Coq as a Tutor in Formal Reasoning

Guiding through the proof

Students' Problems

- Confusing assumptions and conclusions.
 - "Now we prove that f is injective. A function f is injective if for all x, y we have f (x) = f (y) implies x = y. Let us consider arbitrary x, y such that f (x) = f (y). Since this implies x = y, the function f is injective."
- Quantifier problems.
 - Translating "if there exist three elements in the set A, two of them must be equal" into formal language.
- "Forgetting to unfold definition" problems.
- Bad understanding of definitions.
 - Show $\phi : P(N) \rightarrow (P(N) \rightarrow P(N))$ given by $\phi(a)(b) = a \cap b$ is injective: "Let a and a' be subsets of N. Let us consider $\phi(a)$ and show that it is an injective function."
- Negating logical sentences.

Naive Type Theory better than "sets everywhere"

- <a, a> = {{a}}? Not teaching how to encode things as sets (implementation) not considered a problem.
- Basic types: Prop, empty, unit, bool, nat, and type constructors: -> (function), + (sum), * (Cartesian product)
- Predicates *Predicate T* := *T* -> *Prop*.
 - Sum, difference, intersection, inclusion of predicates.
- Functions: image, injectivity, surjectivity, etc.
 - Problem with distinction of types and predicates=subsets.
 - Checking properties limited to predicates no problem.
 - Problem with equality for functions "defined" on predicates.
- Binary predicates Relation (A : Type) := A -> A -> Prop: reflexivity, transitivity, symmetry, etc.

Elements of Coq

- Calculus of Inductive Constructions: a dependently typed lambda-calculus with a structural recursion operator over inductive types, plus global and local definitions.
- Vernacular: language of commands manipulating CIC, generating inductive schemes etc.
- Inside Vernacular, language of tactics and tacticals to interactively write proof scripts.
- Ltac: language for defining tactics.
- Sessions allow to use variables which are then generalized "en bloc".
- Arguments marked as implicit are (type-) inferred.
- Existential meta-variables for subterms to be instantiated later in the proof (e.g. *eapply ex_intro*).

Naive Type Theory and Coq

- Only four axioms have to be added: excluded middle, extensionality of predicate equality, extensionality of functional equality and the principle of description.
 - There exists a function corresponding to a functional relation.
- "IN" is defined as application, the "universe" is an implicit argument.
 - Sets are subsets of some type.
- Notations, e.g.
 - Notation "A 'n' B" := (Intersection A B) (at level 11).
 - Notation "A 'c' B" := (Subset A B) (at level 100).

Coqlde + Papug

- Coqlde allows to work with multiple files,
- marks and protects processed fragment of the script,
- separate windows for proof state and for inspection/search results,
- menus with inspection commands, tactics and script command templates.

- Papuq adds a help window proposing simple actions,
- lets inspect the lemmas it proposed to apply,
- extends the context menu of CoqIde showing most worthwhile actions first,
- "wizard" automation tries out several tactics.

🗙 Coqlde 🧐		_ <u> </u>
<u>File</u> <u>E</u> dit <u>N</u> avigation <u>T</u> ry Tactics Te <u>m</u> plates <u>Q</u> ueries <u>C</u> ompile <u>W</u> in	ndows <u>H</u> elp	
Coal forall m k : nat, m + k = m -> k = 0. intros. induction m. simpl in H. info assumption.	1 subgoal m : nat k : nat H : S m · L = S m Hm : n Equal constr. Use Induction on H Simplify clear H apply H exact H generalize H absurd <h> discriminate H injection H rewrite H rewrite <- H elim H inversion clear H</h>	(1/1)
Ready, proving Unnamed_thm	Line: 6 Char: 1 Coqld	e started
Coq wizard Previous step Goal is p	proved	
Apply eq_add_S; trivia		
Apply sym_eq; trivial		- Steel
Prove by contradiction.	n. Next	A Constant

