Full Type Inference
GADTs

BY LLUKASZ STAFINIAK
University of Wroctaw

Emanl: 1lukstafi@gmail.com

October 5, 2007

for

Examples

split
newtype Bar
newtype List : nat

newcons LNil : List O
newcons LCons : for all (n) : Bar * List(n) --> List(n+1)

let rec split =
function LNil -> LNil, LNil
| LCons (x, LNil) as y -> y, LNil
| LCons (x, LCons (y, z)) ->
match split z with (11, 12) ->
LCons (x, 11), LCons (y, 12)

split : Vm, n, k|k =m + n].List (k) — (List(m), List(n))

filter

newtype Boolean
newtype List : type * nat

newcons B_true : Boolean
newcons B false : Boolean

newcons LNil : for all a: List(a, 0)
newcons LCons : for all (n, a): a * List(a, n) --> List(a, n+1)

newtype Bar
external f : Bar -> Boolean

let rec filter =
function LNil -> LNil
| LCons (x, 1) -> match f x with
B_true -> LCons (x, filter 1)
| B_false -> filter 1

filter: Vn, k[n < k|.List(Bar, k) — List(Bar, n)

mergesort

newtype Ordered : nat * nat
newtype OList : nat * nat
newtype Nat : nat

newcons Leq : for all (a, b) with a <= b: Ordered (a, b)
newcons Geq : for all (a, b) with b <= a: Ordered (a, b)

external compare
for all (c, d) with ¢ <= d : Nat(c) -> Nat(d) -> Ordered (c, d)

newcons 0ONil : OList (O, O0)
newcons 0Cons
for all (n, a, b) with b <= a:
Nat(a) * OList(n, b) --> OList(n+1, a)

newtype List : nat
newtype EList : nat
newtype Impossible

newcons LNil : List(0)
newcons LCons : for all (n, a): Nat(a) * List(n) --> List(n+1)

newcons Ex : for all (n, a) : OList(n,a) --> EList(n)
newcons Impossible : with false: Impossible

let rec mergesort =
function LNil -> Ex (ONil)
| LCons (x0, 10) as main ->
let rec split =
function LNil -> LNil, LNil

| LCons (x, LNil) as y -> y, LNil

| LCons (x, LComs (y, z)) ->
match split z with (11, 12) ->

LCons (x, 11), LCons (y, 12) in

let rec merge =
function ONil -> (fun 1 -> 1)
| 0OCons (a, 11) as 1 ->
function ONil -> 1
| 0OCons (b, 13) as 12 ->
match compare a b with
Leq -> OCons (a, merge 11 12)
| Geq -> OCons (b, merge 1 13) in
match split main with
LNil, LNil -> Impossible
| LCons (x, LNil), LNil -> Ex (OCons (x, ONil))
| LNil, LCons (x, LNil) -> Ex (OComns (x, ONil))
| 11, 12 ->
match mergesort 11 with Ex oll ->
match mergesort 12 with Ex ol2 ->
Ex (merge oll 0l12)

mergesort: Vn.List(n) — EList(n)

eval

newtype Term : type
newtype Int
newtype Bool

external plus : Int -> Int -> Int
external is_zero : Int -> Bool
external if : for all a : Bool -> a -> a -> a

newcons Lit : Int --> Term Int

newcons Plus : Term Int * Term Int --> Term Int

newcons IsZero : Term Int --> Term Bool

newcons If : for all a : Term Bool * Term a * Term a --> Term a
newcons Pair : for all (a, b) : Term a * Term b --> Term (a, b)
newcons Fst : for all (a, b) : Term (a, b) --> Term a

newcons Snd : for all (a, b) : Term (a, b) --> Term b

let rec eval = function

Lit 1 -> 1

IsZero x -> is_zero (eval x)

Plus (x, y) -> plus (eval x) (eval y)

If (b, t, e) -> if (eval b) (eval t) (eval e)
Pair (x, y) -> eval x, eval y

Fst p -> (match eval p with x, y -> x)

Snd p -> (match eval p with x, y -> y)

eval: Vt. Term(t) — ¢

Program-shaped constraints

The environment is split into polymorphic £/ and monomorphic B bindings.
e Polymorphic binding can have
o an open type scheme (V)a (everything to be inferred),
o a closed type scheme V3[o].7 (known type and conditions),

and comes from
o constructor or external declaration (closed),
o recursive definition (open).

e Monomorphic binding comes from M-abstraction (realized by pattern-
matching clauses).

