

Interactive Proving with Coq

proving with mouse and some examples

CoqIde + Papuq
● CoqIde works with

multiple files,
● marks and protects

processed fragment of
the script,

● separate windows for
proof state and for
inspection/search results,

● menus with inspection
commands, tactics and
script command
templates.

● Papuq adds a help
window proposing
simple actions,

● lets inspect the lemmas
it proposed to apply,

● extends the context
menu of CoqIde
showing most
worthwhile actions first,

● „wizard” automation
tries out several tactics.

C
oqIde +

 P
apuq: exam

ple

Proof GeneralProof General
● a plugin for Emacs a plugin for Emacs

and Eclipse,and Eclipse,
● works with many works with many

proof assistants,proof assistants,
● featureset featureset

overlapping with overlapping with
CoqIde (no context CoqIde (no context
menu),menu),

● proof-by-pointing for proof-by-pointing for
some provers some provers
(LEGO).(LEGO).

Proof-by-Pointing
● Not present (yet) in CoqIde, but present in earlier Coq

interfaces (IDEs): CtCoq (mid-nineties) and Pcoq
(2003).

● Similar to the idea of context menu present in CoqIde,
performs multiple actions from a single mouse
interaction.

● Already proved theorems should be accessible
similarly to assumptions.

● Drag-and-drop: e.g. drag equality to the subterm to
rewrite (match the terms and generate subgoals for
assumptions of the equality).

● Point-and-shoot: while pointing, select the tactic to
apply to the subterm after it is brought to the surface.

P
roof-by-P

ointing

R
ules descend recursively to the position

pointed by m
ouse.

type-specific
induction scheme:

Proof-by-Pointing: 5-click example

● Goal (p a \/ q b) /\ (forall x, p x -> q x) -> (exists
x, q x).

● Point to p a in conclusion.
– Two subgoals with p a resp. q b, and forall x, p x -> q

x in assumptions, the one with p a selected.

● Point to p x from forall x, p x -> q x in
assumptions.
– p x is automatically proved, and thus q a is added to

assumptions.

● Twice: point to q x in conclusion.

Pcoq and Proof Presentation

Extracting Text from Proof

Analogous (compact) rules are built for repeated abstractions and applications.

Extracting Text from Proof

Extracting Text from Proof: examples

Coq specification language:
Gallina

Some of the syntax:
term ::= forall binderlist , term
 | fun binderlist => term
 | fix fix_bodies
 | cofix cofix_bodies
 | let ident_with_params := term in term
 | let fix fix_body in term
 | let cofix cofix_body in term
 | let ([name , … , name]) [dep_ret_type] := term in term
 | if term [dep_ret_type] then term else term
 | term : term
 | term -> term
 | term arg … arg
 | match match_item , … , match_item [return_type] with
 [[|] equation | … | equation] end
fix_bodies::= fix_body
 | fix_body with fix_body with … with fix_body for ident
fix_body ::= ident binderlet … binderlet [{struct ident}] [: term] := term
dep_ret_type ::= [as name] return term
match_item ::= term [as name] [in term]
equation ::= mult_pattern | … | mult_pattern => term

Coq specification language: Gallina
● Type hierarchy: proofs in formulas, formulas in

Prop, other types (specifications) of non-types in
Set, Prop and Set in Type(0), Type(i) in Type(i+1)

● Products forall x : A, B are written A -> B when x
doesn't occur in B.

● (x : A := B)... is a shortcut for let x : A := B in ...
● Subterms replaced by _ or declared as implicit are

(tried to be) inferred by type inference.
● return_type is the type of a pattern matching term, it

can depend on the matched value, or its type:
Definition sym_equal (A:Type) (x y:A) (H:eq A x y) : eq A y x :=
 match H in eq _ _ z return eq A z x with
 | refl_equal => refl_equal A x end.

Gallina's command language:
The Vernacularsentence ::=

| (Axiom | Conjecture | Parameter[s] | Variable[s] | Hypothes[is|es])
(ident ... ident : term | binder ... binder).

| (Definition | Let) ident_with_params := term.

| [Co]Inductive ind_body with … with ind_body.

| [Co]Fixpoint fix_body with … with fix_body.

| (Theorem | Lemma | Definition) ident [binderlet … binderlet] : term.
[Proof. proof_script (Qed.|Defined.|Admitted.)]

| Record ident [binderlet … binderlet] : sort := [ident] {[name [: term] [:=
term] ; … ; name [: term] [:= term]] }.

| Function ident binder…binder {(struct ident | measure term ident | wf
term ident)} : term := term.

| Section ident. | End ident.

| Module [Import | Export] ident [module_bindings] (: | <:) module_type.

| Coercion qualid : class1 >-> class2.