Digression: Proof-by-Pointing

- Not present (yet) in Coqlde, but present in earlier Coq interfaces (IDEs): CtCoq (mid-nineties) and Pcoq (2003).
- Similar to the idea of context menu present in CoqIde, performs multiple actions from a single mouse interaction.
- Already proved theorems should be accessible similarly to assumptions.
- Drag-and-drop: e.g. drag equality to the subterm to rewrite (match the terms and generate subgoals for assumptions of the equality).
- Point-and-shoot: while pointing, select the tactic to apply to the subterm after it is brought to the surface.

$$\begin{array}{l} \mbox{Proof-by-Pointing} \\ \mbox{Fight}_{1}: \frac{[A], B, A \land B, \Gamma \vdash C}{[A] \land B, \Gamma \vdash C} & \wedge right_{1}: \frac{\Gamma \vdash A \land \Gamma \vdash B}{\Gamma \vdash A \land B} \\ \mbox{$\land left_{2}: \frac{A, [B], A \land B, \Gamma \vdash C}{A \land B, \Gamma \vdash C} & \wedge right_{2}: \frac{\Gamma \vdash A \land \Gamma \vdash B}{\Gamma \vdash A \land B} \\ \mbox{$\lor left_{1}: \frac{A, A \lor B, \Gamma \vdash C}{A \land B, \Gamma \vdash C} & \vee right_{1}: \frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \\ \mbox{$\lor left_{2}: \frac{A, A \lor B, \Gamma \vdash C}{A \lor B, \Gamma \vdash C} & \vee right_{2}: \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} \\ \mbox{$\lor left_{2}: \frac{A, A \lor B, \Gamma \vdash C}{A \lor B, \Gamma \vdash C} & \vee right_{2}: \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} \\ \mbox{$\lor left_{2}: \frac{A, A \lor B, \Gamma \vdash C}{A \lor B, \Gamma \vdash C} & \vee right_{2}: \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} \\ \mbox{$\lor left_{2}: \frac{A, A \lor B, \Gamma \vdash C}{A \lor B, \Gamma \vdash C} & \cap right_{1}: \frac{A, \Gamma \vdash B}{\Gamma \vdash A \lor B} \\ \mbox{$\lor left_{2}: \frac{A \supset B, \Gamma \vdash A}{B \lor B, \Gamma \vdash C} & \cap right_{2}: \frac{A, \Gamma \vdash B}{\Gamma \vdash A \lor B} \\ \mbox{$\lor left_{2}: \frac{A \supset B, \Gamma \vdash A}{B \lor B, \Gamma \vdash C} & \cap right_{2}: \frac{A, \Gamma \vdash B}{\Gamma \vdash A \lor B} \\ \mbox{$\lor left_{2}: \frac{A \lor B, \Gamma \vdash A}{B \lor B, \Gamma \vdash C} & \cap right_{2}: \frac{A, \Gamma \vdash B}{\Gamma \vdash A \lor B} \\ \mbox{$\lor left_{2}: \frac{A \lor B, \Gamma \vdash A}{A \lor B, \Gamma \vdash C} & \cap right_{2}: \frac{A, \Gamma \vdash B}{\Gamma \vdash A \lor B} \\ \mbox{$\lor left_{2}: \frac{A \lor B, \Gamma \vdash A}{A \lor B, \Gamma \vdash C} & \cap right_{2}: \frac{A, \Gamma \vdash B}{\Gamma \vdash A \lor B} \\ \mbox{$\lor left_{2}: \frac{A \lor B, \Gamma \vdash A}{A \lor B, \Gamma \vdash C} & \cap right_{2}: \frac{\Gamma \vdash A[x]}{\Gamma \vdash A \lor B} \\ \mbox{$\lor left_{2}: \frac{A[x] \lor B, \forall A, \Gamma \vdash C}{\forall x[A], \Gamma \vdash C} & \cdots right_{2}: \frac{\Gamma \vdash A[x] \lor B}{\Gamma \vdash A \lor B} \\ \mbox{$\lor reddy} : \frac{\Gamma \vdash A[x] \lor B}{T \vdash A \lor A} \\ \mbox{$\lor reddy} : \frac{\Gamma \vdash A[x] \lor B}{T \vdash A[x]} \\ \mbox{$\lor reddy} : \frac{\Gamma \vdash A[x] \lor B}{T \vdash A[x]} \\ \mbox{$\lor reddy} : \frac{\Gamma \vdash A[x] \lor B}{T \vdash A[x]} \\ \mbox{$\lor reddy} : \frac{\Gamma \vdash A[x] \lor B}{T \vdash A[x]} \\ \mbox{$\lor reddy} : \frac{\Gamma \vdash A[x] \lor B}{T \vdash A[x]} \\ \mbox{$\lor reddy} : \frac{\Gamma \vdash A[x] \lor B}{T \vdash A[x]} \\ \mbox{$\lor reddy} : \frac{\Gamma \vdash A[x] \lor B}{T \vdash A[x]} \\ \mbox{$\lor reddy} : \frac{\Gamma \vdash A[x] \lor B}{T \vdash A[x]} \\ \mbox{$\lor reddy} : \frac{\Gamma \vdash A[x] \lor B}{T \vdash A[x]} \\ \mbox{$\lor reddy} : \frac{\Gamma \vdash A[x] \lor B}{T \vdash A[x]} \\ \mbox{$\lor reddy} : \frac{\Gamma \vdash A[x] \lor B}{T \vdash A[x]} \\ \mbox{$\lor reddy} : \frac{\Gamma \vdash A[x] \lor B}{T \vdash A[x]} \\ \mbox{$\lor reddy} : \frac{\Gamma \vdash A[x] \lor B}{T \vdash A[x]} \\ \mbox{$\lor reddy} : \frac{\Gamma \vdash A[x] \lor B}{T \vdash A[x]} \\ \mbox{$\lor reddy} : \frac{\Gamma \vdash A[x] \lor$$

