
  

Artificial General Intelligence

„General intelligence doesn't comprise one single, 
brilliant knock-out invention or design feature; 

instead, it emerges from the synergetic integration 
of a number of essential fundamental 

components.” (Peter Voss)



  

Artificial General Intelligence
„Of all the people working in the field called 'AI',

80% don't believe in the concept of General 
Intelligence (but instead, in a large collection 

of specific skills and knowledge)
Of those that do, 80% don't believe that 

artificial, human-level intelligence is possible - 
either ever, or for a long, long time

Of those that do, 80% work on domain-specific 
AI projects for commercial or academic-

political reasons (results are more immediate)
Of those left, 80% have a poor conceptual 

framework...” (half-seriously, Peter Voss)



  

Artificial General Intelligence

„Only a small community has concentrated on 
general intelligence. No one has tried to make a 

thinking machine. The bottom line is that we really 
haven't progressed too far toward a truly intelligent 
machine. We have collections of dumb specialists 

in small domains; the true majesty of general 
intelligence still awaits our attack. We have got to 

get back to the deepest questions of AI and 
general intelligence and quit wasting time on little 

projects that don't contribute to the main goal.” 
(Marvin Minsky, 2000)



  

General Intelligence definitions

● „the ability to solve complex goals in complex 
environments” (Ben Goertzel)

● „the capability to adapt to the environment and 
to work with insufficient knowledge and 
resources” (Pei Wang)

● „the ability to acquire (and adapt) the knowledge 
and skills required for achieving a wide range of 
goals in a variety of domains”, „a property of an 
entity that engages in two way interaction with 
an external environment” (Peter Voss)



  

Universal Algorithmic Agent AIXI

● Parameter-free theory of universal Artificial 
Intelligence based on ideas from decision theory 
(known priors) and Solomonoff's universal 
induction (unknown priors).

● Strong arguments that the AIXI model is the 
most intelligent unbiased agent possible (but  it 
is uncomputable).

● AIXItl is more intelligent than any time t and 
space l bounded agent. Its time complexity is 
t*2^l.



  

AIXI

● replace the unknown environmental distribution 
μ in Bellman equations by suitably generalized 
Solomonoff distribution ξ (state space is the 
space of complete histories); AIXI=AIξ

● (Bellman equations are solved iteratively by 
integrating current solution wrt. env. distribution)



  

Chronological Turing Machines
● Each (agent, environment) pair (p, q) produces a 

unique I/O sequence y1 x1 y2 x2... xi = x'i ri, 
where ri is the reward

● but q is unknown or stochastic, known to agent 
by distribution μ(q)



  

AIXI

Define universal prior:



  

SNePS
● Integrates:

– intensional relevance logics for commonsense 
reasoning

– frame-based system (feature-structure subtyping)

– semantic network: frame slots are labeled directed 
arcs (recursive path constructors)

● Designed to support natural language 
competent agents

● The „domain of discourse” is the domain of all 
mental entities of the agent

● Propositional assertional: only nodes have 
semantics (arcs don't denote propositions)



  

SNePS

proposition-denoting terms may 
be arguments of other terms 
without leaving first order logic

Monotonic Logic: belief revision 
(removing a contradiction) must 
retract some hypotheses and all 
beliefs supported by them.
(But retracted facts can be 
reconsidered when new knowledge 
arrives.)



  

SNePS

● Not interested in representing the „meaning”, rather the 
changes to Cassie's mind that result from her understanding.

● Every SNePS term denotes a mental entity. Even 
„variable nodes” have compositional semantics.

● Proposition nodes have assertional status, rule 
nodes can be used for inference, act nodes can be 
performed, individual (or thing) nodes are „the 
rest”.



  

Cassie, a SNePS Agent

nodes with ! are asserted



  

SNePS Syntax
● Nodes, relations (arcs), case frames (feature-

structure-like types for atomic nodes)
● user can specify any case frames for atomic nodes
● Relation: <name, type, adjust, limit>

– name: symbol identifying relation (given on arcs)

– type: class of nodes pointed by the arc

– adjust: expand, reduce, none, for wire-based inference

– limit: minimal size of a cable containing this relation

● examples:



  

SNePS Inference

● Wire-based inference (reduction inference): 
introducing a node with a subset (or superset) of 
arcs of an existing node

● Path-based inference: (perhaps undirected) 
path from m1 to m2 implies a proposition m3 
with all m1's arcs plus arc to m2

● Node-based inference: uses nodes 
representing FOL formulas

● Subsumption inference: introduces an 
instantation for a variable node, which connects 
to nodes subsumed by variable node neighbors



  

SNePS Logic
● andor(i, j){P1, ..., Pn}: at least i and at most j of Pk 

are true; e.g. andor(1, 1) is a disjoint alternative
– all(x)(andor(1, 3){animal(x), vegetable(x), mineral(x)})

● thresh(i, j){P1, ..., Pn}: fewer than i or more than j of 
Pk are true
– all(x)(thresh(1, 2){human(x), featherles-biped(x), rational-

animal(x)})

● {P1, ..., Pn} v=> {Q1, ..., Qm} (or-entailment): for 
every i, j, Pi => Qj (people don't use or-introduction)

– {in(Hilda, Boston), in(Cathy, Las-Vegas)} v=> {in(Eve, 
Providence)}

● {P1, ..., Pn} &=> {Q1, ..., Qm} := P1&...&Pn => Q1&...&Qn



  

SNePS Logic
● Unique variable binding rule: universal instantiation 

can't replace two variables by the same term in one 
formula.

● Set arguments:
– Marry, Sue and Sally are sisters.

● Higher-order user language: e.g. Transitive(bigger)

– bigger (elephant, lion) := Holds (bigger, elephant, lion)

– all(p)(Believes(Bob, p) => p). (proposition denoting terms)

● nexists(i, j, k)(x)({P1(x), ..., Pn(x)} : {Q(x)}): k 
individuals satisfy P1&...&Pn and at least i, at most j, 
also satisfy Q.
– „At least two members of the committee are women.” 

nexists(2,_,4)(x)({Member(x)} : {Woman(x)})



  

SNePS Logic
● Contexts are sets of assumptions. Assertions only 

hold in default context (change between contexts).
● Belief revision: if system detects a contradiction, it 

can ask the user if to keep it or change assumptions.
– When retracting a hypothesis, the system retracts assertions 

that no longer hold.

● SNePS can infer relevant implications, handle 
recursive definitions, etc.

● SNePS performs bidirectional inference: forward and 
backward chaining.

