Interactive Proving with Coq

proving with mouse and some examples

Coqlde + Papuq

- CoqIde works with multiple files,
- marks and protects processed fragment of the script,
- separate windows for proof state and for inspection/search results,
- menus with inspection commands, tactics and script command templates.

- Papuq adds a help window proposing simple actions,
- lets inspect the lemmas it proposed to apply,
- extends the context menu of Coqlde showing most worthwhile actions first,
- "wizard" automation tries out several tactics.

💥 Coqlde 🍥			×
<u>File E</u> dit <u>N</u> avigation <u>T</u> ry Tactics Te <u>m</u> plates <u>Q</u> ueries <u>C</u> ompile <u>W</u> ind	lows <u>H</u> elp		
🗎 😳 🔸 🛧 🛧 😧 🗊			
Goal forall m k : nat, m + k = m -> k = 0. intros. induction m. simpl in H. info assumption.	1 subgoal m : nat k : nat H : S m - L - S - IHm : n Equal cons Use k = 0 Induction or Simplify clear H apply H exact H generalize R absurd <h> discriminate injection H rewrite H rewrite - H elim H inversion ch</h>	tr. n H e H	(1/1)
Ready, proving Unnamed_thm		Line	e: 6 Char: 1 Coqide started
Coq wizard Previous step Goal is pr	oved	_(
<pre> Hints Apply eq_add_S; trivial</pre>		Next	Show
Apply sym_eq ; trivial		Next	Show
Prove by contradiction.		Ne	ext

The set way to wanter	emacs: Permutation.v 🗙
Due of Concernal	
Proof General	State Context Goal Retract Undo Next Use Goto Restart Q.E.D. Find Command Stop Info Help
A metamal / Contact / People / Vollow Pages / Dow	Fixpoint list_contents []:(list A)] : (multiset A) :=
	Cases 1 of nil => emptyBag
 a plugin for Emacs¹ 	<pre> (cons a l) => (munion (singletonBag a) (list_contents l)) end.</pre>
and Eclipse,	Lemma list_contents_app : ([,=:(list A)) (meq (list_contents (app 1 m)) (munion (list_contents 1) (list_contents m))).
and Echpse,	Proof. Induction 1; Simpl; Auto with datatypes.
	Intros,
 works with many^{assis} 	(munion (singletonBag a) (munion (list_contents 10) (list_contents m))); Auto w? ith datatypes.
proof assistants,	Qed. Hints Resolve list_contents_app.
proor assistants,	Definition permutation := [1,m:(list A)](meq (list_contents 1) (list_contents m)?
Parlingent • Developed	Lemma permut refl : (1:(list A))(permutation 1 1).
• featureset ·	
overlapping with	
	File Edit Apps Options Buffers Tools Proof-General Help
Coqlde (no context	D 💯 🔚 🕘 🛠 🖻 📴 🛷 🎝 i i i i i i i i i i i i i i i i i i
Last Update: July 29, 1999	4
menu),	A : Set leA : (relation A)
File Lill?	eqA : (relation A) leA_dec : (x,y;A){(leA x y)}+{~(leA x y)}
proof-by-pointing for	eqA_dec : (x,g:A){(eqA × y)}+{~(eqA × y)} leA_refl : (x,g:A)(eqA × y)→(leA × y)
	leA_trans : $(x,y,z;A)(leA \times y) \longrightarrow (leA y z) \longrightarrow (leA \times z)$ leA_antisym : $(x,y;A)(leA \times y) \longrightarrow (leA y x) \longrightarrow (eqA \times y)$
some provers	(1,m:(list A))
(LEGO).	<pre>(meq (list_contents (app 1 m)) (munion (list_contents 1) (list_contents m)))</pre>
	XEmacs: *coqtop-goals* (CoqGoals)All

Nat Dianu Post A 🖼 📣 🖾 🖉 🖉 🖓

🚯 🕼 👩 🕼 🚯

Proof-by-Pointing

- Not present (yet) in CoqIde, but present in earlier Coq interfaces (IDEs): CtCoq (mid-nineties) and Pcoq (2003).
- Similar to the idea of context menu present in CoqIde, performs multiple actions from a single mouse interaction.
- Already proved theorems should be accessible similarly to assumptions.
- Drag-and-drop: e.g. drag equality to the subterm to rewrite (match the terms and generate subgoals for assumptions of the equality).
- Point-and-shoot: while pointing, select the tactic to apply to the subterm after it is brought to the surface.