Proof-by-Pointing: 5-click example

- Goal (p a V q b) /\ (forall x, p x -> q x) -> (exists x, q x).
- Point to *p a* in conclusion.
 - Two subgoals with *p* a resp. *q* b, and *forall x, p x -> q x* in assumptions, the one with *p* a selected.
- Point to p x from forall x, p x -> q x in assumptions.
 - *p x* is automatically proved, and thus *q a* is added to assumptions.
- Twice: point to *q x* in conclusion.

Digression: Extracting Text from Proof

Rules for abstraction				
$(\lambda l: A_{Type}. M)_{\tau} \triangleright \begin{array}{c} \operatorname{Let} l: A \\ M \\ \operatorname{We have prov} \end{array}$	red τ			
$\begin{array}{rcl} & \text{Assume } A & (h) \\ (\lambda h : A_{Prop} . \ M)_{\tau} & \triangleright & M \\ & & \text{We have prov} \end{array}$, 			
$(\lambda x: A_{Set}. M)_{\tau} \triangleright \qquad M$	arbitrary x in A nce x is arbitrary			
Rules for application				
$(M_{\forall x: P. Q} N)_{\tau} \triangleright \begin{array}{c} M \\ In \text{ par} \end{array}$	ticular $ au$			
$(M_{P \supset Q} N)_{\tau} \triangleright -M$ We de	educe $ au$			
Rules for identifiers				
$\begin{array}{rcl} h_{\tau} & \triangleright & \text{By } h \text{ we have } \tau \\ T_{\tau} & \triangleright & \text{Using } T \text{ we get } \tau \end{array}$				

Analogous (compact) rules are built for repeated abstractions and applications.

