec{\tau}$. Notation: if $\vec{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\left(\sigma_{i}\right)_{1 \leqslant i \leqslant n}$, then $\# \vec{\sigma}=n$ and

$$
\vec{\sigma} \rightarrow \tau=\sigma_{1} \rightarrow \ldots \rightarrow \sigma_{n} \rightarrow \tau=\sigma_{1} \rightarrow\left(\ldots \rightarrow\left(\sigma_{n} \rightarrow \tau\right) \ldots\right)
$$

Definition 14. $\mathcal{W}(E, e, V)=\left(T, \tau, V^{\prime}\right)$, where match e with:

1. $e=x$ (VAR: Variables)...
2. $e=$ fix $f x . e_{1}$ (FIX: Functions) \ldots
3. $e=f g(A P P:$ Applications $) \ldots$
4. $e=\operatorname{let} x=f$ in $g(L E T:$ Local bindings) \ldots
5. $e=$ case e^{\prime} of $\left\{c_{1} \Rightarrow e_{1}|\ldots| c_{n} \Rightarrow e_{n}\right\}$ (CASE: Deconstruction) For type d with arity k (k parametric) such that $c_{1}, \ldots, c_{n} \in \boldsymbol{C}(d)$

$$
\begin{aligned}
V & =\left\{\beta_{i} \mid 1 \leqslant i \leqslant k\right\} \cup\{\theta\} \dot{\cup} V_{r} \\
\left(T_{0}, \rho, V_{0}\right) & =\mathcal{W}\left(E, e^{\prime}, V_{r}\right) \\
U_{0} & =\boldsymbol{U}(\rho, d \vec{\beta}) \\
\left(T_{1}, \sigma_{1}, V_{1}\right) & =\mathcal{W}\left(U_{0} T_{0} E, e_{1}, V_{0}\right) \\
U_{1} & =\boldsymbol{U}\left(T_{1} U_{0} T_{0}\left(\text { Inst }_{c_{1}} \vec{\beta} \rightarrow \theta\right), \sigma_{1}\right) \\
\ldots & \\
\left(T_{n}, \sigma_{n}, V_{n}\right) & =\mathcal{W}\left(U_{n-1} T_{n-1} \ldots U_{0} T_{0} E, e_{n}, V_{n-1}\right) \\
U_{n} & =\boldsymbol{U}\left(T_{n} U_{n-1} T_{n-1} \ldots U_{0} T_{0}\left(\operatorname{Inst}_{c_{1}} \vec{\beta} \rightarrow \theta\right), \sigma_{n}\right) \\
T & =U_{n} T_{n} \ldots U_{0} T_{0} \\
\tau & =T \theta \\
V^{\prime} & =V_{n}
\end{aligned}
$$

Definition 15. $\mathcal{C}(E, \tau, V, \vec{w})=\left(T, e, V^{\prime}, \vec{w}^{\prime}\right)$, where for $\left(w_{1} \bmod 5\right)$ equal

1. VAR: Variables...
2. FIX: Functions...
3. APP: Applications...
4. LET: Local bindings...
5. CASE: Deconstruction. Let d be $\left(w_{i+1} \bmod D\right)$-th inductive type, where D is the number of inductive types, and k is the arity of type d. Let

$$
\begin{aligned}
V & =\left\{\beta_{i} \mid 1 \leqslant i \leqslant k\right\} \cup\{\theta\} \dot{\cup} V_{r} \\
\left(R, e^{\prime}, V_{0}, \vec{w}_{0}\right) & =\mathcal{C}\left(E, d \vec{\beta}, V_{r},\left(w_{i+2}\right)\right) \\
\left(T_{1}, e_{1}, V_{1}, \vec{w}_{1}\right) & =\mathcal{C}\left(R E, R\left(\text { Inst }_{c_{1}} \vec{\beta} \rightarrow \tau\right), V_{0}, \vec{w}_{0}\right) \\
\ldots & \\
\left(T_{n}, e_{n}, V_{n}, \vec{w}_{n}\right) & =\mathcal{C}\left(T_{n-1} \ldots T_{1} R E, T_{n-1} \ldots T_{1} R\left(\text { Inst }_{c_{n}} \vec{\beta} \rightarrow \tau\right), V_{n-1}, \vec{w}_{n-1}\right) \\
T & =T_{n} \ldots T_{1} R \\
e & =\text { case } e^{\prime} \text { of }\left\{c_{1} \Rightarrow e_{1}|\ldots| c_{n} \Rightarrow e_{n}\right\} \\
V^{\prime} & =V_{n} \\
\vec{w}^{\prime} & =\vec{w}_{n}
\end{aligned}
$$

Soundness with case.

Theorem 16. Let e be an expression, E an environment, V a set of type variables. If $(T$, $\left.\tau, V^{\prime}\right)=\mathcal{W}(E, e, V)$ is defined, then we can derive $T E \vdash e: \tau$.

Theorem 17. Let τ be a type, E an environment, V a set of type variables. If $\left(T, e, V^{\prime}\right)=$ $\mathcal{C}(E, \tau, V)$ is defined, we can derive $T E \vdash e: T \tau$.

Completeness with case.

Theorem 18. Let e be an expression, E an environment, V an infinite set of type variables such that $V \cap \boldsymbol{F}(E)=\varnothing$. If there exists a type τ^{\prime} and a substitution T^{\prime} such that $T^{\prime} E \vdash e: \tau^{\prime}$, then $\left(T, \tau, V^{\prime}\right)=\mathcal{W}(E, e, V)$ is defined, and there exists a substituion P such that

$$
\tau^{\prime}=P \tau \quad i \quad T^{\prime}=P T \text { outside } V
$$

Theorem 19. Let e be an expression, E an environment. For any type τ and substitution T^{\prime} such that $T^{\prime} E \vdash e: T^{\prime} \tau$ and $\boldsymbol{F}\left(T^{\prime}\right) \cap \operatorname{Dom}\left(T^{\prime}\right)=\varnothing$ (?), for an infinite set of variables V disjoint with $\boldsymbol{F}(E)$ and $\boldsymbol{F}\left(T^{\prime}\right)$, for some path of choices the following holds: $\left(T, e, V^{\prime}\right)=$ $\mathcal{C}(E, \tau, V)$ and $T^{\prime} \preccurlyeq T$ outside V.