Rules
$$\wedge left_1 : \frac{A}{A}, B, A \wedge B, \Gamma \vdash C$$
 $\wedge right_1 : \frac{\Gamma \vdash A}{\Gamma \vdash A \wedge B}$ $\wedge left_2 : \frac{A, B, A \wedge B, \Gamma \vdash C}{A \wedge B, \Gamma \vdash C}$ $\wedge right_2 : \frac{\Gamma \vdash A}{\Gamma \vdash A \wedge B}$ $\wedge left_2 : \frac{A, B, A \wedge B, \Gamma \vdash C}{A \wedge B, \Gamma \vdash C}$ $\wedge right_2 : \frac{\Gamma \vdash A}{\Gamma \vdash A \wedge B}$ $\vee left_1 : \frac{A, A \vee B, \Gamma \vdash C}{A \vee B, \Gamma \vdash C}$ $\vee right_1 : \frac{\Gamma \vdash A}{\Gamma \vdash A \vee B}$ $\vee left_2 : \frac{A, A \vee B, \Gamma \vdash C}{A \vee B, \Gamma \vdash C}$ $\vee right_2 : \frac{\Gamma \vdash B}{\Gamma \vdash A \vee B}$ $\vee left_2 : \frac{A, A \vee B, \Gamma \vdash C}{A \vee B, \Gamma \vdash C}$ $\vee right_2 : \frac{\Gamma \vdash B}{\Gamma \vdash A \vee B}$ $\supset left_1 : \frac{A \supset B, \Gamma \vdash A}{A \supset B, \Gamma \vdash C}$ $\supset right_1 : \frac{A, \Gamma \vdash B}{\Gamma \vdash A \supset B}$ $\supset left_2 : \frac{A \supset B, \Gamma \vdash A}{A \supset B, \Gamma \vdash C}$ $\supset right_2 : \frac{A, \Gamma \vdash B}{\Gamma \vdash A \supset B}$ $\lor left_2 : \frac{A \supset B, \Gamma \vdash A}{A \supset B, \Gamma \vdash C}$ $\lor right_2 : \frac{A, \Gamma \vdash B}{\Gamma \vdash A \supset B}$ $\lor left_2 : \frac{A \supset B, \Gamma \vdash A}{A \supset B, \Gamma \vdash C}$ $\lor right_2 : \frac{A, \Gamma \vdash B}{\Gamma \vdash A \supset B}$ $\lor left_2 : \frac{A \land B, \Gamma \vdash A}{A \supset B, \Gamma \vdash C}$ $\lor right_2 : \frac{A, \Gamma \vdash B}{\Gamma \vdash A \supset B}$ $\lor left_2 : \frac{A \land B, \Gamma \vdash A}{A \supset B, \Gamma \vdash C}$ $\lor right_2 : \frac{A, \Gamma \vdash B}{\Gamma \vdash A \supset B}$ $\lor left_2 : \frac{A \land B, \Gamma \vdash A}{A \supset B, \Gamma \vdash C}$ $\lor right_2 : \frac{A, \Gamma \vdash B}{\Gamma \vdash A \supset B}$ $\lor left_2 : \frac{A \land B, \Gamma \vdash A}{A \supset B, \Gamma \vdash C}$ $\lor right_2 : \frac{A, \Gamma \vdash B}{\Gamma \vdash A \supset B}$ $\lor left_2 : \frac{A \land A, \Gamma \vdash C}{\forall x \land A, \Gamma \vdash C}$ type-specific induction scheme: $\forall right_2 : \frac{\Gamma \vdash A[x \land c]}{\Gamma \vdash \forall x \land A}$ $\dashv left_2 : \frac{A \land (x \land c)}{\exists x \land A, \Gamma \vdash C}$ $\dashv r \vdash (n : int) P(n)$ $\dashv left_2 : \frac{A \land (x \land c)}{\exists x \land A, \Gamma \vdash C}$ $\dashv r \vdash (n : int) P(n)$ $\dashv left_2 : \frac{A \land (x \land c)}{\exists x \land A, \Gamma \vdash C}$ $\lor left_2 : \frac{A \land (x \land c)}{\exists x \land A, \Gamma \vdash C}$ $\lor left_2 : \frac{A \land (x \land c)}{\exists x \land A, \Gamma \vdash C}$ $\lor left_2 : \frac{A \land (x \land c)}{\exists x \land A,$

