## Interactive Proving with Coq

proving with mouse and some examples

## Coqlde + Papuq

- Coqlde works with multiple files,
- marks and protects processed fragment of the script,
- separate windows for proof state and for inspection/search results,
- menus with inspection commands, tactics and script command templates.
- Papuq adds a help window proposing simple actions,
- lets inspect the lemmas it proposed to apply,
- extends the context menu of Coqlde showing most worthwhile actions first,
- „wizard" automation tries out several tactics.



# oof as <br> <br> Proof General <br> <br> Proof General <br> \title{  

}

File Edit Apps options Functions Buffers Tools Proof-General X-symbol
a plugin for Emacs and Eclipse,

- works with manyassis proof assistants,

Fixpoint list_contents [ : (list A)] : (multiset A) :=
nil $\quad \Rightarrow$ emptyBag
( (cons a l) $\Rightarrow$ (munion (singletonBag a) (list_contents l))

Lemma list_contents_app : ( : (list A))
(meq (list_contents (app 1 m$)$ ) (munion (list_contents l) (list_contents m))). Proof.
Induction l: Simpl; Auto with datatypes.
Intros.
(munion (singletonBag a) (munion (list_contents 10) (list_contents m))): Auto datatypes.

Hints Resolve list_contents_app.
Definition permutation $\ddagger=[1, m:($ list $A)](m e q$ (list_contents 1$)$ (list_contents $m) ?$ ).

## featureset. <br> - <br> Hentronsoren

 overlapping with Coqlde (no context menu),Lemma permut refl : ( $1:($ list $A)$ ) (permutation 11$)$.

```
Scripting \()----45 \%-\)
```