The Vernacular
● Declaration introduces a name with a given type.
● Definition gives a name for a term.
● ind_body ::= ident [binderlet … binderlet] : term := [[|]

ident [binderlet … binderlet] [: term] | … | ident
[binderlet … binderlet] [: term]]

● Fixpoint introduces recursive definition or inductive
proof decreasing w.r.t. the argument in {struct ident}

● Definitions can also be built interactively by tactics.
● Records are syntax sugar for one-constructor

inductive definitions, known from programming langs.
● Let definitions are local to sections.

The Vernacular
● Function is a generalization of Fixpoint that besides

the function, generates
– an induction principle that reflects the recursive structure of

the function

– its fixpoint equality (if recursive)

– graph (relation) of the function (silently).

● Non-recursive arguments should go first.
● Limited pattern-matching (currently dependent cases

not supported).
● measure and wf allow to easily define a function

decreasing on given ordering relation, generate proof
obligations for monotonicity (and well-foundedness).

The Vernacular
● A module with parameters is a functor.
● Libraries (directories) and modules (files and modules

in files) form a common hierarchy.
● Implicit coercions allow to write:

– f a where f:forall x:A, B and a:A′ when A′ can be seen in
some sense as a subtype of A.

– x:A when A is not a type, but can be seen in a certain sense
as a type: set, group, category etc.

– f a when f is not a function, but can be seen in a certain
sense as a function: bijection, functor, any structure
morphism etc.

● For example, forall (x1 : A1)..(xn : An)(y: C x1..xn), D
u1..um can coerce an object t:C t1..tn to f t1..tn : D
u1..um: we declare Coercion f : C >-> D.

Coq Libraries

● Coq is easily extensible with user-provided
notations.

● Initial library contains logical operators, basic
datatypes: product prod, sum, specification sig
(object with a proof of its property), sumbool
(non-dependent sum of Props: a choice between
two formulas), nat.

● Standard library contains useful basic logical
and arithmetic (Peano, integers, reals) facts, and
datatypes: lists, sets, maps.

● Everything else is in the contributions library.

Coq Standard Library
● Logic Classical logic and dependent equality

● Arith Basic Peano arithmetic

● NArith Basic positive integer arithmetic

● ZArith Basic relative integer arithmetic

● Bool Booleans (basic functions and results)

● Lists Monomorphic and polymorphic lists (basic functions and results), Streams (infinite
sequences defined with co-inductive types)

● Sets Sets (classical, constructive, finite, infinite, power set, etc.)

● FSets Specification and implementations of finite sets and finite maps (by lists and by AVL
trees)

● IntMap Representation of finite sets by an efficient structure of map (trees indexed by binary
integers).

● Reals Axiomatization of real numbers (classical, basic functions, integer part, fractional part,
limit, derivative, Cauchy series, power series and results,...)

● Relations Relations (definitions and basic results).

● Sorting Sorted list (basic definitions and heapsort correctness).

● Strings 8-bits characters and strings

● WellfoundedWell-founded relations (basic results).

The Vernacular: search
● Print qualid. displays name's associated term and its type.

● Check term. displays term's type (in current context=i.c.c.).

● Search qualid. displays all theorems i.c.c. (=a.t.i.c.c.) whose
conclusion head is qualid.

● SearchAbout qualid. displays a.t.i.c.c. containing qualid.

● SearchPattern term. displays a.t.i.c.c. with conclusion
matching the given term.
– Coq < SearchPattern (_ + _ = _ + _).

– plus_comm: forall n m : nat, n + m = m + n

– plus_Snm_nSm: forall n m : nat, S n + m = n + S m ...

● SearchRewrite term. displays a.t.i.c.c. with conclusion being
equality, its one side matching the given term.
– Coq < SearchRewrite (_ + _ + _).

– plus_assoc: forall n m p : nat, n + (m + p) = n + m + p ...

The Vernacular: more commands
● Load ident. loads a source file ident.v.

● Require [Import] ident. loads and opens a compiled module
ident.vo. (Not visible outside.)

● Print Modules. shows the currently loaded/opened modules.

● Qed.|Save. finishes proof defining an opaque constant (it
cannot be unfolded or proven different to another opaque
constant).

● Save ident. as above for goals started with Goal term.

● Defined. finishes proof defining a transparent constant.

● Admitted. gives up proving and declares the goal as an
axiom.

● Abort. aborts proving and discards the goal.

Coq Selected Tactics
● refine term allows to give an exact proof but still with

some holes noted _.
● eapply term tries to unify current goal with the

conclusion of given term, turns uninstantiated
variables in premises into existential meta-variables.

● compute performs beta delta iota zeta reductions.
● functional induction (qualid term ... term) performs

case analysis and induction following the definition of
a function.