Proof-by-Pointing

Proof-by-Pointing: 5-click example

- Goal (p a V q b) /\ (forall x, p x -> q x) -> (exists x, q x).
- Point to *p a* in conclusion.
 - Two subgoals with *p* a resp. *q* b, and *forall x, p x -> q x* in assumptions, the one with *p* a selected.
- Point to p x from forall x, p x -> q x in assumptions.
 - *p x* is automatically proved, and thus *q a* is added to assumptions.
- Twice: point to *q x* in conclusion.

Pcoq and Proof Presentation

Pcoq	
File Display Edit Selection Coq	Help
Require Import Arith.	
Theorem le_gt_trans: ∀x. y. z:nat.x≤y =>(gt z y) =>x • 1: Intros x y z H H0:Try Assumption.	« <u>Z</u> .
Auto Do it Text mode 1 of 1 Disca	ard Abort
∀x, y, z:nat.x≤y =>(gt z y) =>x <z< td=""><td></td></z<>	
Errors Search Results	

Pcog: Q ex.v	
File Display Edit Selection Coq	Help
Let us prove $\forall x, y, z : Q$.	
x y x + y	
$\neg z = 0 \implies \frac{x}{z} + \frac{y}{z} = \frac{x + y}{z}.$	
Let x , y and z be elements of Q such that $\neg z = 0$ (H).	
x y x + y	
Now prove $\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z}$.	
We have $\stackrel{x}{-} + \stackrel{y}{-} = 1 \cdot (\stackrel{x}{-} + \stackrel{y}{-})$ (by (Qone_neutral $\stackrel{x}{-} + \stackrel{y}{-}))$	
We have $- + - = 1 \cdot (- + -)$ (by (Qone_neutral $- + -)$) z z z z z z z z z	
Z X Y	
$= \frac{z}{z} \cdot \left(\frac{x}{z} + \frac{y}{z}\right) $ (by (Qdiv_inverse z): Imagine a proof of $\neg z$:	= 0)
$z \cdot (- + \frac{y}{-})$	
$= \frac{z - z}{z}$ (by Qdiv_mult_left2)	
$z \cdot \frac{x}{z} + z \cdot \frac{y}{z}$	
$=\frac{z}{z}$ (by Qdistr)	
Z	
$\frac{z \cdot x}{z \cdot x} + z \cdot \frac{y}{z}$	
$=$ $\frac{z}{z}$ (by Qdiv_mult_left)	
Z	
$\frac{z \cdot x}{z} + z \cdot \frac{y}{z}$	
Imagine a proof of $\frac{z}{z} = \frac{x + y}{z}$	
Imagine a proof of $z z$	