● Relevance: P => Q means „if I believe P, I'm justified 
to believe Q” („I will believe Q when the rule fires”)
– P => Q is a function from propositions to propositions



  

Cassie, GLAIR and SNePS 
Metacognition

● acting susbsystem:
– acts that affect what an agent believes

– acts that specify knowledge-contingent acts lack-of-
knowledge acts

– policies that serve as “daemons”, triggering acts when 
certain propositions are believed or wondered about

● a policy: a rule that connects propositions and acts
● action: act-valued function symbol
● policy-forming function symbols:

– ifdo(p, a): to determine whether p, do a

– whendo(p, a), wheneverdo(p, a): when(ever) p, perform a

Grounded Layered 
Architecture with 

Integrated Reasoning



  

SNePS Cassie
● external acts either sense or affect the outside world
● mental acts:

– believe(p): assert p and do forward inference (and some 
belief revision); disbelieve(p) – just unassert p

– adopt(p), unadopt(p) – whether to follow policy p

● control acts:
– achieve(p): (when p unasserted) infer plans (instances of 

GoalPlan(p,x)) to bring about p, perform do-one on them

– prdo-one performs an action selected by roulette-wheel

– withall(x, p(x), a(x), [d]) finds entities e such that p(e) is 
believed, and performs a on them; if no such e is found, d 
is performed.

– snif (switch on condition), sniterate (switch and loop)



  

SNePS Metacognition
● „Self” is a term like other agents' terms
● Perceptuo-Motor Layer models embodiedness: a source of 

beliefs about what an agent is doing and percepts

● deictic registers: I, YOU, NOW, ...
● modality registers: current acts and percepts in each 

effector and affector; used to advance deictic regs
● retracted (unasserted) belief is kept in the system 

and can still be reasoned about
● metabeliefs can represent credibility (uncertainty 

etc.); the least credible facts are retracted on revision
● dependency-directed reconsideration, e.g. when we 

learn that a source is/was not credible



  

Cognitive Architectures
Soar and ACT-R

● Available for download
● Heavily documented
● With long history and many applications
● Based on cognitive psychology insights
● Related psychological research
● cognitive architecture = a theory about the fixed 

computational structure of cognition



  

Soar

● Descendant of General Problem Solver
● by Allen Newell
● ...all problem solving activity is formulated 

as the selection and application of operators 
to a state, to achieve some goal.

● Since 1982, initially in Lisp then rewritten to C 
and Tcl.

● Basic knowledge: state and operators
● Control knowledge: heuristics
● Knowledge can be learned



  

Soar knowledge and action

● production rules: conditions --> actions. Conditions test 
for patterns in working memory.

● productions = associative long term memory

● cognitive loop of alternating operator selection and 
application both done by productions

● can have a stack contexts (problem spaces) active at 
once

● Impasse: no operator applies in the active context (no-
change) or no unique one can be determined (tie).

● Knowledge: operator proposal, comparison, selection, 
application; state elaboration



  

Soar knowledge and action
● States are objects with feature structures (attribute-

value matrices) (working memory = set of objects)

● All productions that match WM, apply in parallel, 
rewriting the working memory

● Goals are desirable patterns in states

● Rules vote for changes by preferences which are stored 
in preference memory

● Elaboration rules monotonically add facts to WM, are 
backtracked when no longer supported

● Actions (operator application rules) are persistent

● Decision cycle: apply elaboration rules until fixpoint, 
select operator based on preference memory (if not 
possible: impasse), apply action rules



  



  



  

Soar learning
● When in impasse, record it in WM, create a new 

context, which generates a chunk: new production. 
(This mechanism is recursive.)

● States in new context are called substates.

● The RHS is the result of new context. The LHS are things 
that have been tested by the linked chain of rule firings 
leading to the result, the set of things that exist in the 
higher context (“pre-impasse”) on which the result 
depends.

● Problems:
– overgeneralization: e.g. if result dependent on search 

control knowledge (solution: request condition explicitly)

– overspecialization: e.g. chunk variable identifies objects 
realized by the same element in a particular impass



  

Soar Goal Dependency Set

● to solve symbol-level quirks of Soar 
„psychology”: problems
– logical inconsistency in symbol manipulations,

– non-contemporaneous constraints in chunks,

– race conditions in rule firings and in the decision 
process,

– contention between original task knowledge and 
learned knowledge

● follow from inconsistency between persistent 
WM elements and their context (all superstates 
of a state)

goal is a synonym for state or substate



  

Soar Goal Dependency Set

● three primary types of persistence (in Soar 7):
– i-support: feature exists in memory only as long as its 

creator production remains instantiated; instantiation 
is retracted when one of production conditions no 
longer matches

– o-support: crated by action of operator, remains until 
explicitly removed

– c-support: (removed in Soar 8) makes an operator 
persistent (only retracted explicitly)

● solution inspired by chunking: when o-supported 
WME is created, the superstate dependencies of 
that feature are added to GDS of that state



  

Soar Goal Dependency Set

● Elements added to GDS for an o-supported 
feature:
– elements (WMEs) in a superstate on which it 

depends

– WMEs in a superstate supporting i-supported 
features on which it depends

● In Soar 8, any change to the current 
dependency set will cause the retraction of all 
subgoal structure.

● Remembering facts should be stored in the top state, 
non-monotonic reasoning about context should be done 
locally (will be retracted on relevant context change).



  

ACT-R
Adaptive Control of Thought-Rational
● parallel processing local to modules, sequential 

processing by productions
● modules are interfaced by buffers, productions 

match and change buffer contents
● a buffer can contain only one chunk (object = a 

named feature structure) at a time
● subsymbolic processes guide the selection of 

rules to fire
● the goal buffer keeps state of solving a problem,

● retrieval buffer holds information retrieved from long-
term declarative memory, etc.



  



  

ACT-R

● A module can access other buffers than its own, 
but usually doesn't

● Slots in a chunk are usually filled by other chunks
● Chunks are typed (with inheritance subtyping)
● Chunks are called declarative, productions – 

procedural
● Productions specify a set of conditions to match 

against buffers and the states of the modules 
(LHS) and a set of actions that will then modify the 
contents of the buffers and make requests to the 
modules.



  

ACT-R
● conflict resolution: from the productions that match, the one 

with highest utility is chosen (can be probabilistically); utility 
from Q-learning

● production compilation: combination of productions that fire 
in sequence

● declarative module: adding a chunk when there is an 
equivalent chunk merges them

● retrieval either deterministic or based on activation:
– A = B + S + P + e;

● B: base-level activation reflects the recency and frequency of use of 
the chunk

● S: spreading activation: weighed sum of activations of buffer-residing 
chunks which contain this chunk

● P: partial matching – the degree to which the chunk matches the 
specification requested

● e: noise – specific to chunk, and transient for curr. activation



  

OSCAR
● individual acts are rational only in context of plans
● epistemic cognition – what to believe, practical 

cognition – what to do
● OSCAR expresses most of the latter in terms of the 

former: practical cognition evaluates the world and 
then poses queries concerning how to make it better

● epistemic reasoning vs. quick and inflexible modules
● epistemic query can span plans for empirical 

investigation
● reflexive cognition – applying practical cognition to 

reasoning e.g. by altering the priority of cognitive 
tasks waiting to be performed



  



  

OSCAR Epistemic Reasoning

● backwards from epistemic interests to epistemic 
interests and forward from beliefs to beliefs 
(„natural deduction” theorem prover)

● reductio at absurdum is invalid for defeasible 
argumentation

● defeasible perception, generalization, time 
projection, planning

● Rebutting defeaters attack the conclusion of the 
inference. Undercutting defeaters attack the 
connection between the premise and the 
conclusion.



