
  

Some ideas on
Evolutionary Algorithms

randomized search, or optimization, algorithms, 
with evolution-inspired heuristics



  

Sometimes useful for...

● global optimization: finding the best solution ever
● multimodal optimization, exploring the search 

space: finding many alternative solutions / 
localizing many optima

● finding sufficient solutions (not necessarily 
optimal) of hard problems

● optimizing objects with continuous, discrete and 
structural components



  

What is global optimization?

● Greedy search:
– hill climbing

● look around and move only up

– gradient based
● look under your feet and move only upwards

● doesn't work.
● Simulated annealing:

– Hiker's approach: wander around, but prefer to move 
upwards, especially when you are getting tired.

– Pick random neighbor, always move there if better, 
and sometimes also if a bit worse.

?
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How to „map” the search space?

● A triangle or polygon estimates the fitness of its area 
by the mean of fitness at its vertices.

● Select the figure with high fitness (or sometimes with 
big volume), divide a triangle by adding a vertex on 
the edge with biggest fitness difference, divide a 
polygon by a diagonal joining two vertices each 
between vertices differing in fitness.

● When running short on memory, remove an edge with 
low fitness or low difference in fitness between figures 
it separates.



  

How to „map” the search space?

● This algorithm I've developed yesterday sounds 
promising, but is somewhat complicated... what 
is its maximal simplification?

● Keep just the points, and select an edge with 
high fitness to divide!

● This is a form of „phenotype recombination”. 



  

How to „map” the search space?

● Random moving of a point to a close neighbor 
as in simulated annealing is „mutation”.

● Recombination and mutation are the basic 
operators of evolutionary algorithms (EAs).

● We can look at the population processed by an 
EA as an implicit adaptive map of the fitness in 
the search space.

● Or as a randomized hypothesis (prob. 
distribution) of where the true optimum is.
– This hypothesis is updated with each generation of 

the EA.



  

Selfish Gene

● A pattern is a relation between a piece of 
information and particular objects, its 
„instances”.

● The information is „genotype”, and the instance 
is „phenotype”.

● Patterns at „time t+1” are the patterns that 
managed to put themselves there from „time t”. 
They „are fit”.

● Patterns „with individuality” are short enough so 
that they are seldom disrupted. To „be fit”, they 
often perform some function. Called genes.



  

Evolution and Modularity

● We would like to select for meaningful genes 
rather than individuals, because the pool of 
competing individuals is enormous, and for a 
gene (i.e. feature type), the pool of competing 
alleles (i.e. feature values) is relatively small.

● When the problem is modular (decomposable 
into features), and genes match to features, EAs 
with recombination search for alleles in parallel. 
When genes don't match to features, 
recombination is just a large-scale mutation.

● Example of a modular problem: TSP.



  

Evolution and Modularity
● Location of a city en route (i.e. first, or fifth, city) 

is not a good feature, it doesn't tell anything 
about the path.

● Edges are better features. But perhaps angles 
(corners, triples of cities) are even better?

● With a good set of features, it is often very 
difficult to design a good recombination 
operator, which should:
– preserve features of parents, shouldn't introduce features 

not present in parents

– allow to balance features from both parents, shouldn't 
force most features to come from the same parent



  

Evolution and Modularity
● The above conditions often cannot be met 

exactly (i.e. for TSP): see „Forma Analysis” by 
Nicholas J. Radcliffe.

● When recombination tends not to disrupt groups 
of related genes, it can give exponential speed-
up compared to mutation only (and thus to non-
EA search strategies).
– This has been shown for Traveling Salesman Probl.

● Therefore, related genes should lay close in the 
genome. There are techniques to let this linkage 
evolve. A recent powerful one is „Bayesian 
Optimisation Algorithm”.



  

Genetic Programming (GP)
and Modularity

● GP takes programs as the genotype. This sounds 
as a powerful idea: programs are the „ultimate 
representation” for solutions.

● But the original GP falls completely short on the 
issues we discussed so far (genes, recombination, 
linkage).

● Fortunately, there has been much progress:
– NeuroEvolution of Augmenting Topologies (NEAT) [1] 

– Meta-Optimizing Semantic Evolutionary Search 
(MOSES) [2]

● These approaches learn new genes incrementally.



  

EAs in other mechanisms

● EAs are usually separate tools in a toolbox, but 
sometimes they are parts of other tools.

● One such tool is also biology inspired: Artificial 
Immunological Systems (AISs).
– AISs use fuzzy matching of antibodies to detect 

pathogens.

– AISs use negative selection, which eliminates 
detrimential antibodies (detecting organism own 
cells) in the early phase, and positive selection to 
increase affinity to detected pathogens.

● The other one I want to talk about are Learning 
Classifier Systems.



  

Learning Classifier Systems

● Abstract Learning Classifier Systems (LCSs) are rule-
based systems that automatically build their ruleset 
using Genetic Algorithm (GA).

● Reinforcement Learning (RL) learns what actions to 
pick in given states, knowing only the experienced 
rewards. LCS rules represent state-action(-reward) 
table in a compact way.

● RL must balance
– exploration: trying out new actions to see what rewards they 

give

– exploitation: following the action with biggest expected 
rewards (based on experience so far)

[3]



  

Learning Classifier Systems
There are several flavors of LCSs now:

– the „Pittsburgh approach” used GA on populations of whole 
systems; currently (after „Michigan approach”) a single LCS is 
evolved, using GA inside its learning mechanism

– strength-based systems (i.e. ZCS) use the expected reward of 
a rule (which matches state and produces action) as its fitness

– accuracy-based systems (i.e. XCS) represent expected 
reward in a rule and use accuracy of reward prediction as 
fitness; GA works only on classifiers matching current situation

– anticipation-based systems (ALCSs) don't use condition -> 
action rules, but condition, action -> effect rules: they build a 
state transition model; they favor actions bringing more 
information; often don't use GA but sophisticated specialization 
and generalization heuristics



  

Learning Classifier Systems
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