The type language is multi-sorted (currently only proper types and natural num-
bers). Atomic constraints:

e equality my=7y (for subtyping constraints, no subtyping)
e inequality n1 <ns on natural numbers

e colored semi-equality [¢] T1<72 (semi-unificational constraint)

e falsehood L (only in user-provided constraints).

10

Structural constraints

conjunction

clauses ;= p;(7;)(7) where 7 — expected type of the clauses, 7; — type of
branch ¢, o; — premises in branch ¢, p; — conditions to hold in branch ¢

negation ~ o (used when o= 1 is inferred)
pattern implication o1 = o5 (rather not important)

recursive definition rec a def p; in ps where a — type variable representing
the defined function, p; — defining constraints, ps — all other constraints
where o can be used

call a: 71<72(¥;), use of recursive definition identified by variable a, where
71 — actual type of definition (initially = «), 79 — expected type of use, v;
are types which cannot be changed by instantiation of the call (their vari-
ables cannot be parts of semi-substitution)

11

Building constraints

Expressions

(E > x: VBlo|.1, BF x: T,
7}-> = o[B = a] A T[B = a|=T,
a fresh
(E3x:(V)a, BFx:7,%) = calla:a<r(¥;)
(E,Box:mbFx:71,v) = T1=T
(E,BFXe:T,v) = (E,BFeé, v.a)(a— () A
a— =7, «afresh
(E,BFejext,v) = (E, BFei:a— T, 7) A
(E, BFes: a,7;), afresh
(E,BFi:T,7v;) = Nat(i)=r
(E, BFlet x =eqin ea: 7,
¥i) = rec «a def (F.x: (V)a,
BFera,v)in (E.x: (V)a,
BFea:T,)

12

Clauses

(E,Btc¢c,v) (E,BFca—3,7)(a— (),

o, (fresh

(E + plm) A skolem(fB)(oc =
(E, B.B" F e T2, 7)),
where 8,0, B’ = (EF plm)

I will not go into details of (E'Fp|7) and (EF pl71)...

(E,BFp.e:T1— T2, %)

13

Solving: infering types

e C(onstraints are manipulated in several passes. First, I solve equalities.

©)

Constraints from implications are local to them, inferred substitu-
tions are applied to the whole “implication subtree”.

When solving premises, I treat constants as variables, but I always
substitute-out variables if there is choice. (soundness)

[only substitute RHS of the calls with branch-local (implication
subtree) substitutions.

e While solving equalities, I “solve” clauses (branchings) by generalization.

©)

Each branch (implication from pattern matching) has its type
approximated by solved equalities; the branching has its expected
type too.

When there is no conflict between all branch types and the
branching type, I unify; if there would be a conflict, I generalize.

Substitutions of each branch and of the branching are kept sepa-
rately. Each branch substitution is applied to the branch as usual.

Only the branching subst. is applied to LHS of calls (and outside).

14

e Now I turn calls into semi-equalities. Each call has its own color.

calla: i <7o(7;) =: [ap] i< A /\ [a] vi<vi A
axlSV(a)
I remember which functions were called by “second-order variables” SV («).

e Now I solve semi-equalities by semi-unification, with the same branch-
locality restrictions as for equality.

e Imagine that a function is defined by a single branching.
o There must be a base branch, without recursive calls.

o I generate saturated structures for base branches. Their intersection
is the “initial guess”.

o I substitute the “initial guess” for each occurrence |ai| of SV(a) in a
recursive branch, applying the semi-substitution for color ay to it.

o I generate saturated structures for recursive branches and intersect
them. This forms the inferred condition for the recursive function.

I use a generalization of this idea to other recursive functions.

e [still do not know how to solve mutual recursion.

15