  

OSCAR Epistemic Reasoning
● inference graph records constructed arguments
● status-assignment

– if a defeating argument for an inference in A is assigned 
“undefeated”, A is assigned “defeated”;

– if all defeating arguments for inferences in A are assigned 
“defeated”, A is assigned “undefeated”.

● an argument is undefeated iff it is “undefeated” in 
every (maximal) status-assignment; a belief is 
justified iff it is supported by an undefeated argument 
(rel. to current epistemological state)

● Warranted conclusions are undefeated relative to the set of all 
possible arguments given the current inputs. Well-behaved 
reasoner for each (un)warranted proposition P will eventually 
reach a stage P stays (un)justified thereafter.



  

OSCAR Epistemic Reason Schemas

● PERCEPTION: Having a percept at time t with content P is a 
defeasible reason to believe P-at-t.

● PERCEPTUAL-RELIABILITY: “R is true and having a percept 
with content P is not a reliable indicator of P’s being true when R 
is true” is an undercutting defeater for PERCEPTION.

● TEMPORAL-PROJECTION: “P-at-t” is a defeasible reason for “P-
at-(t+∆t)”, the strength of the reason being a monotonic 
decreasing function of ∆t.

● STATISTICAL-SYLLOGISM: “c is a B & prob(A/B) is high” is a 
defeasible reason for “c is an A”.

● CAUSAL-IMPLICATION: If t* > t, “A-at-t and P-at-t and (A when P 
is causally-sufficient for Q)” is a defeasible reason for “Q-at-t*”.

● CAUSAL-UNDERCUTTER – causal knowledge precedences 
temporal projection.



  



  

OSCAR Practical Cognition
● goal selection, plan-construction, plan-selection, plan-

execution; goals have values and plans have expected values

● “performing action A under circumstances C is 
causally sufficient for achieving goal G”: (A/C)  G⇒

● impossible to rule out threats before merging plans; 
whether a plan will achieve a goal is a factual (epistemic) matter

● defeasible reason-schemas for reasoning about plans 

(each ends with defeasibly inferring that the plan achieves the goal):
– GOAL-REGRESSION: for G-at-t, adopt (A/C)  G. Then ⇒

adopt C-at-t*. Then, construct a plan by (1) adding action  
A-at-t*, (2) adding a constraint (t* < t)

– SPLIT-CONJUNCTIVE-GOAL: for (G1-at-t1 & G 2-at-t2), 
adopt G1-at-t1 and G2-at-t2 and merge inferred plans



  

Instead of maximizing we 
must satisfice — seek plans 
with positive expected values, 
and always maintain an 
interest in finding better plans.



  

Jadex: A BDI Reasoning Engine

● Agent acts towards some of the world states it 
desires to be true and believes to be possible.

● Beliefs are objects – named facts or named sets 
of facts – stored in beliefbase which monitors 
belief state conditions and can lead to actions.

● Capabilities: reusable modules of beliefs, goals, 
plans and events encapsulating a certain 
functionality.

● Agents defined in XML with procedural parts of 
plans in Java

● run on top of multi-agent middleware like Jade



  

Jadex: A BDI Reasoning Engine



  

assign a capability by 
ongoing conversation or by 

matching a pattern

select plans matching the 
event, choose subset of 

plans to realize



  

Jadex (Blocksworld)



  

The explicit 
specification and 
strong typing of 
beliefs, goals, 
etc. facilitates 
consistency 
checks of XML 
Agent Definition 
Files to detect 
errors (e.g. 
spelling mistakes) 
as early as 
possible.



  

Jadex: Goal Deliberation
● BDI system ensures that constraints, set by an agent developer, are 

respected and only consistent goal sets are pursued at any one time.

● Different goal types:
– perform: act disregarding of action result,

– achieve: defines desired world state only,

– query: like „achieve” wrt. internal state,

– maintain: monitor state and re-establish it when needed.

● Goal states: active,
– option: explicitly not pursued, e.g. conflicts with some active goal

– suspended: its context is invalid

● Other goal properties:
– creation condition, context condition, drop condition 

(when a goal instance is removed)



  

Jadex: Goal Deliberation



  

Jadex: Goal Deliberation
● cardinalities: how many goals of given type at 

once
● inhibition links: between goal types and between 

goal instances
● deliberation initiated by:

– a new goal adopted, or a context of a suspended 
goal valid again ==> deliberate new option

– a goal becomes inactive (suspended, finished or 
dropped) ==> which inhibited options can be 
reactivated

● consider a local subset of the agent’s goals, 
derived from the goal that triggered deliberation, 
plus relevant (e.g. linked) others



  

old 
interpre

ter

new 
interpreter 
deliberates 
only when 
it's needed



  

Jadex: Goal Deliberation
● Limitations:

– The strategy does only consider bilateral relationships: e.g. not 
possible that two goals together are more important than another 
single goal.

– Conflicts between subgoals cannot always be resolved 
optimally, e.g. a conflict between subgoals cannot be resolved by 
replacing one of the subgoals with another non-conflicting subgoal.

– Conflicts at plan level are not considered, which means that 
inconsistencies between plans e.g. because of access to 
conflicting resources are not detected.

– Positive interactions between goals are not considered, which 
means that the strategy cannot identify and exploit potentially 
common subgoals.

● The reason for choosing inhibition links instead of using utility values 
is that it allows to adopt a local view and frees the agent developer 
from establishing a global ordering between all goals.



  

Jadex: Planning BDI Agents
● „Theory of Practical Reasoning” (BDI) to 

overcome the poor performance of propositional 
planners by timely reactivity and goal deliberation

● combine their strength with flexible means-ends 
reasoning of deliberative planners:
– The planner applied to produce long term plans and to 

handle single parts to a reactive BDI subsystem:
● serious performance concerns especially in dynamic 

environments where continuous changes force the planner to 
re-plan (algorithms have been devised for one shot planning)

– Or: augment the BDI system with a relatively simple 
planner that is invoked from the BDI controller and 
used for the purpose of creating short-term plans that 
need a proof of correctness.



