Interactive Proving with Coqg

proving with mouse and some examples

Coglde + Papug

Coglde works with
multiple files,

marks and protects
processed fragment of
the script,

separate windows for
proof state and for

Inspection/search results,

menus with inspection
commands, tactics and
script command
templates.

Papug adds a help
window proposing
simple actions,

lets inspect the lemmas
It proposed to apply,

extends the context
menu of Coqglde
showing most
worthwhile actions first,

wizard” automation
tries out several tactics.

bnded + ap|bo)

a|dwexa

* Coglde &

__ File Edit Mavigation Try Tactics Templates Queries Compile Windows Help

EEREEREE XX

[d*Unnamed Buffer 1 subgoal
m : nat
Goalforalmk: nat m+k=m->k=0. k' nat

intros. H Sm+l=Cm
induction m. IHm - n Equal constr.
simplinH. Use

info assumption. k=0

Induction on H

simplify

exact H
generalize H
absurd <H=

discriminate H

. injection H
rewrite H
rewrite <- H
elim H
inversion H

inversion clear H

Ready, proving Unnamed_thm

¥ Coq wizard
Previous step

Goal is proved

Apply eq_add S ; trivial
Apply sym_eq ; trivial

Prove by contradiction.

Hints

File Edit Apps

emacs: Permutation.w

options Functions EBuffers Tools Proof-ceneral

traple F elew Fagee (t

2 r*'E""rna'c

» emptyBag

ndd imunion flist_col

H-syrnbol

) o imunion fsingletonBas) (list contents W

ntents 13

list_co

ntents mr il

(o context

bawe Bpdate: hale 1% Y

< proof- prointin. of,
' some provers |

File Edit Apps

Options Buffers Tools Proof-General

Proof-by-Pointing

Not present (yet) in Coqglde, but present in earlier Coqg
Interfaces (IDEs): CtCoqg (mid-nineties) and Pcog
(2003).

Similar to the idea of context menu present in Coqlde,
performs multiple actions from a single mouse
Interaction.

Already proved theorems should be accessible
similarly to assumptions.

Drag-and-drop: e.g. drag equality to the subterm to
rewrite (match the terms and generate subgoals for
assumptions of the equality).

Point-and-shoot: while pointing, select the tactic to
apply to the subterm after it is brought to the surface.

bunuiod-Ag-j00.id

‘?snow Ag pajulod
uonisod syl 01 A|]9AISIND3) PUIISIP SIINY

A,B,ANB,I'FC

Alefty - A righty :
AINB,IT'FC
A|BLANB,I'HC
Alefts - A rights :
AN B, IT'FC
ALAVv B, I'FC B,AvVvBI'FC _
Vieft; : V right; :
A|vB,T+C
AAVB,IT'EC BLAVB,I'FC _
Viefts : V rights
AV|B|I'+ C
ADB,I'H|A B.ADB,I'HC _
D lefty : D righty :
A|DB,I'FC
ADB,I'H A BLADB,I'FC
D lefts : D rights :
AD|BLI'FC
_— Alz\e] | V2 A, I'F C tyne-specific T
eft : Vel AL F C induction scheme: 7 "9t:
I'FPO) Pn),I'FPn+l)
Alz\c] |3z A, ' F I"E¥|n : int | P(n)
dleft : d right :
de|A|I'F C

I'Fl A I'B

 I'+|B
"I'+AvV|B

A, I'FB
FlA[D B

A T'H|B
I'AD|B

'+ Alz\¢]

I'+-Vz| A

'+ Alz\€]

I'F3dz| A

Proof-by-Pointing: 5-click exanple

Goal (p a\V/ g b) /\ (forall x, p x -> g x) -> (exists
X, g X).
Point to p a in conclusion.

- Two subgoals with p a resp. g b, and forall x, p x -> g
X In assumptions, the one with p a selected.

Point to p x from forall x, p x -> g x In
assumptions.

