Coqg as a Tutor in Formal Reasoning

Guiding through the proof

Students' Problems

* Confusing assumptions and conclusions.

- ,Now we prove that f is injective. A function fis injective if for all x, y
we have f (x) = f (y) implies x = y. Let us consider arbitrary x, y such
that f (x) = f (y). Since this implies x =y, the function fis injective.”

e Quantifier problems.

- Translating ,,if there exist three elements in the set A, two of
them must be equal” into formal language.

» Forgetting to unfold definition” problems.

* Bad understanding of definitions.

- Show ¢ : P (N) - (P(N) - P (N)) given by ¢@@)(b) =an b
IS Injective: “Let a and a' be subsets of N. Let us consider
¢(a) and show that it is an injective function.”

* Negating logical sentences.

Nalve Type Theory better than ,sets
everywhere”

<a, a> = {{a}}? Not teaching how to encode things as sets
(implementation) not considered a problem.

Basic types: Prop, empty, unit, bool, nat, and type
constructors: -> (function), + (sum), * (Cartesian product)

Predicates Predicate T := T -> Prop.
- Sum, difference, intersection, inclusion of predicates.
Functions: image, injectivity, surjectivity, etc.

- Problem with distinction of types and predicates=subsets.
* Checking properties limited to predicates no problem.
* Problem with equality for functions ,,defined” on predicates.

Binary predicates Relation (A : Type) := A -> A -> Prop:
reflexivity, transitivity, symmetry, etc.

Elements of Coqg

Calculus of Inductive Constructions: a dependently typed
lambda-calculus with a structural recursion operator over
Inductive types, plus global and local definitions.

Vernacular: language of commands manipulating CIC,
generating inductive schemes etc.

Inside Vernacular, language of tactics and tacticals to
Interactively write proof scripts.

Ltac: language for defining tactics.

Sessions allow to use variables which are then generalized
»en bloc”.

Arguments marked as implicit are (type-) inferred.

Existential meta-variables for subterms to be instantiated later
In the proof (e.q. eapply ex_intro).

Nailve Type Theory and Coqg

* Only four axioms have to be added: excluded middle,
extensionality of predicate equality, extensionality of
functional equality and the principle of description.

- There exists a function corresponding to a functional
relation.

* IN” Is defined as application, the ,universe” is an
implicit argument.

- Sets are subsets of some type.
» Notations, e.q.

- Notation "A 'n' B" := (Intersection A B) (at level 11).
— Notation "A 'c' B" := (Subset A B) (at level 100).

Coglde + Papug

Coqglde allows to work
with multiple files,

marks and protects
processed fragment of
the script,

separate windows for
proof state and for

Inspection/search results,

menus with inspection
commands, tactics and
script command
templates.

Papuqg adds a help
window proposing
simple actions,

lets iInspect the lemmas
It proposed to apply,

extends the context
menu of Coqglde
showing most
worthwhile actions first,

Jwizard” automation
tries out several tactics.

bnded + ap|bo)D

a|dwexa

* Coglde &

File Edit Mavigation Try Tactics Templates Queries Compile Windows Help

EERERENE RN

[A*Unnamed Buffer*

1 subg

intros.

induction m.
simplinH.

info assumption.

m : nat

Coalforallmk: nat m+k=m->k=0. k- nat

=

oal

Ll — O e

Hm: n

k=0

Equal constr.
Use

Induction on H

Simplify

clear H
apply H
exact H
generalize H
absurd <H=

discriminate H

. injection H

rewrite H
rewrite <- H
elim H
inversion H

inversion clear H

Ready, proving Unnamed_thm

X Coq wizard

Previous step

Goal is proved

Hints
Apply eq_add S ; trivial

Apply sym_eq ; trivial

Prove by contradiction.

1

Digression: Proof-by-Pointing

* Not present (yet) in Coqglde, but present in earlier
Coq interfaces (IDEs): CtCoqg (mid-nineties) and
Pcoq (2003).

* Similar to the idea of context menu present in
Coglde, performs multiple actions from a single
mouse Interaction.

» Already proved theorems should be accessible
similarly to assumptions.

* Drag-and-drop: e.g. drag equality to the subterm to
rewrite (match the terms and generate subgoals for
assumptions of the equality).

* Point-and-shoot: while pointing, select the tactic to
apply to the subterm after it is brought to the surface.

bunuiod-Ag-j00.id

‘?snow Ag pajulod
uonisod syl 01 A|]9AISIND3) PUIISIP SIINY

AB,ANB,I'FC

Alefty : A righty .
AANB,T'FC
A BLAANB,I'FC _
Alefts : A rights
AN B, T'F C
ALAVBIT'FC B, AVBIFC _
Vieft; : V right; :
AlvB, I+
AAVB,I'FC BLAVEBI'FC _
Viefts : V rights
Av|BI'F C
ADB,I'H A BADB I'FC _
D lefty : O righty :
AlDB,I'FC
ADB,I'HA B,LADBIFC
D lefts : D rights :
AD|B|I'HC
_— Alz\e] | Vo A, '+ C tyne-specific Vit
eft : Vel AT+ C induction scheme: 7 "9ht:
I'FPO) Pw),IFPn+1)
Alz\c]| |3z A, ' I'FV¥|n : int | P(n)
dleft : d right :
dz|A|IT'FC

I'Hl A I'HB

 I'+|B
"I'+ Av|B

ALI'EB
FlA[D B

A T'H|B
I'AD|B

I' = | Alz\¢]

I'+-Vz|A

I' F| Alz\€]

I'F3dz| A

Proof-by-Pointing: 5-click exanple

Goal (p aV/q b) N\ (forall x, p x -> g x) -> (exists
X, g X).
Point to p a in conclusion.