  

Jadex Planner
● The planner reasons about states of the 

environment and agent’s own inner mental states
– environment: objects with state-dependent attributes

– mental states: a stack of goals (measures how far a 
goal state is from a given state)

● actions are transition functions between states
– a triple: <precondition; change of goals; change in objects>

● agent desires, in respect to possible solutions, 
assumed not to change within the short scope of 
operational planning

● Planning assumed to be a higher cognitive activity than 
reacting and controlling – granted more computational 
resources. But Jadex planner is at a level below BDI.



  

With an advanced BDI 
system, one is equipped 
with reasoning and a 
strong conceptual 
framework, so there is 
no need to duplicate the
functionality of both.

actions current state

desires

inverse utility estimate

precondition, change of goals, change of objects



  

Jadex Planner

● Under tight timing constraints, state-based 
planners augmented with domain specific 
knowledge are superior to partial-order planners.

● State contains reference to parent state allowing 
for temporal conditions.

● The domain specific knowledge used to guide 
the planner is hidden in the action applicability 
predicates, in the goal distance functions, and in 
the inverse utility functions.

● reasons about the goal stack at each step



  

Jadex Planner-BDI Integration

● Goals are used by the BDI reasoner to chose 
among plan schemata and create the action 
structure on the agenda of intentions.

● The intentional structure is given by current plan 
instances.

● Reactive subsystem, triggered by belief changes 
or a percept, generates new goals for the 
reasoner.

● At the meta-level goal deliberation analyzes 
dependencies and modifies the intentional 
structure accordingly to agent’s preferences.



  

Jadex Planner-BDI Integration



  

Jadex Planner-BDI Integration

● Metric for state-to-goal distance can be derived 
automatically from goal schema (but better hand 
coded with domain knowledge).

● Created plans go directly into the intentions 
structure (with their BDI goal as parent node) 
and are not stored in a plan library. Because plans 
are created at low-level, their parameters are tightly bound 
and they are applicable only to a particular situation. 

● Monitoring correct plan execution: component 
similar to the planner is used to evaluate the 
remainder in a simulated environment.



  

Jadex Planner-BDI Integration

● Planning can fail because:
– No way to improve the agent’s situation. The BDI 

reasoner may retry finding a plan after some time.

– No correct plan satisfying all goals and subgoals. The 
partial plan may be executed with the hope the future 
planning, starting from a better situation, may find a 
complete plan.

– Timeout. This case can be handled as the previous one.

– A number of correct plan instances is returned in 
successive trials but they fail to reach the goal. In this 
case the domain description is too abstract and lacks 
the knowledge needed by the planner to recognize 
specific reasons for failure.



  

TouringMachines Hybrid Architecture
● a resource-bounded, goal-directed agent to 

react promptly to unexpected changes in its 
environment;

● at the same time, to reason predictively about 
potential conflicts by constructing and projecting 
theories which hypothesise other agents’ goals 
and intentions

● developed to understand the role of different 
functional capabilities in constraining an agent’s 
behaviour under varying environmental 
conditions, an experimental testbed comprising 
a simulated multi-agent world



  

TouringMachines Hybrid Architecture

● Agents following a different route from some 
starting to some goal location within certain time 
bounds and/or spatial constraints. Agent starts 
with some geographical knowledge of the world 
(e.g. locations of paths and path intersections), 
but no prior knowledge of other agents’ locations 
or goals or static obstacles.

● Three-layered: each connecting perception to action

– reactive: fast capabilities for unplanned or unmodelled

– planning: forward route planning

– modelling: e.g. hypothetical reasoning, attention



  



  

TouringMachines control framework



  

TouringMachines Reactive Layer

● situation-action rules for avoiding obstacles, 
walls, kerbs or other agents, and for preventing 
agent from straying over path lane markings

● agent can be made reactive or inert by choosing 
thresholds for and strength of its reactions

● rules stimulated solely by input from sensors; 
actions sent to effectors if approved by control 
framework

● actions are not combined like in „boids”, the one 
for the closest object is selected

● when rule fires, modelling layer is notified



  



  

TouringMachines Planning Layer
● hierarchical, partial planner interleaving plan 

formation and execution, and defer committing to 
specific subplan execution methods or temporal orderings of subplans 

until absolutely necessary
● embedded: its operation can regularly be pre-

empted and its state suspended for subsequent use
● template plans or schemata: procedural structures

–  consisting of: a body,

–  a set of preconditions,

–  a set of applicability conditions (e.g. temporal ordering constraints),

–  a set of postconditions,

–  cost in terms of computational resources.



  

TouringMachines Planning Layer
Primitive schemata can either 
submit physical actions to be 
effected or perform various 
arithmetic or geometric 
calculations. Composite schemata 
trigger library searches and 
subplan expansion.

The planner uses a fixed, 
combined earliest-first 
depth-first search strategy 
for constructing single-
agent plans.



  

TouringMachines Modelling Layer
● predictions allow to detect conflicting goals and 

accomodate by taking correcting action
● deliberation steps are resource (time) bounded
● <C, B, D, I>(t) models an entity’s behaviour:

– C is the entity’s Configuration:
● (x,y)-location, speed, acceleration, orientation,
● signalled communications;

– B: Beliefs, D: prioritised goals or Desires; I: plan or 
Intention structure.

● desires can be achievable or homeostatic
● reasoning is about detecting discrepancies between 

actual and predicted (them) / desired (me)



  

sensitivity to environmental 
change controlled by 
discrepancy thresholds to 
trigger model revision

only intentions (plans) of 
other agents are revised; 
beliefs and goals 
assumed identical 
(modulo parameters)



  

 TouringWorld Experimental Testbed

● realized by discrete event simulator by action 
scheduling

● various agent- and environment-level parameters:
– distribution of computational resources within control 

layers, amount of forward planning, sensitivity of reactive 
rules, frequency of sensing or modeling

– sensing horizon, initial goal deadline, # of other fast-
moving agents, ratio of CPU to simulated world time

● behavioral ecology: design-behavior-environment 
tradeoffs

● the fourth layer: self-tuning (classify operational 
contexts)



  



  



  

Cyc

● Commonsense knowledge is essential to 
understanding...

● and to provide a specific workable context for 
each situation.

● Prime the „knowledge pump” with the millions of 
everyday terms, concepts, facts, and rules of 
thumb that comprise human consensus reality.

● Represented in a form of second order predicate 
calculus.



  

Cyc lessons

● Holding probabilities for each sentence had bad 
consequences. To decide whether to believe 
something, CYC gathers up all the pro and con 
arguments it can think of, examines them, and 
then reaches a conclusion.