$\qquad$


[^0]```
eqA : (relation A)
leA_dec : \((x, y \div A)\{(\operatorname{leA} \times y)\}^{2}+\) n \(\left.^{N}(\operatorname{le} A \times y)\right\}\)
leA_refl : (y)A)(eaA x y)\longrightarrow(leA x y)
\[
\text { leA_refl : }(x, y: A)(e q A \times y) \longrightarrow(\operatorname{leA} \times y)
\]
\[
\text { leA_trans : }(x, y, z \div \mathrm{A})(\operatorname{leA} \times y) \longrightarrow(\operatorname{leA} y z) \longrightarrow(\operatorname{leA} \times z)
\]
\[
\text { leA_antisym : }(x, y: A)(\text { leA } \times y) \longrightarrow(\text { leA } y \times) \longrightarrow(\text { eqA } \times y)
\]
---
] (1.m:(list A))
(meq (list_contents (app 1 m ))
(munion (list_contents l) (list_contents m)))
``` proof-by-pointing fo some provers (LEGO).
----XEmacs: *cogtop-goals* (CogGoals)----All-

\section*{Proof-by-Pointing}
- Not present (yet) in Coqlde, but present in earlier Coq interfaces (IDEs): CtCoq (mid-nineties) and Pcoq (2003).
- Similar to the idea of context menu present in Coqlde, performs multiple actions from a single mouse interaction.
- Already proved theorems should be accessible similarly to assumptions.
- Drag-and-drop: e.g. drag equality to the subterm to rewrite (match the terms and generate subgoals for assumptions of the equality).
- Point-and-shoot: while pointing, select the tactic to apply to the subterm after it is brought to the surface.
\[
\begin{aligned}
& \wedge \text { right }_{1}: \frac{\Gamma \vdash \boxed{A} \quad \Gamma \vdash B}{\Gamma \vdash \boxed{A} \wedge B} \\
& \wedge \text { right }_{2}: \frac{\Gamma \vdash A \quad \Gamma \vdash \boxed{B}}{\Gamma \vdash A \wedge \boxed{B}} \\
& \vee \text { right }_{1}: \frac{\Gamma \vdash \square}{\Gamma \vdash \square \vee B} \\
& \vee \text { left }_{2}: \frac{A, A \vee B, \Gamma \vdash C \quad \boxed{B}, A \vee B, \Gamma \vdash C}{A \vee \boxed{B}, \Gamma \vdash C} \\
& \vee \text { right }_{2}: \frac{\Gamma \vdash \boxed{B}}{\Gamma \vdash A \vee \boxed{B}} \\
& \supset \text { left }_{1}: \frac{A \supset B, \Gamma \vdash \boxed{A} \quad B, A \supset B, \Gamma \vdash C}{\boxed{A} \supset B, \Gamma \vdash C} \\
& \supset \text { left }_{2}: \frac{A \supset B, \Gamma \vdash A \quad \boxed{B}, A \supset B, \Gamma \vdash C}{A \supset \boxed{B}, \Gamma \vdash C} \\
& \supset \operatorname{right}_{1}: \frac{\boxed{A}, \Gamma \vdash B}{\Gamma \vdash \boxed{A} \supset B} \\
& \text { right }_{2}: \frac{A, \Gamma \vdash \boxed{B}}{\Gamma \vdash A \supset \boxed{B}}
\end{aligned}
\]
\[
\begin{aligned}
& \wedge \text { left }_{1}: \frac{\boxed{A}, B, A \wedge B, \Gamma \vdash C}{\boxed{A} \wedge B, \Gamma \vdash C} \\
& \forall \text { left }: \frac{A[x \backslash e], \forall x A, \Gamma \vdash C}{\forall x \square A, \Gamma \vdash C} \quad \begin{array}{l}
\text { type-specific } \\
\text { induction scheme: }
\end{array} \quad \forall \text { right }: \frac{\Gamma \vdash \boxed{A[x \backslash c]}}{\Gamma \vdash \forall x \boxed{A}} \\
& \exists \text { left }: \frac{A[x \backslash c], \exists x A, \Gamma \vdash}{\exists x \square A, \Gamma \vdash C} \\
& \exists \text { right }: \frac{\Gamma \vdash \triangle A[x \backslash e]}{\Gamma \vdash \exists x \boxed{A}}
\end{aligned}
\]

\section*{Proof-by-Pointing: 5-click example}
- Goal ( \(p\) a \(\vee q\) b) \(\wedge\) (forall \(x, p x->q x\) ) -> (exists \(x, q x)\).
- Point to \(p\) a in conclusion.
- Two subgoals with \(p\) a resp. \(q b\), and forall \(x, p x->q\) \(x\) in assumptions, the one with \(p\) a selected.
- Point to \(p x\) from forall \(x, p x->q x\) in assumptions.
- \(p x\) is automatically proved, and thus \(q a\) is added to assumptions.
- Twice: point to \(q x\) in conclusion.

\section*{Pcoq and Proof Presentation}



\section*{Extracting Text from Proof}

Rules for abstraction


Analogous (compact) rules are built for repeated abstractions and applications.

\section*{Extracting Text from Proof}

Rules for introduction theorems
\begin{tabular}{|c|c|c|c|}
\hline & & & \(-N^{1}\) \\
\hline & \(\left(\text { Cintro } M^{1} \cdots M^{n} N^{1} \cdots N^{i}\right)_{\tau}\) & ■ & \[
-N^{i}
\] \\
\hline & & & So by definition of C we have \(\tau\) \\
\hline \(i=0\) & \(\left(\text { Cintro } M^{1} \cdots M^{n}\right)_{\tau}\) & จ & By definition of C we have \(\tau\) \\
\hline \multirow[t]{2}{*}{\(i=1\)} & & & \(N\) \\
\hline & \(\left(\text { Cintro } M^{1} \cdots M^{n} N\right)_{\tau}\) & จ & By definition of C we have \(\tau\) \\
\hline
\end{tabular}

Rules for elimination theorems
```