Extracting Text from Proof

Rules for introduction theorems

	$(Cintro \ M^1 \cdots M^n \ N^1 \cdots N^i)_{ au}$	۵	$-N^1$: $-N^i$ So by definition of C we have $ au$
i = 0 i = 1	$({\tt C}intro\;M^1\cdots M^n)_{ au}$	⊳	By definition of C we have τ
<i>v</i> — 1	$({\tt C}intro\;M^1\cdots M^nN)_{ au}$	⊳	N By definition of C we have $ au$

Rules for elimination theorems

f C, to prove τ we have <i>i</i> cases:	
$Case_1$:	
ere is a contradiction	
f C to prove $ au$	
•	

Extracting Text from Proof: examples

```
Let U: Type
Let P, Q: U \rightarrow Prop
Let a: U
Assume (Pa) (h) and \forall x : U : (Px) \supset (Qx) (h_0)
    Applying h_0 with h we get (Qa)
 We have proved (Pa) \supset (\forall x: U. (Px) \supset (Qx)) \supset (Qa)
 We have proved \forall U: Type. \forall P, Q: U \rightarrow Prop. \forall a: U. (Pa) \supset (\forall x: U. (Px) \supset (Qx)) \supset (Qa)
By definition of \mathbb{N} to prove \forall n : \mathbb{N} . 0 < n, we have two cases:
Case_1:
    By definition of \leq we have 0 \leq 0
Case<sub>2</sub>:
    Let m:\mathbb{N}
    Assume 0 \le m (h)
         From h and the definition of \leq, we have 0 \leq (\operatorname{Suc} m)
     We have proved 0 \le m \supset 0 \le (\operatorname{Suc} m)
     We have proved \forall m: \mathbb{N}. \ 0 \le m \supset 0 \le (\operatorname{Suc} m)
So we have \forall n \colon \mathbb{N} \colon 0 \leq n
Let A, B : Prop
Assume A \vee B (h)
     Assume A(i)
          From i and the definition of \lor, we have B \lor A
    -We have proved A \supset B \lor A
     Assume B_{(j)}
          From j and the definition of \lor, we have B \lor A
    -We have proved B \supset B \lor A
    -We have h
    Applying \lor elim we get B \lor A
We have proved A \lor B \supset B \lor A
We have proved \forall A, B: Prop. A \lor B \supset B \lor A
```

Coq Selected Tactics

- *eapply term* tries to unify current goal with the conclusion of given term, turns uninstantiated variables in premises into existential meta-variables. (*apply* forces all *term*'s variables be matched)
- *rewrite term* and *rewrite <- term* rewrites equality shown by *term* (*<-* right-to-left) in the goal. *term* can be an assumption name.
- *destruct ident* "destructs" *ident* generating subgoals for each constructor of inductive predicate which is the type of ident,
- *injection ident* reduces equality between inductive objects to equalities of their arguments.
- [e]auto [with ident ... ident | with *] [using lemma ... lemma] Prolog-like (depth-first) resolution procedure: reduces goal to an atomic one (intros), tries tactics associated with goal head in turn (lower cost tactics first; theorems used with apply); recurses to subgoals. Either solves the goal completely or leaves intact. idents name hint databases, * means uses all hints, lemmas are additional hints. eauto uses eapply.

Hints provided by Papug

- Tactics for 1st order classical logic.
 - E.g. using $(\sim A \rightarrow B) \rightarrow A \lor B$ on alternative.
- Axioms for equality of predicates and functions.
- Hints from the auto database.
 - Coq provides lemmas registered with *Hint* that match the goal head, with command *Print Hint*. Papug lets show and apply the applicable lemmas.
- Simplified use of assumption.
 - A generic Use, using e.g. destruct or apply or injection
 - *Rewrite*, *Rewrite backwards* for equalities
 - Induction on H for inductive objects, Simplify (e.g. computation)
- Unfolding definitions, marking obvious goals, proof by contradiction.

Sources

- "Proof by Pointing" Yves Bretot, Gilles Kahn, Laurent Thery, 1994
- "Extracting Text from Proof" Yann Coscoy, Gilles Kahn, Laurent Thery
- "The Coq Proof Assistant Reference Manual Version 8.1" The Coq Development Team: LogiCal Project
- "Papuq: a Coq assistant" Jakub Sakowicz and Jacek Chrząszcz, 2007