● Expressive language (EL) for knowledge entry 
and heuristic language (HL) for knowledge 
processing

● Only contexts, or microtheories, are hold 
consistent (coarse-grained paraconsistency)



  

Cyc architecture
● Knowledge Base

● Worlds: images of Cyc state

● Inference Engine

● User Interfaces

● Transcripts and the Transcript Server

– synchronizing multiple Cyc installations
● Partitions

– knowledge exchange
● Semantic Knowledge Source Integration (SKSI) Facility

– communication with structured information sources, 
„outsourcing” knowledge

● Application Programming Interfaces (APIs)



  

Cyc architecture



  



  

Cyc Some ideas for inference
● Inference engine is composed of approximately a thousand 

specialized reasoners, called inference modules, handling from 
subsumption to transitivity.

● An inference harness breaks a problem down into sub-problems 
and selects among the modules that may apply to each and 
chooses follow-up approaches.

● The behavior of the inference harness is defined by a set of 
manually coded heuristics.

● Strategist keeps track of resource constraints (e.g. memory or 
time)

● Tactician orders proof actions, e.g.:

– Balanced Tactician selects backward inference tactics in best-
first manner, where tactics are scored by: tactic type, 
productivity (the more subgoals the worse), completeness / 
preference (estimating if leads to all true answers)

● Successful experiments in learning tacticians by reinforcement.



  

Cyc logic (representation language)

● Has all logical connectives of FOPC.
● 5 truth values: monotonically false, default false, 

unknown, default true, and monotonically true.
● Default assertions can be overriden by entered 

or inferred knowledge.
● Argumentation: different proofs are compared, 

and one is selected basing on heuristics, e.g. 
that monotonic values are stronger than default.

● Justification chains of selected proofs are kept.



  

Cyc logic (representation language)
● Microtheories (Mt) e.g. NormalPhysicalConditionsMt.

– provide contexts of reference
– form a hierarchy (actually, a directed graph); 

an assertion true in a Mt must be consistent 
with all Mts above it

– Cyc currently contains about 4.6 million 
assertions in 23,627 microtheories

● Mechanisms for learning:

– induction: rule production by generalization
– abduction is done as deduction-in-reverse: 

generates hypotheses from unfinished proofs 
of known facts



  



  

Cyc Learning
● Gathering facts via Web Search:

– Generating strings for web searches:
● (occupation Lenat ?WHAT) ==> [“Lenat has been a 

__”; “Doug Lenat has been a __”; “Lenat is a __”]
– Identifying and interpreting a match

– Eliminating bad interpretations: verifying against KB

– Verifying the correctness by web-searching for nat-lang 
representation of constructed assertion

● Abduction: The candidate sentences suggested are 
checked (via inference and specialized well-formedness-
checking modules) for consistency with the current 
knowledge in the KB. They are then evaluated for inferential 
productivity.

● Rule Induction: now can only help human experts, making 
their task 3 x faster.



  

Cyc Learning

● Where to place new knowledge in an existing ontology?

● Research showed statistical classification (Naive Bayes and 
SVMs) have high (98% for SVMs) precision and recall 
success placing whole axioms in Mt hierarchy (but for a 
selected well-behaved fragment of the hierarchy)

● A bit similar to classification of text documents into a 
hierarchy, but: sparse data (e.g. (isa Cat Mammal) instead 
of a whole document) into deep hierarchy



  

Principles Underlying Polyscheme
● Procedural Substrate. Most high-order 

reasoning and problem solving algorithms can 
be implemented using the same set of basic 
computational operation: forward inference, 
subgoaling, grounding, representing alternate 
worlds and identity matching.

● Multiple representations. Each basic operation 
can be implemented using multiple 
representations.

● Representational Substrate. Cognition about a 
basic set of relations (involving times, space, 
events, identity, causality and belief).



  

Polyscheme Architectural Summary

● Specialists: modules based on a particular 
representation. Each executes each of the basic 
operations of the procedural substrate. 

● Integrative focus of cognitive attention. All 
the specialists focus on the same aspect of the 
world simultaneously.

● Attention control implements algorithms. For 
example, the policy, when uncertain about A, 
focus on the world where A and focus on the 
world where not-A implements backtracking 
search.



  

Polyscheme Integration

● Integration of "high-level" and "low-level" 
cognition, perception and action. All high-
level reasoning and planning algorithms are 
implemented by a focus of attention that 
integrates all lower-level representations and 
perceptual and motor processes.

● Integration of multiple higher-level cognitive 
processes with each other. Very different 
reasoning algorithms, from truth-maintenance, 
backtracking search, stochastic simulation and 
logic theorem proving are each implemented 
using the same focus of attention.



  

Polyscheme Unique Features

● Higher-level basic services than most cognitive architectures: 
reasoning about events, time, space, causality, identity, desire and 
beliefs (if the cognitive substrate principle is correct, is sufficient for 
reasoning in most domains)

● No homunculus: choose actions as the result of reasoning and 
problem-solving instead of a priori modeler decisions.

● Only one model: accounts of reasoning multiple tasks as part of the 
same model so that integration is an unavoidable and constant process 
and so that it is more difficult to gloss over hard problems.

● Multiple representations. Polyscheme does not commit users to a 
single representational formalism.

● Language is an important focus of Polyscheme modeling, which has 
historically (and with a few exceptions) not been the case in most other 
modeling communities.



  

Grammatical Processing using Physical Inference

● construct a cognitive model of syntactic parsing 
that uses only the mechanisms required for 
infant physical reasoning

● Category(e, MotionEvent), Agent(e, x), Origin(e, p1), 
Destination(e, p2), Occurs(e, t), Before(t, t2), Meets(t2, t3), 
PartOf(e, e2), Subcategory(Fly, MotionEvent)

● Physical and verbal event perception both have 
a linear order.

● Utterances are events.
● Physical and linguistic events both belong to 

categories, which exist in hierarchies.



  

Grammatical Processing using Physical Inference

● „the dog”: Category(e, CommonNounPhrase), Category(e1, 
Determiner), Occurs(e1,    t1), Category(e2,   CommonNoun), 
Occurs(e2,    t2), PartOf(e1,e), PartOf(e2,e), Meets(e1,e2)

● Category(verb, TransitiveVerb) + Occurs(verb, t-verb) ==> 
Exists(object) + Category(object, NounPhrase) + Occurs(object, 
t-object) + Before(t-verb, t-object)

● object identity: e.g. looking at sth another time
● event identity: e.g. sth falls from the shelf; there are marks 

of cat claws on the shelf; pushing event = cat walking event?

● object permanence: reasoning about sth not 
perceived

● cohesion principle, part inhibition, c-command: 
[The doctor [Mary] met at [[Bill]’s house]] likes herself. 