Therefore by definition of C, to prove }\tau\mathrm{ we have i cases:
Case }\mp@subsup{}{1}{
N
(Celim M}\mp@subsup{M}{}{1}\cdots\mp@subsup{M}{}{n}\mp@subsup{N}{}{1}\cdots\mp@subsup{N}{}{i}P\mp@subsup{)}{\tau}{}\quad\triangleright\quad
Casei:
Ni
So we have }
i=0
(Celim M}\mp@subsup{M}{}{1}\cdots\mp@subsup{M}{}{n}P\mp@subsup{)}{\tau}{
i=1
(Celim M}\mp@subsup{M}{}{1}\cdots\mp@subsup{M}{}{n}NP)\mp@subsup{)}{\tau}{
Therefore by definition of C to prove }
|
So we have }

```

\section*{Extracting Text from Proof: examples}

Let \(U\) : Type
Let \(P, Q: U \rightarrow\) Prop
Let \(a: U\)
Assume ( \(P a\) ) ( \(h\) ) and \(\forall x: U .(P x) \supset(Q x)\left(h_{0}\right)\)
Applying \(h_{0}\) with \(h\) we get \((Q a)\)
We have proved \((P a) \supset(\forall x: U .(P x) \supset(Q x)) \supset(Q a)\)
We have proved \(\forall U:\) Type. \(\forall P, Q: U \rightarrow\) Prop. \(\forall a: U .(P a) \supset(\forall x: U .(P x) \supset(Q x)) \supset(Q a)\)
By definition of \(\mathbb{N}\) to prove \(\forall n: \mathbb{N} .0 \leq n\), we have two cases:
Case \({ }_{1}\) :
By definition of \(\leq\) we have \(0 \leq 0\)
\(\mathrm{Case}_{2}\) :
Let \(m: \mathbb{N}\)
Assume \(0 \leq m\) (h)
From \(h\) and the definition of \(\leq\), we have \(0 \leq\) (Suc \(m\) )
We have proved \(0 \leq m \supset 0 \leq(\operatorname{Suc} m)\)
We have proved \(\forall m: \mathbb{N} .0 \leq m \supset 0 \leq(\operatorname{Suc} m)\)
So we have \(\forall n: \mathbb{N} .0 \leq n\)
Let \(A, B:\) Prop
Assume \(A \vee B(h)\)
Assume \(A\) (i)
From \(i\) and the definition of \(\vee\), we have \(B \vee A\)
-We have proved \(A \supset B \vee A\)
Assume \(B\) ( \(j\) )
From \(j\) and the definition of \(\vee\), we have \(B \vee A\)
-We have proved \(B \supset B \vee A\)
-We have \(h\)
Applying \(\vee\) elim we get \(B \vee A\)
We have proved \(A \vee B \supset B \vee A\)
We have proved \(\forall A, B\) : Prop. \(A \vee B \supset B \vee A\)

\section*{Some of the syntax: \\ Coq specification language:} term ::= forall binderlist, term
fun binderlist => term
fix fix_bodies
cofix cofix_bodies
let ident_with_params := term in term
let fix fix_body in term
let cofix cofix_body in term
let ( [name , ... , name] ) [dep_ret_type] := term in term
if term [dep_ret_type] then term else term
term : term
term -> term
term arg ... arg
match match_item , ... , match_item [return_type] with
[[I] equation | ... | equation] end
fix_bodies::= fix_body
fix_body with fix_body with ... with fix_body for ident fix_body \(::=\) ident binderlet ... binderlet [\{struct ident\}] [: term] := term dep_ret_type ::= [as name] return term match_item \(::=\) term [as name] [in term] equation ::= mult_pattern | ... | mult_pattern => term

\section*{Coq specification language: Gallina}
- Type hierarchy: proofs in formulas, formulas in Prop, other types (specifications) of non-types in Set, Prop and Set in Type \((0)\), Type \({ }_{(i)}\) in Type \(_{(+1)}\)
- Products forall \(x\) : \(A, B\) are written \(A\)-> \(B\) when \(x\) doesn't occur in \(B\).
- \((x: A:=B)\)... is a shortcut for let \(x: A:=B\) in ...
- Subterms replaced by _ or declared as implicit are (tried to be) inferred by type inference.
- return_type is the type of a pattern matching term, it can depend on the matched value, or its type:

Definition sym_equal (A:Type) ( x y:A) (H:eq A x y) : eq A y \(\mathrm{x}:=\) match H in eq _ _ z return eq \(\mathrm{A} z \times\) with | refl_equal => refl_equal \(A x\) end.

\title{
Gallina's command language:
}
| (Axiom | Conjecture | Parameter[s] | Variable[s] | Hypothes[is|es]) (ident ... ident : term | binder ... binder).
| (Definition | Let) ident_with_params := term.
[Co]Inductive ind_body with ... with ind_body.
| [Co]Fixpoint fix_body with ... with fix_body.
| (Theorem | Lemma | Definition) ident [binderlet ... binderlet] : term. [Proof. proof_script (Qed.|Defined.|Admitted.)]
| Record ident [binderlet ... binderlet] : sort := [ident] \{[name [: term] [:= term] ; ... ; name [: term] [:= term]] \}.
| Function ident binder...binder \{(struct ident | measure term ident | wf term ident) : term := term.
| Section ident. | End ident.
| Module [Import | Export] ident [module_bindings] (: | <:) module_type.
Coercion qualid : class1 >-> class2.

\section*{The Vernacular}
- Declaration introduces a name with a given type.
- Definition gives a name for a term.
- ind_body ::= ident [binderlet ... binderlet] : term := [[I] ident [binderlet ... binderlet] [: term] | ... | ident [binderlet ... binderlet] [: term]]
- Fixpoint introduces recursive definition or inductive proof decreasing w.r.t. the argument in \{struct ident\}
- Definitions can also be built interactively by tactics.
- Records are syntax sugar for one-constructor inductive definitions, known from programming langs.