Extracting Text from Proof

Rules for abstraction				
$\begin{array}{ccc} (\lambda l \colon A_{Type} \colon M)_{\tau} & \triangleright & M \\ & & M \\ & & We \text{ have proved } \tau \end{array}$				
$\begin{array}{ccc} & \text{Assume } A \ (h) \\ (\lambda h : A_{Prop} . \ M)_{\tau} & \triangleright & M \\ & & \text{We have proved } \tau \end{array}$				
$(\lambda x: A_{Set}. M)_{\tau} ightarrow M$ We have τ , since x is arbitrary				
Rules for application				
$(M_{\forall x: P. Q} N)_{\tau} \triangleright \begin{array}{l} M \\ \text{In particular } \tau \end{array}$				
$\begin{array}{ccc} & & - \ N \\ (M_{P \supset Q} \ N)_{\tau} & \triangleright & - \ M \\ & & & \text{We deduce } \tau \end{array}$				
Rules for identifiers				
$\begin{array}{rcl} h_{\tau} & \triangleright & \text{By } h \text{ we have } \tau \\ T_{\tau} & \triangleright & \text{Using } T \text{ we get } \tau \end{array}$				

Analogous (compact) rules are built for repeated abstractions and applications.

Extracting Text from Proof

Rules for introduction theorems

	$(Cintro \ M^1 \cdots M^n \ N^1 \cdots N^i)_{ au}$	۵	$-N^1$: $-N^i$ So by definition of C we have $ au$
i = 0 i = 1	$({\tt C}intro\;M^1\cdots M^n)_{ au}$	⊳	By definition of C we have τ
<i>v</i> — 1	$({\tt C}intro\;M^1\cdots M^nN)_{ au}$	⊳	N By definition of C we have $ au$

Rules for elimination theorems

f C, to prove τ we have <i>i</i> cases:
ere is a contradiction
f C to prove $ au$
•

Extracting Text from Proof: examples

```
Let U: Type
Let P, Q: U \rightarrow Prop
Let a: U
Assume (Pa) (h) and \forall x : U : (Px) \supset (Qx) (h_0)
    Applying h_0 with h we get (Qa)
 We have proved (Pa) \supset (\forall x: U. (Px) \supset (Qx)) \supset (Qa)
 We have proved \forall U: Type. \forall P, Q: U \rightarrow Prop. \forall a: U. (Pa) \supset (\forall x: U. (Px) \supset (Qx)) \supset (Qa)
By definition of \mathbb{N} to prove \forall n : \mathbb{N} . 0 < n, we have two cases:
Case_1:
    By definition of \leq we have 0 \leq 0
Case<sub>2</sub>:
    Let m:\mathbb{N}
    Assume 0 \le m (h)
         From h and the definition of \leq, we have 0 \leq (\operatorname{Suc} m)
     We have proved 0 \le m \supset 0 \le (\operatorname{Suc} m)
     We have proved \forall m: \mathbb{N}. \ 0 \le m \supset 0 \le (\operatorname{Suc} m)
So we have \forall n \colon \mathbb{N} \colon 0 \leq n
Let A, B : Prop
Assume A \vee B (h)
     Assume A(i)
          From i and the definition of \lor, we have B \lor A
    -We have proved A \supset B \lor A
     Assume B_{(j)}
          From j and the definition of \lor, we have B \lor A
    -We have proved B \supset B \lor A
    -We have h
    Applying \lor elim we get B \lor A
We have proved A \lor B \supset B \lor A
We have proved \forall A, B: Prop. A \lor B \supset B \lor A
```

```
Coq specification language:
Some of the syntax:
                                        Gallina
term ::= forall binderlist , term
      fun binderlist => term
      fix fix bodies
      cofix cofix bodies
      let ident with params := term in term
      let fix fix body in term
      let cofix cofix body in term
      let ( [name, ..., name] ) [dep_ret_type] := term in term
      if term [dep ret type] then term else term
      term:term
      term -> term
      term arg ... arg
      match match item, ..., match item [return type] with
        [[]] equation [ ... ] equation] end
fix bodies::= fix body
      fix body with fix_body with ... with fix_body for ident
fix body ::= ident binderlet ... binderlet [{struct ident}] [: term] := term
dep ret type ::= [as name] return term
match item ::= term [as name] [in term]
equation ::= mult pattern [ ... ] mult pattern => term
```