  

Grammatical Processing using Physical Inference



  

Adaptive AI (a2i2)

●General rather than domain-specific cognitive ability

●Acquired knowledge and skills, versus loaded 
databases and coded skills

●Bi-directional, real-time interaction, versus batch 
processing

●Adaptive attention (focus & selection), versus human 
pre-selected data

●Core support for dynamic patterns, versus static data

●Unsupervised and self-supervised, versus supervised 
learning



  

Adaptive AI (a2i2)

● Adaptive, self-organizing data structures, versus 
fixed neural nets or databases

● Contextual, grounded concepts, versus hard-coded, 
symbolic concepts

● Explicitly engineering functionality, versus evolving it

● Conceptual design, versus reverse-engineering

● General proof-of-concept, versus specific real 
applications development

● Animal level cognition, versus abstract thought, 
language, and formal logic.



  

Adaptive AI (a2i2)

● Pattern learning, matching, completion, and 
recall.

● Data accumulation and forgetting.
● Categorization and clustering.
● Pattern hierarchies and associations.
● Pattern priming and activation spreading. (helps 

at disambiguation)
● Action patterns. (feature extractors, actuators, 

meta-cognition)



  

Adaptive AI (a2i2)



  

Adaptive AI (a2i2)

● embodied systems (Brooks 1994),
● vector encoded representation (Churchland 

1995),
● adaptive self-organizing neural nets (esp. 

Growing Neural Gas, Fritzke 1995),
● unsupervised and self-supervised learning,
● perceptual learning (Goldstone 1998),
● fuzzy logic (Kosko 1997)
● lang = C#



  

Lazy Learning (a2i2)
● (Aha, 1997) A memory-based technique that 

postpones all the computation until an explicit 
request for a prediction is received. The 
examples considered relevant according to a 
distance measure are interpolated locally. 
Learning of:
– a family of local approximators

– parameters of the local approximator

– a metric to evaluate which examples are more 
relevant

– bandwidth which indicates the size of the region 
correctly modeled by local approximator family



  

Growing Neural Gas (a2i2)

● Grows a topological map by processing input 
one at a time
– select two nodes s (at ws) closest and t (at wt) 

second-closest to the input x

– error_s += |ws – x|, ws += ew*(x – ws)

– wn += en*(x – wn) for all n joined with s (neighbors)

– connect s and t with edge (or set edge age to 0)

– remove too old edges

– from time to time, add new node between largest 
error node u and its largest error neighbor v



  

Vector Encoded Representation 
(a2i2)

● Ideas from P. Churchland: functions of the brain 
are represented in multidimensional spaces, 
neural networks should therefore be treated as 
“geometrical objects”, and “the internal language 
of the brain is vectorial”,

● thinking is the changing of activation vectors by 
matrix multiplication and nonlinear 
transformations.

● In a2i2: all concepts are grounded; no high-level 
inference mechanisms; no genetic 
programming, scripts, or other direct symbolic 
representation.



  

Hierarchical Temporal Memory
● hierarchical in both time and space
● HTMs are similar to Bayesian Networks; differ by 

handling time, hierarchy, self-training, discovery of 
causes, action, attention.
– Discover causes in the world

– Infer causes of novel input

– Make predictions

– Direct behavior

● inputs are topologically arrayed and must be 
continuous in time; the input space is tiled

● hierarchical bottom-up Bayes-like net (internal nodes 
are called „causes”) by conditioning in time



  

Hierarchical Temporal Memory
● each node in a layer of a hierarchy learns causes from 

nearby nodes in the layer below

● each node has a fixed-size Bayes-like net whose variables 
represent sequences in input

● it quantisizes input and assigns a probability of occurring in 
each variable's sequence

● nodes pass quantization (clustering) info down the hierarchy; 
(input-output discriminant-like clustering, coalescing and 
expansion of time-based sequences)

● the nodes-tree structure is fixed

● belief propagation can enter cycles (high fan-in and fan-out of 
variables reduces reinforcement of false beliefs)

● each node dynamically selects believed sequence based on 
memory (mapping from spatial to temporal patterns)



  

Hierarchical Temporal Memory
● covert attention by switching on only some area
● attentional priming by setting a desired belief at the 

top of the hierarchy (directed search)
● predictions: node sequences generate distribution of 

expected patterns and pass it down as a prior
● each node has a single conditional probab. table
● fixed architecture allows for continuous change
● each variable is associated with one quantization 

point (so there is a fixed number of each input occurrences in 
learned sequences)

● cannot remember specific events (no one-instance 
learning) (but expected to be added and based on „emotions”)



  

Developmental Robotics

● No Monolithic Internal Models
– people minimise internal representations

– and have multiple internal representations not 
mutually consistemt

● No Monolithic Control (e.g. split brain patients)
● Not General Purpose (e.g. emotional content)
● Alternate Essences

– development, social interaction, physical interaction 
and integration



  

Developmental Robotics

● Developmental Organization
– A process in which the acuity of both sensory and 

motor systems are gradually increased significantly 
reduces the difficulty of the learning problem.

– The caregiver also acts to gradually increase the 
task complexity by structuring and controlling the 
complexity of the environment.

– Reusing structures and information gained from 
previously learned behaviors, allows to learn 
increasingly sophisticated behaviors.

– Development gives a structured decomposition 
(situated context of earlier behavior).



  

Cog 
learning to 

reach 
target with 

arm

Hand-programmed!



  

Requirements for Autonomous 
Mental Development

● Environmental openness: AMD must deal with 
unknown and uncontrolled environments.

● High-dimensional sensors: AMD must directly 
deal with continuous raw signals from high-
dimensional sensors (e.g., vision, audition and 
taction).

● Completeness in using sensory information: 
don't discard, at the program design stage, 
sensory information that may be useful for some 
future, unknown tasks.



  

Requirements for AMD
● Online processing:  At each time instant, what 

the machine will sense next depends on what 
the machine does now.

● Real-time speed:  The sensory/memory 
refreshing rate must be high enough (e.g., about 
15Hz for vision). AMD must handle learning from 
one instance of experience.

● Incremental processing:  Acquired skills must 
be used to assist in the acquisition of new skills, 
as a form of ``scaffolding.'' Each new 
observation must update the current complex 
representation and the raw sensory data must 
be discarded after it is used for updating.



  

Requirements for AMD

● Perform while learning: An AMD machine must 
perform while it ``builds'' itself "mentally.''

● Scale up to large memory: For large 
perceptual and cognitive tasks, an AMD 
machine must handle multimodal contexts, large 
long-term memory and generalization, and 
capabilities for increasing maturity, all in real 
time speed. 

● Mental architecture should be:
– observation driven, selective, rehearsable, self-ware, 

self-effecting, multi-level and developmental.