- Let definitions are local to sections.

\section*{The Vernacular}
- Function is a generalization of Fixpoint that besides the function, generates
- an induction principle that reflects the recursive structure of the function
- its fixpoint equality (if recursive)
- graph (relation) of the function (silently).
- Non-recursive arguments should go first.
- Limited pattern-matching (currently dependent cases not supported).
- measure and wf allow to easily define a function decreasing on given ordering relation, generate proof obligations for monotonicity (and well-foundedness).

\section*{The Vernacular}
- A module with parameters is a functor.
- Libraries (directories) and modules (files and modules in files) form a common hierarchy.
- Implicit coercions allow to write:
- \(f\) a where f:forall \(x: A, B\) and \(a: A^{\prime}\) when \(A^{\prime}\) can be seen in some sense as a subtype of \(A\).
- \(x: A\) when \(A\) is not a type, but can be seen in a certain sense as a type: set, group, category etc.
- \(f\) a when \(f\) is not a function, but can be seen in a certain sense as a function: bijection, functor, any structure morphism etc.
- For example, forall (x1 : A1)..(xn : An)(y: C x1..xn), \(D\) u1..um can coerce an object \(t: C\) t1..tn to \(f t 1\)..tn : \(D\) u1..um: we declare Coercion f: C >-> D.

\section*{Coq Libraries}
- Coq is easily extensible with user-provided notations.
- Initial library contains logical operators, basic datatypes: product prod, sum, specification sig (object with a proof of its property), sumbool (non-dependent sum of Props: a choice between two formulas), nat.
- Standard library contains useful basic logical and arithmetic (Peano, integers, reals) facts, and datatypes: lists, sets, maps.
- Everything else is in the contributions library.
- Logic Cassatal logis and desenatene ecounty Standard Library
- Arith Basic Peano arithmetic
- NArith Basic positive integer arithmetic
- ZArith Basic relative integer arithmetic
- Bool Booleans (basic functions and results)
- Lists Monomorphic and polymorphic lists (basic functions and results), Streams (infinite sequences defined with co-inductive types)
- Sets Sets (classical, constructive, finite, infinite, power set, etc.)
- FSets Specification and implementations of finite sets and finite maps (by lists and by AVL trees)
- IntMap Representation of finite sets by an efficient structure of map (trees indexed by binary integers).
- Reals Axiomatization of real numbers (classical, basic functions, integer part, fractional part, limit, derivative, Cauchy series, power series and results,...)
- Relations Relations (definitions and basic results).
- Sorting Sorted list (basic definitions and heapsort correctness).
- Strings 8 -bits characters and strings
- WellfoundedWell-founded relations (basic results).

\section*{The Vernacular: search}
- Print qualid. displays name's associated term and its type.
- Check term. displays term's type (in current context=i.c.c.).
- Search qualid. displays all theorems i.c.c. (=a.t.i.c.c.) whose conclusion head is qualid.
- SearchAbout qualid. displays a.t.i.c.c. containing qualid.
- SearchPattern term. displays a.t.i.c.c. with conclusion matching the given term.
- Coq < SearchPattern (_ + _ = + _ ).
- plus_comm: forall \(n m\) : nat, \(n+m=m+n\)
- plus_Snm_nSm: forall n m : nat, S n + m = n + S m ...
- SearchRewrite term. displays a.t.i.c.c. with conclusion being equality, its one side matching the given term.
- Coq < SearchRewrite (_ + _ _ ).
- plus_assoc: forall n m p : nat, \(n+(m+p)=n+m+p \ldots\)

\section*{The Vernacular: more commands}
- Load ident. loads a source file ident.v.
- Require [Import] ident. loads and opens a compiled module ident.vo. (Not visible outside.)
- Print Modules. shows the currently loaded/opened modules.
- Qed.|Save. finishes proof defining an opaque constant (it cannot be unfolded or proven different to another opaque constant).
- Save ident. as above for goals started with Goal term.
- Defined. finishes proof defining a transparent constant.
- Admitted. gives up proving and declares the goal as an axiom.
- Abort. aborts proving and discards the goal.

\section*{Coq Selected Tactics}
- refine term allows to give an exact proof but still with some holes noted _.
- eapply term tries to unify current goal with the conclusion of given term, turns uninstantiated variables in premises into existential meta-variables.
- compute performs beta delta iota zeta reductions.
- functional induction (qualid term ... term) performs case analysis and induction following the definition of a function.
- inversion ident „destructs" ident generating subgoals for each constructor of inductive predicate which is the type of ident, and discards the subgoals where „unpacked" assumptions are contradictory.

