
Full Type Inference forGADTs

by �ukasz Stafiniak

University of Wrocªaw

Email: lukstafi@gmail.com

October 5, 2007

2

Examplessplitnewtype Barnewtype List : natnewcons LNil : List 0newcons LCons : for all (n) : Bar * List(n) --> List(n+1)let rec split =function LNil -> LNil, LNil| LCons (x, LNil) as y -> y, LNil| LCons (x, LCons (y, z)) ->match split z with (l1, l2) ->LCons (x, l1), LCons (y, l2)split : ∀m, n, k[k = m + n].List(k)→ (List(m),List(n))
3

�lternewtype Booleannewtype List : type * natnewcons B_true : Booleannewcons B_false : Booleannewcons LNil : for all a: List(a, 0)newcons LCons : for all (n, a): a * List(a, n) --> List(a, n+1)newtype Barexternal f : Bar -> Booleanlet rec filter =function LNil -> LNil| LCons (x, l) -> match f x withB_true -> LCons (x, filter l)| B_false -> filter l�lter: ∀n, k[n6 k].List(Bar, k)→List(Bar, n)4

mergesortnewtype Ordered : nat * natnewtype OList : nat * natnewtype Nat : natnewcons Leq : for all (a, b) with a <= b: Ordered (a, b)newcons Geq : for all (a, b) with b <= a: Ordered (a, b)external compare :for all (c, d) with c <= d : Nat(c) -> Nat(d) -> Ordered (c, d)newcons ONil : OList(0, 0)newcons OCons :for all (n, a, b) with b <= a:Nat(a) * OList(n, b) --> OList(n+1, a)newtype List : natnewtype EList : natnewtype Impossible

5

newcons LNil : List(0)newcons LCons : for all (n, a): Nat(a) * List(n) --> List(n+1)newcons Ex : for all (n, a) : OList(n,a) --> EList(n)newcons Impossible : with false: Impossiblelet rec mergesort =function LNil -> Ex (ONil)| LCons (x0, l0) as main ->let rec split =function LNil -> LNil, LNil| LCons (x, LNil) as y -> y, LNil| LCons (x, LCons (y, z)) ->match split z with (l1, l2) ->LCons (x, l1), LCons (y, l2) in
6

let rec merge =function ONil -> (fun l -> l)| OCons (a, l1) as l ->function ONil -> l| OCons (b, l3) as l2 ->match compare a b withLeq -> OCons (a, merge l1 l2)| Geq -> OCons (b, merge l l3) inmatch split main withLNil, LNil -> Impossible| LCons (x, LNil), LNil -> Ex (OCons (x, ONil))| LNil, LCons (x, LNil) -> Ex (OCons (x, ONil))| l1, l2 ->match mergesort l1 with Ex ol1 ->match mergesort l2 with Ex ol2 ->Ex (merge ol1 ol2)mergesort: ∀n.List(n)→EList(n)

7

evalnewtype Term : typenewtype Intnewtype Boolexternal plus : Int -> Int -> Intexternal is_zero : Int -> Boolexternal if : for all a : Bool -> a -> a -> anewcons Lit : Int --> Term Intnewcons Plus : Term Int * Term Int --> Term Intnewcons IsZero : Term Int --> Term Boolnewcons If : for all a : Term Bool * Term a * Term a --> Term anewcons Pair : for all (a, b) : Term a * Term b --> Term (a, b)newcons Fst : for all (a, b) : Term (a, b) --> Term anewcons Snd : for all (a, b) : Term (a, b) --> Term b

8

let rec eval = function| Lit i -> i| IsZero x -> is_zero (eval x)| Plus (x, y) -> plus (eval x) (eval y)| If (b, t, e) -> if (eval b) (eval t) (eval e)| Pair (x, y) -> eval x, eval y| Fst p -> (match eval p with x, y -> x)| Snd p -> (match eval p with x, y -> y)eval:∀t.Term(t)→ t

9

Program-shaped constraintsThe environment is split into polymorphic E and monomorphic B bindings.
• Polymorphic binding can have

◦ an open type scheme (∀)α (everything to be inferred),
◦ a closed type scheme ∀β̄ [σ].τ (known type and conditions),and comes from

◦ constructor or external declaration (closed),
◦ recursive de�nition (open).