  

 T – attention  
selector
 R – learned possible 
actions (Incremental 
Hierarchical 
Discriminant 
Regression)
 V – action values 
(motivational system)
 L – context 
clusterization 
(prototypes)
 M – motor mapping 
(allows for rehearsal)
 D – delay module
 Si1, Si2, Si3 – 
internal sensors
 Ei1, Ei2 – internal 
effectors



  



  

Incremental Hierarchical Discirminant Regression

● IHDR automatically derives the most discriminant features 
subspaces in every node of the tree.

● One-instance learning is realized by either a new prototype 
(when sufficiently distinct), or a similar prototype.

● IHDR dynamically grows subtrees to adapt to the increased 
complexity.

● IHDR uses a data-driven coarse-to-fine search tree to 
contain the local minima problem.

● The long-term memory stored as tree structure and micro-
prototypes prevent catastrophic memory loss.

● Given a input vector l(t), the time complexity for IHDR to find 
a match and update the IHDR tree with n leaf nodes is O(d 
log(n)) where d is the constant dimension of l(t).

(in CompSci terms, a search tree)



  

(SAIL) IHDR Details

● clustering of output space provides labels for 
discriminant analysis (allows disregard input components 
irrelevant to output)

● each node of the tree clusters input and output 
(local-hierarchical probability distribution approximation; 
clusters represented by f.o. statistics – Gaussian mixture)

● Mahalanobis distance (Euclidean when little of samples) 
– which cluster to descend

● fully incremental: updated with every input vector 
which is then discarded

● Observation-driven Markov Decision Process (time 
invariants)



  

(SAIL) IHDR Details

A solid black cycle indicates a primitive prototype (context 
state) in one of the four leaf nodes. An arrow between two 

states indicates observed temporal transitions.



  

SAIL

● Supervised and reinforcement online learning: 
pressure detectors let the teacher push the robot 
in desired directions, „good – bad” buttons.

● With no teacher feedback, the robot acts from 
context-sensitive memory.

● Has learned real-time vision-guided navigation 
in complex indoor environment.



  

SAIL

Cognitive mapping M : S * X -> X' * A * Q
●S – state (context)
●X – sensory input (sensation)
●X' – primed sensation (prognostic)

prototype: a set of primed contexts
primed context: action a, expected 
sensation s, expected value Q(a, s)

probability of choosing action a in context s:



  

SAIL

● novelty n(t): error of prediction normalized wrt. 
speed of change

● combined reward:
● Q-learning update:

–

● prediction update:
–

● updates are backpropagated through a fixed-
length queue of recent contexts (Q-algorithm 
would update all contexts)



  

SAIL (and Dav)



  

SAIL Action Chaining



  

SAIL Action Chaining
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IDA’s Architecture



  

IDA’S Modules and Mechanisms 

● Perception—Copycat Architecture—Hofstadter 

● Action Selection—Behavior Net—Maes 

● Episodic Memory—Sparse Distributed Memory—Kanerva 

● Emotions—Pandemonium Theory—Jackson 

● Metacognition—Fuzzy Classifier Systems—Holland 

● Learning—Copycat Architecture, Reinforcement 

● Constraint Satisfaction—Linear Functional 

● Language Generation—Pandemonium Theory 

● Deliberation—Pandemonium Theory 

● ‘Consciousness’ —Pandemonium Theory



  

(IDA) Action Selection 
Paradigm of Mind 

● Best viewed as degreed rather than as Boolean 
● Aggregate rather than monolithic 
● Enabled by disparate mechanisms 
● Overriding task to produce the next action 
● Operates on sensations to create information 
● Reconstructs memories (prior information) 
● Is implementable on machines
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(IDA) Cognitive Cycle Processing

● Hypothesis: Like IDA’s, human cognitive 
processing is via a continuing sequence of 
Cognitive Cycles

● Duration: Each cognitive cycle takes roughly 
200 ms with steps 1 through 5 occupying about 
80 ms 

● Overlapping: Several cycles may have parts ru
nning simultaneously in parallel 

● Seriality: Consciousness maintains serial order 
and the illusion of continuity 

● Start: with perception or action selection 
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(IDA) Virtual Machine on a Brain

● Entities include qualia, objects, categories, feelin
gs, intentions, internal images, internal speech, 
etc. 

● Relations include cause, before, on top of, isa, is
 not, can drink from, etc. 

● Processes include perception, memory, action s
election, learning, etc. 

● Note the partial ontology just created.
● Cognition: the endless cycle of deciding what to 

do next.
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IDA finds jobs for sailors

● Communicates with sailors in English via email 
● Selects jobs to offer a sailor, taking into account 

– the Navy’s policies and needs 

– the sailor’s preferences 

● Deliberates about feasible dates 
● Negotiates with the sailor about job selection 

over the course of several emails
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IDA Consciousness

● What’s in the spotlight 
● Limited capacity 
● Coalition of codelets 
● Message from these codelets broadcast to all 

other codelets
● “...serves to disseminate a small amount of 

information to a vast unconscious audience…” 
● “The payoff for limited capacity seems to be vast 

access.”
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(IDA) Tickets to the Spotlight

●  Novelty, Relevancy, Informativeness 
●  Problems, Inconsistency, Violated expectations  
● Whatever can’t be dealt with by unconscious, 

automatic processors.
● Conscious imagery and inner speech allow 

metacognitive reflection and control
● Self­system maintains stability under changing 

internal and external conditions
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(IDA) Contexts
● coalitions of processors (codelets)
● include unconscious expectations and intentions
● Similar to but not the same as: Frames, Scripts, 

Schemas, Semantic nets
● Perceptual, Conceptual, Goal, Cultural
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IDA
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(IDA) Slipnet = Simple Activation Net
● Directed graph of nodes, representing concepts, and 

labeled links

● Links represent relations between nodes

● Nodes support activation, links pass it

● Slipnet does not learn

● Nodes don’t decay, but activation does

● Slipnet is long­term memory

● Temerature control of stability (temerature inversely 
measures understanding of situation)

● Activation passes from node to node until the slipnet 
stabilizes

●  All slipnet nodes are feature detectors



  133

(IDA) Schema = Hierarch. Behavior Net
● Triple: context (makes schema more likely), 

action, result (should be more likely after action)
● Spin­off schemas built when a relation between 

items and actions is discovered 
● Composite actions (implemented by schemas) 

coordinated to achieve some goal 
● Synthetic item — a state not expressible  as 

some combination of current states 
● Synthetic items permit the invention of radically 

new concepts, for example conservation
● Schemas keep track of reliability statistically
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(IDA) Finding Reliable Schema

● Schema mechanism looks for results that follow 
from actions, reliably or not 

● If a result follows unreliably, the mechanism 
looks for added context to improve reliability 

● When successful, it spins off a new schema 
adding the newly discovered context to a copy of 
the old schema

● Plan—a set of reliable schemas coordinated to 
achieve some specified result. 
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(IDA)
Strict

 
Behavi

or

Nets
●do not learn
●hand-coded
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Behavior Net „Fuzzy” Plans

● Sequence of competencies transform present 
situation into desired one 

● Sequence can become highly activated by 
forward spreading from current state & 
backward spreading from a goal state 

● May occur in competition with other sequences 
striving towards other goals

● In LIDA (strict) behavior nets are not learnable
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IDA Codelets

● Small pieces of code each performing a simple, 
specialized task 

● Many watch for a chance to act
● Most subserve some high level entity, e.g. 

behavior, slipnet node 
● Some codelets work on their own, e.g.