- p x Is automatically proved, and thus g a is added to
assumptions.

Twice: point to g x In conclusion.

Pcoqg and Proof Presentation

File Display Edit Selection Cog Help

equire Import Arith.

[Thearern le_gt trans: ¥x y. Z:imal Xsy ==(gt 2 y) =% <&
[1: Intres ® ¥ T H HO;Try AssumpEion.

TjAute Doit [Textmade 4 |1ofi| B | |Discard [Abort

e e ? sy g ST T

Errors | Search Results |

File Display Edit Selection Cogq Help
Let us prove ¥x, vy, z .0,
X ®+
7 =0 == +V = ‘f
zZ Z z
Let x, vy and z be elements of Q such that -z = 0 (H).
b ® +
Mow prove +‘g‘f = ‘f.
z Z z
X ® ®
e have +V =11 +vj (by (Qone_neutral +V))
zZ T z z z z
zZ X ¥y
= - +) (by (Qdiv_inverse z): Imagine a proof of -z = 0)
zZ Z z
2O+
zZ z
= (by Qdiv_mult_leftd)
z
X
z + Z v
z z
= (by Qdistr)
z
Z- X
+ Z i
Z z
= (by Qdiv_mult_left)
Z
Z X
+ z B
Z zZ x+y
Imagine a proof of =
Fd Z

Extracting Text from Proof

Rules for abstraction

Letl: A4
(Al: Agpype. M) > M
We have proved 7

Assume 4 (h)
(Ah:Apyp. M) b M

We have proved 7

| Consider an arbitrary = in A
(Az: Aser- M)r b M

We have 7, since x is arbitrary

Rules for application

(MygpoN), o M

In particular 7

- N
[;MP:);_& i'\lr:jq- [- M

We deduce 1

Rules for identifiers

h: © By h we have 7
T. v Using T we get T

Analogous (compact) rules are built for repeated abstractions and applications.

Extracting Text from Proof

Rules for introduction theorems

-N!

(Cintro M1... M™ N1 ... N“:)T > _N?!

So by definition of C we have 7
(Cintro MY ... M™), B> By definition of C we have 7

N

H 7 1,,,J. L
(Cintro M M™N) > By definition of C we have 7

Rules for elimination theorems

P

Therefore by definition of C, to prove 7 we have i cases:

Caseq:
Nt
(Celim M*... M" N*... N'P), »
Case;:
Nt
So we have T
= U . . P, by definition of C there is a confradiction
(Celim M7+ M"P); > S0 we can assert T
P
i=1 Therefore by definition of C to prove 7
(Celim M'... M™ N P), B> N

So we have T

Extracting Text from Proof. examples

Let U: Type
Let P,(): U— Prop
Let a: U
Assume (Pa) (h)and Vz:U. (Pz) D (Qz) (hg)
Applying ho with h we get (Qa)
We have proved (PfL) O (Va: U. (P :::) O (Q :::)) O (Q rL)
We have proved YU: T'ype. VP, (): U— Prop. Va: U. (Pa) D (Vz:U.(Pz) D (Qz)) D (Qa)

By definition of I to prove Vn:IM. 0 < n, we have two cases:
Caseq:
By definition of < we have 0 < 0
Caﬂﬂgl
Let m:
Assume 0 <m (h)
From A and the definition of <, we have 0 < (Sucm)
We have proved 0 < m D 0 < (Sucm)
We have proved Vm:IN.0 <m D0 < (Sucm)
So we have Vi .0 < n

Let A, B : Prop
Assume AV B (h)
Assume A (1)
From ¢ and the definifion of V, we have BV A
-We have proved A D Bv A
Assume B (j)
From j and the definition of V, we have BV A
-We have proved B D BV A
-We have b
Applying Velim we get BV A
We have proved AVEB J BV A
We have proved VA, B: Prop. AV B 2>BVA

some of the syntax: <00 SPECIfication language:

term ::= forall binderlist , term "
fun binderlist => term Ga l I Ina
fix fix_bodies
cofix cofix_bodies
let ident_with_params :=termin term
let fix fix_body in term
let cofix cofix_body in term

let ([name, ..., name]) [dep_ret type] :=termin term
if term [dep _ret _type] then term else term
term : term

term -> term
term arg ... arg
match match_item, ..., match_item [return_type] with