Coq specification language: Gallina

- Type hierarchy: proofs in formulas, formulas in *Prop*, other types (specifications) of non-types in *Set*, *Prop* and *Set* in *Type*(), *Type*() in *Type*(i+1)
- Products *forall x : A, B* are written A -> B when x doesn't occur in B.
- (*x* : *A* := *B*)... is a shortcut for *let x* : *A* := *B in* ...
- Subterms replaced by _ or declared as implicit are (tried to be) inferred by type inference.
- return_type is the type of a pattern matching term, it can depend on the matched value, or its type:

Definition sym_equal (A:Type) (x y:A) (H:eq A x y) : eq A y x := match H in eq _ _ z return eq A z x with | refl_equal => refl_equal A x end.

Gallina's command language: The Vernacular

- | (Axiom | Conjecture | Parameter[s] | Variable[s] | Hypothes[is|es]) (ident ... ident : term | binder ... binder).
- | (**Definition** | **Let**) ident_with_params := term.
- | [Co]Inductive ind_body with ... with ind_body.
- | [Co]Fixpoint fix_body with ... with fix_body.
- | (Theorem | Lemma | Definition) ident [binderlet ... binderlet] : term. [Proof. proof_script (Qed.|Defined.|Admitted.)]
- | Record ident [binderlet ... binderlet] : sort := [ident] {[name [: term] [:= term] ; ... ; name [: term] [:= term]] }.
- | Function ident binder...binder {(struct ident | measure term ident | wf
 term ident)} : term := term.
- | Section ident. | End ident.

sentence ::=

- | Module [Import | Export] ident [module_bindings] (: | <:) module_type.
- | Coercion qualid : class1 >-> class2.

The Vernacular

- Declaration introduces a name with a given type.
- Definition gives a name for a term.
- ind_body ::= ident [binderlet ... binderlet] : term := [[]] ident [binderlet ... binderlet] [: term] | ... | ident [binderlet ... binderlet] [: term]]
- Fixpoint introduces recursive definition or inductive proof decreasing w.r.t. the argument in {struct ident}
- Definitions can also be built interactively by tactics.
- **Record**s are syntax sugar for one-constructor inductive definitions, known from programming langs.
- Let definitions are local to sections.

The Vernacular

- *Function* is a generalization of *Fixpoint* that besides the function, generates
 - an induction principle that reflects the recursive structure of the function
 - its fixpoint equality (if recursive)
 - graph (relation) of the function (silently).
- Non-recursive arguments should go first.
- Limited pattern-matching (currently dependent cases not supported).
- *measure* and *wf* allow to easily define a function decreasing on given ordering relation, generate proof obligations for monotonicity (and well-foundedness).

The Vernacular

- A module with parameters is a functor.
- Libraries (directories) and modules (files and modules in files) form a common hierarchy.
- Implicit coercions allow to write:
 - *f a* where *f:forall x:A, B* and *a:A*' when *A*' can be seen in some sense as a subtype of A.
 - x:A when A is not a type, but can be seen in a certain sense as a type: set, group, category etc.
 - *f a* when *f* is not a function, but can be seen in a certain sense as a function: bijection, functor, any structure morphism etc.
- For example, forall (x1 : A1)..(xn : An)(y: C x1..xn), D u1..um can coerce an object t:C t1..tn to f t1..tn : D u1..um: we declare Coercion f : C >-> D.

Coq Libraries

- Coq is easily extensible with user-provided notations.
- Initial library contains logical operators, basic datatypes: product *prod*, *sum*, specification *sig* (object with a proof of its property), *sumbool* (non-dependent sum of *Props*: a choice between two formulas), *nat*.
- Standard library contains useful basic logical and arithmetic (Peano, integers, reals) facts, and datatypes: lists, sets, maps.
- Everything else is in the contributions library.