\section*{Coq Automation}
- [e]auto [with ident ... ident | with *] [using lemma ... lemma] Prolog-like (depth-first) resolution procedure: reduces goal to an atomic one (intros), tries tactics associated with goal head in turn (lower cost tactics first; theorems used with apply); recurses to subgoals. Either solves the goal completely or leaves intact. idents name hint databases, * means uses all hints, lemmas are additional hints. eauto uses eapply (unification rather than pattern-matching).
- firstorder [tactic] [with ident ... ident] [using ident ... ident] performs first-order reasoning, applies tactic to subgoals where logical reasoning fails, extends the proof search environment with with-ident lemmas and lemmas from using-ident hint databases.

\section*{Coq Automation}
- congruence for equational reasoning.
- autorewrite with ident ... ident [using tactic] [in qualid] applies a rewrite system joining the idents rewriting rule bases; applies tactic (if given) after each rewrite step; performs rewritings in assumption qualid (if given).
- omega solves Presburger arithmetic for nat and Z (binary integers).
- ring does associative-commutative rewriting in ring and semi-ring structures. It is implemented directly in Coq (reflection). It works by registering ring properties for given type, rules for evaluating coefficients, and a morphism from coefficients to the ring carrier type.

\section*{Example: mergesort}
- Sorting
- First, specify sorting lists of natural numbers through a predicate:
- sort : list nat -> list nat -> Prop.
- Merging
- Define a function merge: list nat -> list nat -> list nat such that the following lemma holds:
- Lemma merge_and_sort : forall I I', sorted I -> sorted I' -> sort (l++l') (merge I l').
- Prove this property.

\section*{Example: mergesort}
- Balanced binary trees
- Consider the type of binary trees whose nodes are labeled in type \(N\) and leaves in type \(L\) :
- Inductive tree(N L:Type):Type := Leaf : L -> tree N L | Node : N -> tree N L -> tree N L -> tree N L.
- We now consider trees whose nodes contain boolean values and leaves an optional value of type \(L\), i.e trees of type tree bool (option L). Complete the following definition:
- Inductive balanced(L:Type): tree bool (option L) -> nat -> Prop :=
- Insertion in a balanced tree
- Define a function:
- insert (L:Type): L-> tree bool (option L)) -> tree bool (option L)
- such that the insertion of \(l: L\) into a balanced tree ressults in a balanced tree

\section*{Example: mergesort}
- Building a balanced tree from a list
- Define a function such that share_ Is returns a balanced tree containing all the elements of Is
- share (L:Type) : L-> tree bool (option L)
- We now have all material for building the function
- mergesort : list nat -> list nat
- let / be a list of natural numbers
- build a balanced tree whose leaves are labled with the elements of I
- flatten this tree, using merge to combine the leaves of the left and right subtrees
- Prove the theorem:
- Theorem mergesort_ok : forall I, sort I (mergesort I).

\section*{Extraction of programs}
- Output languages: OCaml, Haskell and Scheme
- Extraction qualid. extracts one constant or module.
- Recursive Extraction qualid ... qualid. extracts together with all dependencies.
- Extraction „file" qualid ... qualid. as above into one monolithic file.
- Extraction Library ident. extracts the whole library into ML module ident.ml.
- Recursive Extraction Library ident. extracts the library into ident.ml and all libraries/modules it depends on into their files.

\section*{Extraction of programs}
- Extraction Language (Ocaml | Haskell | Scheme | Toplevel). Topleve/ is pseudo-OCaml, doesn't change names so fails OCaml syntax, works only for toplevel.
- Extract Constant qualid => string. extracts qualid as string, which can be an identifier or a quoted (arbitrary) string. (Defines qualid as string.)
- Extract Inlined Constant qualid => string. as above, but inlines the string for each occurrence of qualid.
- Extract Constant qualid string ... string => string. extracts type schemes (e.g. Y „"a","b" => „'a * ‘b")
- Extract Inductive qualid => string [ string ...string ]. extracts inductive definitions.
- Extract Inductive sumbool => "bool" [ "true" "false" ].

\section*{Sources}
- „Proof by Pointing" Yves Bretot, Gilles Kahn, Laurent Thery, 1994
- „Mathematics and Proof Presentation in Pcoq" Ahmed Amerkad, Yves Bretot, Loic Pottier, Laurence Rideau
- „Extracting Text from Proof" Yann Coscoy, Gilles Kahn, Laurent Thery
- „The Coq Proof Assistant Reference Manual Version 8.1" The Coq Development Team: LogiCal Project
- An exercise from the „Coq'Art" book webpage, Pierre Castéran, Julien Forest, based on an exercise from Epigram tutorial```


[^0]:    A :
    leA : (relation A)