[[I] equation| ... | equation] end
fix_bodies::= fix_body

| fix_body with fix_body with ... with fix_body for ident

fix_body ::=identbinderlet ... binderlet [{struct ident}] [: term] := term
dep ret type:.:= [as name] return term
match_item ::= term [as name] [in term
equation ::= mult_pattern| ... | mult_pattern => term

Coq specification language: (allina

* Type hierarchy: proofs in formulas, formulas in
Prop, other types (specifications) of non-types in
Set, Prop and Set in Type«), Type: in Type:

 Products forall x : A, B are written A -=> B when x
doesn't occur In B.

e (x:A:=B)...i1sashortcutforletx:A:=Bin...

* Subterms replaced by _or declared as implicit are
(tried to be) inferred by type inference.

* return_type Is the type of a pattern matching term, it
can depend on the matched value, or its type:
Definition sym_equal (A:Type) (x y:A) (H:eqAXxy):eqAyXx .=

match Hineq _ zreturn eq A z x with
| refl_equal =>refl_equal A x end.

Gallina's command language:
sentence ::= The Vernacular

| (Axiom | Conjecture | Parameter[s] | Variable[s] | Hypothes]is|es])
(ident ... ident : term | binder ... binder).

(Definition | Let) ident_with_params :=term.
[Co]inductive ind_body with ... with ind_body.
[Co]Fixpoint fix_body with ... with fix_body.

(Theorem | Lemma | Definition) ident [binderlet ... binderlet] : term.
[Proof. proof script (Qed.|Defined.|Admitted.)]

| Record ident [binderlet ... binderlet] : sort := [ident] {{[name [: term] [:=
term]; ... ; name [: term] [:= term]] }.

| Function ident binder...binder {(struct ident | measure term ident | wf
term ident)} : term :=term.

Section ident. | End ident.

Module [Import | Export] ident [module bindings] (: | <:) module_type.

| Coercion qualid : class1 >-> class?2.

The Vernacular

» Declaration introduces a name with a given type.
* Definition gives a name for a term.

* iInd_body ::=ident [binderlet ... binderlet] : term :=[[]]
ident [binderlet ... binderlet] [: term] | ... | Ident
[binderlet ... binderlet] [: term]]

* Fixpoint introduces recursive definition or inductive
proof decreasing w.r.t. the argument in {struct ident}

» Definitions can also be built interactively by tactics.

* Records are syntax sugar for one-constructor
iInductive definitions, known from programming langs.

e [et definitions are local to sections.

The Vernacular

* Function is a generalization of Fixpoint that besides
the function, generates

— an induction principle that reflects the recursive structure of
the function

- Its fixpoint equality (if recursive)
— graph (relation) of the function (silently).

* Non-recursive arguments should go first.

* Limited pattern-matching (currently dependent cases
not supported).

* measure and wf allow to easily define a function
decreasing on given ordering relation, generate proof
obligations for monotonicity (and well-foundedness).

~ The Vernacular
A module with parameters is a functor.

Libraries (directories) and modules (files and modules
In files) form a common hierarchy.

Implicit coercions allow to write:

- fa where f:forall x:A, B and a:A' when A' can be seen in
some sense as a subtype of A.

- X:A when A Is not a type, but can be seen in a certain sense
as a type: set, group, category etc.

- fa when fis not a function, but can be seen in a certain
sense as a function: bijection, functor, any structure
morphism etc.

For example, forall (x1 : A1)..(xn : An)(y: C x1..xn), D
ul..um can coerce an object t:C t1..tnto ft1..tn : D
ul..um: we declare Coercion f: C >-> D.