Coq Standard Library

- Logic Classical logic and dependent equality
- Arith Basic Peano arithmetic
- NArith Basic positive integer arithmetic
- **ZArith** Basic relative integer arithmetic
- **Bool** Booleans (basic functions and results)
- **Lists** Monomorphic and polymorphic lists (basic functions and results), Streams (infinite sequences defined with co-inductive types)
- **Sets** Sets (classical, constructive, finite, infinite, power set, etc.)
- **FSets** Specification and implementations of finite sets and finite maps (by lists and by AVL trees)
- **IntMap** Representation of finite sets by an efficient structure of map (trees indexed by binary integers).
- **Reals** Axiomatization of real numbers (classical, basic functions, integer part, fractional part, limit, derivative, Cauchy series, power series and results,...)
- **Relations** Relations (definitions and basic results).
- **Sorting** Sorted list (basic definitions and heapsort correctness).
- **Strings** 8-bits characters and strings
- WellfoundedWell-founded relations (basic results).

The Vernacular: search

- **Print** qualid. displays name's associated term and its type.
- *Check term*. displays term's type (in current context=i.c.c.).
- **Search** qualid. displays all theorems i.c.c. (=a.t.i.c.c.) whose conclusion head is qualid.
- SearchAbout qualid. displays a.t.i.c.c. containing qualid.
- **SearchPattern** term. displays a.t.i.c.c. with conclusion matching the given term.
 - Coq < SearchPattern (+ = +).
 - plus_comm: forall n m : nat, n + m = m + n
 - plus_Snm_nSm: forall n m : nat, S n + m = n + S m ...
- **SearchRewrite** term. displays a.t.i.c.c. with conclusion being equality, its one side matching the given term.
 - Coq < SearchRewrite (_ + _ + _).
 - plus_assoc: forall n m p : nat, n + (m + p) = n + m + p ...

The Vernacular: more commands

- *Load ident*. loads a source file ident.v.
- **Require** [Import] ident. loads and opens a compiled module ident.vo. (Not visible outside.)
- **Print Modules**. shows the currently loaded/opened modules.
- **Qed**.|**Save.** finishes proof defining an opaque constant (it cannot be unfolded or proven different to another opaque constant).
- *Save ident*. as above for goals started with *Goal term*.
- **Defined**. finishes proof defining a transparent constant.
- *Admitted*. gives up proving and declares the goal as an axiom.
- *Abort*. aborts proving and discards the goal.

Coq Selected Tactics

- refine term allows to give an exact proof but still with some holes noted _.
- *eapply term* tries to unify current goal with the conclusion of given term, turns uninstantiated variables in premises into existential meta-variables.
- *compute* performs beta delta iota zeta reductions.
- *functional induction* (*qualid term ... term*) performs case analysis and induction following the definition of a function.
- inversion ident "destructs" ident generating subgoals for each constructor of inductive predicate which is the type of ident, and discards the subgoals where "unpacked" assumptions are contradictory.

Coq Automation

- [e]auto [with ident ... ident | with *] [using lemma ... *lemma*] Prolog-like (depth-first) resolution procedure: reduces goal to an atomic one (intros), tries tactics associated with goal head in turn (lower cost tactics first; theorems used with *apply*); recurses to subgoals. Either solves the goal completely or leaves intact. idents name hint databases, * means uses all hints, lemmas are additional hints. *eauto* uses *eapply* (unification rather than pattern-matching).
- *firstorder* [*tactic*] [*with ident* ... *ident*] [*using ident* ... *ident*] performs first-order reasoning, applies tactic to subgoals where logical reasoning fails, extends the proof search environment with with-ident lemmas and lemmas from using-ident hint databases.