- Two subgoals with p a resp. g b, and forall x, p x -> g
X In assumptions, the one with p a selected.

Point to p x from forall x, p x -> g x In
assumptions.

- p x Is automatically proved, and thus g a is added to
assumptions.

Twice: point to g x in conclusion.

Digression: Extracting Text from Proof

Rules for abstraction

Letl: A4
(Al: Agpype. M) > M
We have proved 7

Assume 4 (h)
(Ah:Apyp. M) b M

We have proved 7

| Consider an arbitrary = in A
(Az: Aser- M)r b M

We have 7, since x is arbitrary

Rules for application

(MygpoN), o M

In particular 7

- N
[;MP:);_& i'\lr:jq- [- M

We deduce 1

Rules for identifiers

h: © By h we have 7
T. v Using T we get T

Analogous (compact) rules are built for repeated abstractions and applications.

Extracting Text from Proof

Rules for introduction theorems

-N!

(Cintro M1... M™ N1 ... N“:)T > _N?!

So by definition of C we have 7
(Cintro MY ... M™), B> By definition of C we have 7

N

H 7 1,,,J. L
(Cintro M M™N) > By definition of C we have 7

Rules for elimination theorems

P

Therefore by definition of C, to prove 7 we have i cases:

Caseq:
Nt
(Celim M*... M" N*... N'P), »
Case;:
Nt
So we have T
= U . . P, by definition of C there is a confradiction
(Celim M7+ M"P); > S0 we can assert T
P
i=1 Therefore by definition of C to prove 7
(Celim M'... M™ N P), B> N

So we have T

Extracting Text from Proof. examples

Let U: Type
Let P,(): U— Prop
Let a: U
Assume (Pa) (h)and Vz:U. (Pz) D (Qz) (hg)
Applying ho with h we get (Qa)
We have proved (PfL) O (Va: U. (P :::) O (Q :::)) O (Q rL)
We have proved YU: T'ype. VP, (): U— Prop. Va: U. (Pa) D (Vz:U.(Pz) D (Qz)) D (Qa)

By definition of I to prove Vn:IM. 0 < n, we have two cases:
Caseq:
By definition of < we have 0 < 0
Caﬂﬂgl
Let m:
Assume 0 <m (h)
From A and the definition of <, we have 0 < (Sucm)
We have proved 0 < m D 0 < (Sucm)
We have proved Vm:IN.0 <m D0 < (Sucm)
So we have Vi .0 < n

Let A, B : Prop
Assume AV B (h)
Assume A (1)
From ¢ and the definifion of ¥V, we have BV A
-We have proved A D BV A
Assume B (j)
From j and the definition of V, we have BV A
-We have proved B D BV A
-We have h
Applying Velim we get BV A
We have proved AVEB DBV A
We have proved VA, B: Prop. AV B> BV A

Coq Selected Tactics

eapply term tries to unify current goal with the conclusion of given
term, turns uninstantiated variables in premises into existential
meta-variables. (apply forces all term’s variables be matched)

rewrite term and rewrite <- term rewrites equality shown by term
(<~ right-to-left) in the goal. term can be an assumption name.

destruct ident ,destructs” ident generating subgoals for each
constructor of inductive predicate which is the type of ident,

injection ident reduces equality between inductive objects to
equalities of their arguments.

[e]auto [with ident ... ident | with *] [using lemma ... lemma]
Prolog-like (depth-first) resolution procedure: reduces goal to an
atomic one (intros), tries tactics associated with goal head in turn
(lower cost tactics first; theorems used with apply); recurses to
subgoals. Either solves the goal completely or leaves intact. idents
name hint databases, * means uses all hints, lemmas are
additional hints. eauto uses eapply.

Hints provided by Papug
Tactics for 1° order classical logic.

- E.g. using (~A -> B) -> AV B on alternative.
Axioms for equality of predicates and functions.

Hints from the auto database.

- Cog provides lemmas registered with Hint that match the goal
head, with command Print Hint. Papug lets show and apply the
applicable lemmas.

Simplified use of assumption.
- A generic Use, using e.g. destruct or apply or injection
- Rewrite, Rewrite backwards for equalities
- Induction on H for inductive objects, Simplify (e.g. computation)

Unfolding definitions, marking obvious goals, proof by
contradiction.

Sources

o ., Proof by Pointing” Yves Bretot, Gilles Kahn,
Laurent Thery, 1994

» Extracting Text from Proof” Yann Coscoy,
Gilles Kahn, Laurent Thery

., The Coq Proof Assistant Reference Manual
Version 8.1” The Coq Development Team:
LogiCal Project

o ,Papuqg: a Coq assistant” Jakub Sakowicz and
Jacek Chrzaszcz, 2007