● inversion ident „destructs” ident generating subgoals
for each constructor of inductive predicate which is the
type of ident, and discards the subgoals where
„unpacked” assumptions are contradictory.

Coq Automation
● [e]auto [with ident ... ident | with *] [using lemma ...

lemma] Prolog-like (depth-first) resolution procedure:
reduces goal to an atomic one (intros), tries tactics
associated with goal head in turn (lower cost tactics
first; theorems used with apply); recurses to subgoals.
Either solves the goal completely or leaves intact.
idents name hint databases, * means uses all hints,
lemmas are additional hints. eauto uses eapply
(unification rather than pattern-matching).

● firstorder [tactic] [with ident ... ident] [using ident ...
ident] performs first-order reasoning, applies tactic to
subgoals where logical reasoning fails, extends the
proof search environment with with-ident lemmas and
lemmas from using-ident hint databases.

Coq Automation
● congruence for equational reasoning.
● autorewrite with ident ... ident [using tactic] [in

qualid] applies a rewrite system joining the idents
rewriting rule bases; applies tactic (if given) after each
rewrite step; performs rewritings in assumption qualid
(if given).

● omega solves Presburger arithmetic for nat and Z
(binary integers).

● ring does associative-commutative rewriting in ring
and semi-ring structures. It is implemented directly in
Coq (reflection). It works by registering ring properties
for given type, rules for evaluating coefficients, and a
morphism from coefficients to the ring carrier type.

Example: mergesort

● Sorting
– First, specify sorting lists of natural numbers through

a predicate:
● sort : list nat -> list nat -> Prop.

● Merging
– Define a function merge: list nat -> list nat -> list nat

such that the following lemma holds:
● Lemma merge_and_sort : forall l l', sorted l -> sorted l' ->

sort (l++l') (merge l l').

– Prove this property.

Example: mergesort
● Balanced binary trees

– Consider the type of binary trees whose nodes are labeled
in type N and leaves in type L:

● Inductive tree(N L:Type):Type := Leaf : L -> tree N L | Node : N ->
tree N L -> tree N L -> tree N L.

– We now consider trees whose nodes contain boolean
values and leaves an optional value of type L, i.e trees of
type tree bool (option L). Complete the following definition:

● Inductive balanced(L:Type): tree bool (option L) -> nat -> Prop :=

● Insertion in a balanced tree
– Define a function:

● insert (L:Type): L -> tree bool (option L)) -> tree bool (option L)

– such that the insertion of l:L into a balanced tree ressults in
a balanced tree

Example: mergesort
● Building a balanced tree from a list

– Define a function such that share _ ls returns a balanced
tree containing all the elements of ls

● share (L:Type) : L -> tree bool (option L)

● We now have all material for building the function
● mergesort : list nat -> list nat

– let l be a list of natural numbers

– build a balanced tree whose leaves are labled with the
elements of l

– flatten this tree, using merge to combine the leaves of the
left and right subtrees

● Prove the theorem:
● Theorem mergesort_ok : forall l, sort l (mergesort l).

Extraction of programs

● Output languages: OCaml, Haskell and Scheme
● Extraction qualid. extracts one constant or module.
● Recursive Extraction qualid ... qualid. extracts

together with all dependencies.
● Extraction „file” qualid ... qualid. as above into one

monolithic file.
● Extraction Library ident. extracts the whole library

into ML module ident.ml.
● Recursive Extraction Library ident. extracts the

library into ident.ml and all libraries/modules it
depends on into their files.

Extraction of programs
● Extraction Language (Ocaml | Haskell | Scheme |

Toplevel). Toplevel is pseudo-OCaml, doesn't change
names so fails OCaml syntax, works only for toplevel.

● Extract Constant qualid => string. extracts qualid as
string, which can be an identifier or a quoted
(arbitrary) string. (Defines qualid as string.)

● Extract Inlined Constant qualid => string. as above,
but inlines the string for each occurrence of qualid.

● Extract Constant qualid string ... string => string.
extracts type schemes (e.g. Y „`a” „`b” => „`a * `b”)

● Extract Inductive qualid => string [string …string].
extracts inductive definitions.

● Extract Inductive sumbool => "bool" ["true" "false"].

Sources
● „Proof by Pointing” Yves Bretot, Gilles Kahn,

Laurent Thery, 1994
● „Mathematics and Proof Presentation in Pcoq”

Ahmed Amerkad, Yves Bretot, Loic Pottier,
Laurence Rideau

● „Extracting Text from Proof” Yann Coscoy, Gilles
Kahn, Laurent Thery

● „The Coq Proof Assistant Reference Manual
Version 8.1” The Coq Development Team:
LogiCal Project

● An exercise from the „Coq'Art” book webpage,
Pierre Castéran, Julien Forest, based on an
exercise from Epigram tutorial