Coq Libraries

* Coq Is easily extensible with user-provided
notations.

 |nitial library contains logical operators, basic
datatypes: product prod, sum, specification sig
(object with a proof of its property), sumbool
(non-dependent sum of Props: a choice between
two formulas), nat.

» Standard library contains useful basic logical
and arithmetic (Peano, integers, reals) facts, and
datatypes: lists, sets, maps.

* Everything else is in the contributions library.

Coq Standard Library

Logic Classical logic and dependent equality
Arith Basic Peano arithmetic

NArith Basic positive integer arithmetic
ZArith Basic relative integer arithmetic

Bool Booleans (basic functions and results)

Lists Monomorphic and polymorphic lists (basic functions and results), Streams (infinite
sequences defined with co-inductive types)

Sets Sets (classical, constructive, finite, infinite, power set, etc.)

FSets Specification and implementations of finite sets and finite maps (by lists and by AVL
trees)

IntMap Representation of finite sets by an efficient structure of map (trees indexed by binary
integers).

Reals Axiomatization of real numbers (classical, basic functions, integer part, fractional part,
limit, derivative, Cauchy series, power series and results,...)

Relations Relations (definitions and basic results).
Sorting Sorted list (basic definitions and heapsort correctness).
Strings 8-bits characters and strings

WellfoundedWell-founded relations (basic results).

The Vernacular: search

Print qualid. displays name's associated term and its type.

Check term. displays term's type (in current context=i.c.c.).

Search qualid. displays all theorems i.c.c. (=a.t.l.c.c.) whose
conclusion head is qualid.

SearchAbout qualid. displays a.t.i.c.c. containing qualid.

SearchPattern term. displays a.t.i.c.c. with conclusion
matching the given term.

- Coq < SearchPattern (_ + =+).
- plus_comm: forallnm:nat, n+m=m+n

- plus_ Snm _nSm: forallnm:nat, Sn+m=n+Sm...

SearchRewrite term. displays a.t.i.c.c. with conclusion being
equality, its one side matching the given term.

- Coq < SearchRewrite (_ + _+).

- plus_assoc: foralnmp:nat, n+(mM+p)=n+m+p...

The Vernacular: more commands

Load ident. loads a source file ident.v.

Require [Import] ident. loads and opens a compiled module
Ident.vo. (Not visible outside.)

Print Modules. shows the currently loaded/opened modules.

Qed.|Save. finishes proof defining an opaque constant (it
cannot be unfolded or proven different to another opaque
constant).

Save ident. as above for goals started with Goal term.
Defined. finishes proof defining a transparent constant.

Admitted. gives up proving and declares the goal as an
axiom.

Abort. aborts proving and discards the goal.

Coq Selected Tactics

refine term allows to give an exact proof but still with
some holes noted .

eapply term tries to unify current goal with the
conclusion of given term, turns uninstantiated
variables in premises into existential meta-variables.

compute performs beta delta iota zeta reductions.

functional induction (qualid term ... term) performs
case analysis and induction following the definition of
a function.

inversion ident ,destructs” ident generating subgoals
for each constructor of inductive predicate which is the
type of ident, and discards the subgoals where
L2wunpacked” assumptions are contradictory.

Coqg Automation

» [e]auto [with ident ... ident | with *] [using lemma ...
lemma] Prolog-like (depth-first) resolution procedure:
reduces goal to an atomic one (intros), tries tactics
associated with goal head in turn (lower cost tactics
first; theorems used with apply); recurses to subgoals.
Either solves the goal completely or leaves intact.
iIdents name hint databases, * means uses all hints,
lemmas are additional hints. eauto uses eapply
(unification rather than pattern-matching).

o firstorder [tactic] [with ident ... ident] [using ident ...
ident] performs first-order reasoning, applies tactic to
subgoals where logical reasoning fails, extends the
proof search environment with with-ident lemmas and
lemmas from using-ident hint databases.