• Monomorphic binding comes from λ-abstraction (realized by pattern-matching clauses).The type language is multi-sorted (currently only proper types and natural num-bers). Atomic constraints:

• equality τ1=̇τ2 (for subtyping constraints, no subtyping)

• inequality n1≤n2 on natural numbers
• colored semi-equality [c]τ16̇τ2 (semi-uni�cational constraint)

• falsehood ⊥ (only in user-provided constraints).
10

Structural constraints

• conjunction

• clauses σi⇒ ρi(τi)(τ) where τ � expected type of the clauses, τi � type ofbranch i, σi � premises in branch i, ρi � conditions to hold in branch i

• negation ∼σ (used when σ⇒⊥ is inferred)
• pattern implication σ1⇒σ2 (rather not important)
• recursive de�nition rec α def ρ1 in ρ2 where α � type variable representingthe de�ned function, ρ1 � de�ning constraints, ρ2 � all other constraintswhere α can be used

• call α: τ16̇τ2(γī), use of recursive de�nition identi�ed by variable α, where

τ1 � actual type of de�nition (initially = α), τ2 � expected type of use, γiare types which cannot be changed by instantiation of the call (their vari-ables cannot be parts of semi-substitution)
11

Building constraintsExpressions

〈

E ∋ x: ∀β̄ [σ].τ1, B ⊢ x: τ ,

γī

〉

= σ[β̄ 4 ᾱ] ∧ τ1[β̄ 4 ᾱ]=̇τ ,

ᾱ fresh
〈E ∋x: (∀)α, B ⊢x: τ , γī〉 = callα: α6̇τ (γī)

〈E, B ∋x: τ1⊢x: τ , γī〉 = τ1=̇τ

〈E, B ⊢λc̄: τ , γī〉 = 〈E, B ⊢ c̄ , γī.α〉(α → β) ∧

α→ β =̇ τ , α fresh
〈E, B ⊢ e1 e2: τ , γī〉 = 〈E, B ⊢ e1: α → τ , γī〉 ∧

〈E, B ⊢ e2: α, γī〉, α fresh

〈E,B ⊢ i: τ , γī〉 = Nat(i) =̇ τ

〈E, B ⊢ let x = e1 in e2: τ ,

γī〉 = rec α def 〈E.x: (∀)α,

B ⊢ e1: α, γī〉 in 〈E.x: (∀)α,

B ⊢ e2: τ , γī〉12

Clauses

〈E, B ⊢ c̄ , γī〉 = 〈E,B ⊢ c: α→ β, γī〉(α→ β),

α, β fresh

〈E, B ⊢ p.e: τ1→ τ2, γī〉 = 〈E ⊢ p↓τ1〉 ∧ skolem(β̄)(σ ⇒

〈E, B.B ′ ⊢ e: τ2, γī〉),where β̄ , σ, B ′= 〈E ⊢ p↑τ1〉I will not go into details of 〈E ⊢ p↓τ1〉 and 〈E ⊢ p↑τ1〉...
13

Solving: infering types

• Constraints are manipulated in several passes. First, I solve equalities.
◦ Constraints from implications are local to them, inferred substitu-tions are applied to the whole �implication subtree�.
◦ When solving premises, I treat constants as variables, but I alwayssubstitute-out variables if there is choice. (soundness)
◦ I only substitute RHS of the calls with branch-local (implicationsubtree) substitutions.

• While solving equalities, I �solve� clauses (branchings) by generalization.

◦ Each branch (implication from pattern matching) has its typeapproximated by solved equalities; the branching has its expectedtype too.

◦ When there is no con�ict between all branch types and thebranching type, I unify; if there would be a con�ict, I generalize.

◦ Substitutions of each branch and of the branching are kept sepa-rately. Each branch substitution is applied to the branch as usual.

◦ Only the branching subst. is applied to LHS of calls (and outside).

14

• Now I turn calls into semi-equalities. Each call has its own color.callα: τ16̇τ2(γī) = : [αk]τ16̇τ2 ∧
∧

i

[αk] γi6̇γi ∧

[αk]SV(α)I remember which functions were called by �second-order variables� SV(α).
• Now I solve semi-equalities by semi-uni�cation, with the same branch-locality restrictions as for equality.

• Imagine that a function is de�ned by a single branching.
◦ There must be a base branch, without recursive calls.
◦ I generate saturated structures for base branches. Their intersectionis the �initial guess�.
◦ I substitute the �initial guess� for each occurrence [αk] of SV(α) in arecursive branch, applying the semi-substitution for color αk to it.

◦ I generate saturated structures for recursive branches and intersectthem. This forms the inferred condition for the recursive function.I use a generalization of this idea to other recursive functions.

• I still do not know how to solve mutual recursion.15