Coq Automation

- *congruence* for equational reasoning.
- *autorewrite with ident* ... *ident* [*using tactic*] [*in qualid*] applies a rewrite system joining the *ident*s rewriting rule bases; applies *tactic* (if given) after each rewrite step; performs rewritings in assumption *qualid* (if given).
- omega solves Presburger arithmetic for nat and Z (binary integers).
- *ring* does associative-commutative rewriting in ring and semi-ring structures. It is implemented directly in Coq (reflection). It works by registering ring properties for given type, rules for evaluating coefficients, and a morphism from coefficients to the ring carrier type.

Example: mergesort

- Sorting
 - First, specify sorting lists of natural numbers through a predicate:
 - sort : list nat -> list nat -> Prop.
- Merging
 - Define a function *merge: list nat -> list nat -> list nat such that the following lemma holds:*
 - Lemma merge_and_sort : forall | |', sorted | -> sorted |' -> sort (|++|') (merge | |').
 - Prove this property.

Example: mergesort

- Balanced binary trees
 - Consider the type of binary trees whose nodes are labeled in type N and leaves in type L:
 - Inductive tree(N L:Type):Type := Leaf : L -> tree N L | Node : N -> tree N L -> tree N L -> tree N L.
 - We now consider trees whose nodes contain boolean values and leaves an optional value of type *L*, i.e trees of type *tree bool (option L)*. Complete the following definition:
 - Inductive balanced(L:Type): tree bool (option L) -> nat -> Prop :=
- Insertion in a balanced tree
 - Define a function:
 - insert (L:Type): L -> tree bool (option L)) -> tree bool (option L)
 - such that the insertion of *I:L* into a balanced tree ressults in a balanced tree

Example: mergesort

- Building a balanced tree from a list
 - Define a function such that share _ Is returns a balanced tree containing all the elements of ls
 - share (L:Type) : L -> tree bool (option L)
- We now have all material for building the function
 - mergesort : list nat -> list nat
 - let / be a list of natural numbers
 - build a balanced tree whose leaves are labled with the elements of *l*
 - flatten this tree, using *merge* to combine the leaves of the left and right subtrees
- Prove the theorem:
 - Theorem mergesort_ok : forall I, sort I (mergesort I).

Extraction of programs

- Output languages: OCaml, Haskell and Scheme
- *Extraction* qualid. extracts one constant or module.
- *Recursive Extraction qualid* ... *qualid*. extracts together with all dependencies.
- *Extraction "file" qualid ... qualid.* as above into one monolithic file.
- *Extraction Library ident*. extracts the whole library into ML module ident.ml.
- *Recursive Extraction Library ident*. extracts the library into ident.ml and all libraries/modules it depends on into their files.

Extraction of programs

- Extraction Language (Ocaml | Haskell | Scheme | Toplevel). Toplevel is pseudo-OCaml, doesn't change names so fails OCaml syntax, works only for toplevel.
- Extract Constant qualid => string. extracts qualid as string, which can be an identifier or a quoted (arbitrary) string. (Defines qualid as string.)
- *Extract Inlined Constant qualid* => *string*. as above, but inlines the string for each occurrence of *qualid*.
- Extract Constant qualid string ... string => string. extracts type schemes (e.g. Y "`a" "`b" => "`a * `b")
- **Extract Inductive** qualid => string [string ...string]. extracts inductive definitions.
 - Extract Inductive sumbool => "bool" ["true" "false"].

Sources

- "Proof by Pointing" Yves Bretot, Gilles Kahn, Laurent Thery, 1994
- "Mathematics and Proof Presentation in Pcoq" Ahmed Amerkad, Yves Bretot, Loic Pottier, Laurence Rideau
- *"Extracting Text from Proof*" Yann Coscoy, Gilles Kahn, Laurent Thery
- "The Coq Proof Assistant Reference Manual Version 8.1" The Coq Development Team: LogiCal Project
- An exercise from the "Coq'Art" book webpage, Pierre Castéran, Julien Forest, based on an exercise from Epigram tutorial