Coqg Automation
* congruence for equational reasoning.

* autorewrite with ident ... ident [using tactic] [in
qualid] applies a rewrite system joining the idents
rewriting rule bases; applies tactic (if given) after each
rewrite step; performs rewritings in assumption qualid
(if given).

* omeda solves Presburger arithmetic for nat and Z
(binary integers).

* ring does associative-commutative rewriting in ring
and semi-ring structures. It is implemented directly in
Coq (reflection). It works by registering ring properties
for given type, rules for evaluating coefficients, and a
morphism from coefficients to the ring carrier type.

Example: mergesort

e Sorting
- First, specify sorting lists of natural numbers through
a predicate:
e sort : list nat -> list nat -> Prop.
* Merging

- Define a function merge: list nat -> list nat -> list nat
such that the following lemma holds:

 Lemma merge_and_sort : forall | I', sorted | -> sorted I' ->
sort (I++I') (merge | I').

- Prove this property.

Example: mergesort

» Balanced binary trees
- Consider the type of binary trees whose nodes are labeled
In type N and leaves in type L:

 Inductive tree(N L:Type):Type := Leaf : L ->tree NL | Node : N ->
tree NL->treeNL ->tree N L.

- We now consider trees whose nodes contain boolean
values and leaves an optional value of type L, i.e trees of
type tree bool (option L). Complete the following definition:

 Inductive balanced(L:Type): tree bool (option L) -> nat -> Prop :=
 Insertion in a balanced tree

- Define a function:
e insert (L:Type): L -> tree bool (option L)) -> tree bool (option L)

— such that the insertion of /:L into a balanced tree ressults in
a balanced tree

Example: mergesort
» Building a balanced tree from a list

- Define a function such that share _Is returns a balanced
tree containing all the elements of Is

e share (L:Type) : L -> tree bool (option L)
 We now have all material for building the function

* mergesort : list nat -> list nat
- let / be a list of natural numbers

- build a balanced tree whose leaves are labled with the
elements of /

- flatten this tree, using merge to combine the leaves of the
left and right subtrees

 Prove the theorem:

 Theorem mergesort_ok : forall I, sort | (mergesort).

Extraction of prograns

e Output languages: OCaml, Haskell and Scheme
o Extraction qualid. extracts one constant or module.

* Recursive Extraction qualid ... qualid. extracts
together with all dependencies.

« Extraction .file” qualid ... qualid. as above into one
monolithic file.

o Extraction Library ident. extracts the whole library
iInto ML module ident.ml.

* Recursive Extraction Library ident. extracts the
library into ident.ml and all libraries/modules it
depends on into their files.

Extraction of prograns

» Extraction Language (Ocaml | Haskell | Scheme |
Toplevel). Toplevel i1s pseudo-OCaml, doesn't change
names so fails OCaml syntax, works only for toplevel.

« Extract Constant qualid => string. extracts qualid as
string, which can be an identifier or a quoted
(arbitrary) string. (Defines qualid as string.)

» Extract Inlined Constant qualid => string. as above,
but inlines the string for each occurrence of qualid.

 Extract Constant qualid string ... string => string.
extracts type schemes (e.g. Y, a”, b’ =>a*'b”)

« Extract Inductive qualid => string [string ...string].
extracts inductive definitions.

e Extract Inductive sumbool => "bool" ["true" "false"].

Sources

~Proof by Pointing” Yves Bretot, Gilles Kahn,
Laurent Thery, 1994

~Mathematics and Proof Presentation in Pcoq”
Ahmed Amerkad, Yves Bretot, Loic Pottier,
Laurence Rideau

~Extracting Text from Proof’ Yann Coscoy, Gilles
Kahn, Laurent Thery

, The Coq Proof Assistant Reference Manual
Version 8.1” The Cog Development Team:
LogiCal Project

An exercise from the ,,Coqg'Art” book webpage,
Pierre Castéran, Julien Forest, based on an
exercise from Epigram tutorial

