

Some ideas on
Evolutionary Algorithms

randomized search, or optimization, algorithms,
with evolution-inspired heuristics

Sometimes useful for...

● global optimization: finding the best solution ever
● multimodal optimization, exploring the search

space: finding many alternative solutions /
localizing many optima

● finding sufficient solutions (not necessarily
optimal) of hard problems

● optimizing objects with continuous, discrete and
structural components

What is global optimization?

● Greedy search:
– hill climbing

● look around and move only up

– gradient based
● look under your feet and move only upwards

● doesn't work.
● Simulated annealing:

– Hiker's approach: wander around, but prefer to move
upwards, especially when you are getting tired.

– Pick random neighbor, always move there if better,
and sometimes also if a bit worse.

?

How to „map” the search space?

How to „map” the search space?

How to „map” the search space?

How to „map” the search space?

How to „map” the search space?

How to „map” the search space?

● A triangle or polygon estimates the fitness of its area
by the mean of fitness at its vertices.

● Select the figure with high fitness (or sometimes with
big volume), divide a triangle by adding a vertex on
the edge with biggest fitness difference, divide a
polygon by a diagonal joining two vertices each
between vertices differing in fitness.

● When running short on memory, remove an edge with
low fitness or low difference in fitness between figures
it separates.

How to „map” the search space?

● This algorithm I've developed yesterday sounds
promising, but is somewhat complicated... what
is its maximal simplification?

● Keep just the points, and select an edge with
high fitness to divide!

● This is a form of „phenotype recombination”.

How to „map” the search space?

● Random moving of a point to a close neighbor
as in simulated annealing is „mutation”.

● Recombination and mutation are the basic
operators of evolutionary algorithms (EAs).

● We can look at the population processed by an
EA as an implicit adaptive map of the fitness in
the search space.

● Or as a randomized hypothesis (prob.
distribution) of where the true optimum is.
– This hypothesis is updated with each generation of

the EA.

Selfish Gene

● A pattern is a relation between a piece of
information and particular objects, its
„instances”.

● The information is „genotype”, and the instance
is „phenotype”.

● Patterns at „time t+1” are the patterns that
managed to put themselves there from „time t”.
They „are fit”.

● Patterns „with individuality” are short enough so
that they are seldom disrupted. To „be fit”, they
often perform some function. Called genes.

Evolution and Modularity

● We would like to select for meaningful genes
rather than individuals, because the pool of
competing individuals is enormous, and for a
gene (i.e. feature type), the pool of competing
alleles (i.e. feature values) is relatively small.

● When the problem is modular (decomposable
into features), and genes match to features, EAs
with recombination search for alleles in parallel.
When genes don't match to features,
recombination is just a large-scale mutation.

● Example of a modular problem: TSP.

Evolution and Modularity
● Location of a city en route (i.e. first, or fifth, city)

is not a good feature, it doesn't tell anything
about the path.

● Edges are better features. But perhaps angles
(corners, triples of cities) are even better?

● With a good set of features, it is often very
difficult to design a good recombination
operator, which should:
– preserve features of parents, shouldn't introduce features

not present in parents

– allow to balance features from both parents, shouldn't
force most features to come from the same parent

Evolution and Modularity
● The above conditions often cannot be met

exactly (i.e. for TSP): see „Forma Analysis” by
Nicholas J. Radcliffe.

● When recombination tends not to disrupt groups
of related genes, it can give exponential speed-
up compared to mutation only (and thus to non-
EA search strategies).
– This has been shown for Traveling Salesman Probl.

● Therefore, related genes should lay close in the
genome. There are techniques to let this linkage
evolve. A recent powerful one is „Bayesian
Optimisation Algorithm”.

Genetic Programming (GP)
and Modularity

● GP takes programs as the genotype. This sounds
as a powerful idea: programs are the „ultimate
representation” for solutions.

● But the original GP falls completely short on the
issues we discussed so far (genes, recombination,
linkage).

● Fortunately, there has been much progress:
– NeuroEvolution of Augmenting Topologies (NEAT) [1]

– Meta-Optimizing Semantic Evolutionary Search
(MOSES) [2]

● These approaches learn new genes incrementally.

EAs in other mechanisms

● EAs are usually separate tools in a toolbox, but
sometimes they are parts of other tools.

● One such tool is also biology inspired: Artificial
Immunological Systems (AISs).
– AISs use fuzzy matching of antibodies to detect

pathogens.

– AISs use negative selection, which eliminates
detrimential antibodies (detecting organism own
cells) in the early phase, and positive selection to
increase affinity to detected pathogens.

● The other one I want to talk about are Learning
Classifier Systems.

Learning Classifier Systems

● Abstract Learning Classifier Systems (LCSs) are rule-
based systems that automatically build their ruleset
using Genetic Algorithm (GA).

● Reinforcement Learning (RL) learns what actions to
pick in given states, knowing only the experienced
rewards. LCS rules represent state-action(-reward)
table in a compact way.

● RL must balance
– exploration: trying out new actions to see what rewards they

give

– exploitation: following the action with biggest expected
rewards (based on experience so far)

[3]

Learning Classifier Systems
There are several flavors of LCSs now:

– the „Pittsburgh approach” used GA on populations of whole
systems; currently (after „Michigan approach”) a single LCS is
evolved, using GA inside its learning mechanism

– strength-based systems (i.e. ZCS) use the expected reward of
a rule (which matches state and produces action) as its fitness

– accuracy-based systems (i.e. XCS) represent expected
reward in a rule and use accuracy of reward prediction as
fitness; GA works only on classifiers matching current situation

– anticipation-based systems (ALCSs) don't use condition ->
action rules, but condition, action -> effect rules: they build a
state transition model; they favor actions bringing more
information; often don't use GA but sophisticated specialization
and generalization heuristics

Learning Classifier Systems

References and Sources

1. „Evolving Neural Networks through
Augmenting Topologies”, Kenneth O. Stanley,
Risto Miikkulainen, 2002

2. „Competent Program Evolution”, Moshe Looks,
2006

3. „Learning Classifier Systems: A Survey”, Olivier
Sigaud, Stewart W. Wilson, 2007

4. Some pictures I grabbed from the internet.

