

Coq as a Tutor in Formal Reasoning

Guiding through the proof

Students' Problems
● Confusing assumptions and conclusions.

– „Now we prove that f is injective. A function f is injective if for all x, y
we have f (x) = f (y) implies x = y. Let us consider arbitrary x, y such
that f (x) = f (y). Since this implies x = y, the function f is injective.”

● Quantifier problems.
– Translating „if there exist three elements in the set A, two of

them must be equal” into formal language.

● „Forgetting to unfold definition” problems.
● Bad understanding of definitions.

– Show φ : P (N) → (P (N) → P (N)) given by φ(a)(b) = a ∩ b
is injective: “Let a and a' be subsets of N. Let us consider
φ(a) and show that it is an injective function.”

● Negating logical sentences.

Naive Type Theory better than „sets
everywhere”

● <a, a> = {{a}}? Not teaching how to encode things as sets
(implementation) not considered a problem.

● Basic types: Prop, empty, unit, bool, nat, and type
constructors: -> (function), + (sum), * (Cartesian product)

● Predicates Predicate T := T -> Prop.

– Sum, difference, intersection, inclusion of predicates.

● Functions: image, injectivity, surjectivity, etc.

– Problem with distinction of types and predicates=subsets.
● Checking properties limited to predicates no problem.
● Problem with equality for functions „defined” on predicates.

● Binary predicates Relation (A : Type) := A -> A -> Prop:
reflexivity, transitivity, symmetry, etc.

Elements of Coq
● Calculus of Inductive Constructions: a dependently typed

lambda-calculus with a structural recursion operator over
inductive types, plus global and local definitions.

● Vernacular: language of commands manipulating CIC,
generating inductive schemes etc.

● Inside Vernacular, language of tactics and tacticals to
interactively write proof scripts.

● Ltac: language for defining tactics.

● Sessions allow to use variables which are then generalized
„en bloc”.

● Arguments marked as implicit are (type-) inferred.

● Existential meta-variables for subterms to be instantiated later
in the proof (e.g. eapply ex_intro).

Naive Type Theory and Coq

● Only four axioms have to be added: excluded middle,
extensionality of predicate equality, extensionality of
functional equality and the principle of description.
– There exists a function corresponding to a functional

relation.

● „IN” is defined as application, the „universe” is an
implicit argument.
– Sets are subsets of some type.

● Notations, e.g.
– Notation "A 'n' B" := (Intersection A B) (at level 11).

– Notation "A 'c' B" := (Subset A B) (at level 100).

CoqIde + Papug
● CoqIde allows to work

with multiple files,
● marks and protects

processed fragment of
the script,

● separate windows for
proof state and for
inspection/search results,

● menus with inspection
commands, tactics and
script command
templates.

● Papuq adds a help
window proposing
simple actions,

● lets inspect the lemmas
it proposed to apply,

● extends the context
menu of CoqIde
showing most
worthwhile actions first,

● „wizard” automation
tries out several tactics.

C
oqIde +

 P
apug: exam

ple

Digression: Proof-by-Pointing
● Not present (yet) in CoqIde, but present in earlier

Coq interfaces (IDEs): CtCoq (mid-nineties) and
Pcoq (2003).

● Similar to the idea of context menu present in
CoqIde, performs multiple actions from a single
mouse interaction.

● Already proved theorems should be accessible
similarly to assumptions.

● Drag-and-drop: e.g. drag equality to the subterm to
rewrite (match the terms and generate subgoals for
assumptions of the equality).

● Point-and-shoot: while pointing, select the tactic to
apply to the subterm after it is brought to the surface.

P
roof-by-P

ointing

R
ules descend recursively to the position

pointed by m
ouse.

type-specific
induction scheme:

Proof-by-Pointing: 5-click example

● Goal (p a \/ q b) /\ (forall x, p x -> q x) -> (exists
x, q x).

● Point to p a in conclusion.
– Two subgoals with p a resp. q b, and forall x, p x -> q

x in assumptions, the one with p a selected.

● Point to p x from forall x, p x -> q x in
assumptions.
– p x is automatically proved, and thus q a is added to

assumptions.

● Twice: point to q x in conclusion.

Digression: Extracting Text from Proof

Analogous (compact) rules are built for repeated abstractions and applications.

Extracting Text from Proof

Extracting Text from Proof: examples

Coq Selected Tactics
● eapply term tries to unify current goal with the conclusion of given

term, turns uninstantiated variables in premises into existential
meta-variables. (apply forces all term's variables be matched)

● rewrite term and rewrite <- term rewrites equality shown by term
(<- right-to-left) in the goal. term can be an assumption name.

● destruct ident „destructs” ident generating subgoals for each
constructor of inductive predicate which is the type of ident,

● injection ident reduces equality between inductive objects to
equalities of their arguments.

● [e]auto [with ident ... ident | with *] [using lemma ... lemma]
Prolog-like (depth-first) resolution procedure: reduces goal to an
atomic one (intros), tries tactics associated with goal head in turn
(lower cost tactics first; theorems used with apply); recurses to
subgoals. Either solves the goal completely or leaves intact. idents
name hint databases, * means uses all hints, lemmas are
additional hints. eauto uses eapply.

Hints provided by Papug
● Tactics for 1st order classical logic.

– E.g. using (~A -> B) -> A \/ B on alternative.
● Axioms for equality of predicates and functions.

● Hints from the auto database.

– Coq provides lemmas registered with Hint that match the goal
head, with command Print Hint. Papug lets show and apply the
applicable lemmas.

● Simplified use of assumption.

– A generic Use, using e.g. destruct or apply or injection

– Rewrite, Rewrite backwards for equalities

– Induction on H for inductive objects, Simplify (e.g. computation)
● Unfolding definitions, marking obvious goals, proof by

contradiction.

Sources
● „Proof by Pointing” Yves Bretot, Gilles Kahn,

Laurent Thery, 1994
● „Extracting Text from Proof” Yann Coscoy,

Gilles Kahn, Laurent Thery
● „The Coq Proof Assistant Reference Manual

Version 8.1” The Coq Development Team:
LogiCal Project

● „Papuq: a Coq assistant” Jakub Sakowicz and
Jacek Chrząszcz, 2007