– watching for incoming mail

– checking for time and place conflicts

● Specialized perception codelets find features 
and activate appropriate nodes in the slipnet 
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IDA Sparse Distributed Memory

● random access (constant time)
● similar to a mix of Hopfield nets and self 

organizing maps, based on binary code vectors 
and Hamming distance, input space = output 
space

● writing: nearby code vectors move their source 
vectors towards input

● reading: fixpoint on coordinate-wise majority rule 
reading the sources of nearby code vectors
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NARS Methodology

● Minimalism: not to maximize the system’s 
performance, but to minimize its theoretical 
assumptions and technical instruments, while 
still achieving desired performance.

● There are scientific and engineering reasons for 
following a unified approach.

● Many such attempts have failed, but they might 
have followed wrong ideas. (General Problem 
Solver, Fifth Generation Computers)

● The system should:
– rely on constant processing capacity,
– be open to unexpected tasks,
– learn from experience.
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NARS Semantics
● The truth value of a sentence is determined by 

available evidence in the experience:
        F = W+/W,  C = W/(W+1)
● Truth value uniformly represents randomness, 

fuzziness, and ignorance.
● The meaning of a term is defined by its 

experienced relations with other terms.

S P

S

M

P

abduction

S

M

P

M

S P

deduction

induction revision

bird  animal [1.0, 0.9]

subject  predicate 
[frequency, confidence]

extension of subject inside 
extension of predicate

intension of predicate inside 
intension of subject
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NARS Semantics

● complete inheritance:  base case 
when F=C=1

● extension and intension:
–

● when premises are complete inh.:
–

● generalized to truth values
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(NARS) Compound Terms

● Compound terms: sets, intersections, 
differences and images in extensional and 
intensional versions, products.

● Variants of the inheritance relation: similarity, 
instance, and property.

● New inference rules are added to carry out 
compound composition and decomposition.

● Related changes in memory and control.
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NARS Higher-Order Reasoning

● Two higher-order relations, implication and 
equivalence, are defined between statements.

● Compound statements: negations, conjunctions, 
and disjunctions.

● The implication relation is used to carry out 
conditional and hypothetical inferences.

● Variable terms are used to carry out general and 
abstract inferences. Variable can be 
independent or dependent on other variables.

● Some rules are the same (e.g. deduction, 
abduction, induction), some are new.
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NARS Procedural Reasoning

● An event has a time-dependent truth-value.
● Events can be simultaneous or one can happen 

before another.
● New operators and relations are formed, such 

as sequential conjunction (“,”), parallel 
conjunction (“;”), predictive implication (“/ ”), ⇒
retrospective implication (“\ ”), and concurrent ⇒
implication (“| ”).⇒

operations = executable 
events

the system issues execution commands and 
collects execution consequences by I/O
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NARS Control Strategy

● Task: a question or an assertion to assimilate.
● Beliefs and tasks are links of the belief network, 

a concept is a node with all its links.
● Concepts, tasks and beliefs have priority-values.
● High-priority concept is selected probabilistically, 

some its task and belief are processed by an 
inference rule.

● Factors influence the priority of an item: quality 
of the item, usefulness of the item in history, and 
relevance of the item to the current context.

● Events have desirability-values, the system uses 
decision-making procedure to create new goals 
from desirable and achievable events.
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(NARS) Defence of Logical Approach
● „In its original and broad sense, “logic” is just the attempt of 

capturing valid patterns of inference in a content-independent 
manner, and “inference” is just the process by which new 
knowledge is derived from existing knowledge.”

● „Non-Axiomatic Logic of NARS is fundamentally different from 
traditional mathematical logic, in that it is an attempt to capture 
the principle of adaptation with insufficient knowledge and 
resources. In this logic, a “term” is an identifiable item or pattern 
in the system’s experience; a “statement” is a relation between 
two terms indicating their substitutability; the “truth-value” of a 
statement measures how a statement is supported or refuted by 
the system’s experience; the “meaning” of a term indicates the 
role it plays in the system’s experience; the function of an 
“inference rule” is to accomplish a single inference step, which 
build term(s) and/or statement(s) to summarize the information in 
existing ones; and an “reasoning process” is a sequence of steps 
to carry out the tasks needed by the system for surviving and 
adapting.”
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Novamente

• Components of the system have been commercially deployed:
– Biomind OnDemand product for bioinformatic data analysis

– ImmPort: NIH Web portal with Biomind/Novamente based 
analytics on the back end

– INLINK language processing system developed for INSCOM 
(Army Intelligence)

• Work in progress:

– Electric Sheep Company: Virtual Pets (early 2008)

– Virtual Agents with rudimentary English capability (2010)

• “Software and mathematics alone, no matter how advanced, 
cannot create an AGI. Intelligence most naturally emerges 
through situated and social experience.”

• AGI-Sim based on CrystalSpace, no much physics yet but robot-
like steering.
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PsyNet Philosophy of Mind
● Association. Patterns, when given attention, spread some of this 

attention to other patterns that they have previously been 
associated with in some way. Every idea in the memory is an 
active agent, continually acting on those ideas with which the 
memory associates it.

● Hierarchical network (inheritance). Patterns are habitually in 
relations of control over other patterns that represent more 
specialized aspects of themselves. Heterarchical network 
(similarity). (Hierarchical + heterarchical = dual network.)

● Differential attention allocation. Patterns that have been 
valuable for goal-achievement are given more attention, and are 
encouraged to participate in giving rise to new patterns.

● Pattern creation. Patterns that have been valuable for goal-
achievement are mutated and combined with each other to yield 
new patterns.

● Credit Assignment. Habitual patterns in the system that are 
found valuable for goal-achievement are explicitly reinforced and 
made more habitual.

● Self structure. A portion of the network of patterns forms into an 
approximate image of the overall network of patterns.
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Novamente’s “Atom Space”

● Atoms = Nodes or Links
● Atoms have

– Truth values (probability + weight of evidence)
– Attention values (short and long term importance)

● The Atomspace is a weighted, labeled hypergraph

– ConceptNodes
• “tokens” for links to attach to

– PredicateNodes
– ProcedureNodes
– PerceptNodes

• Visual, acoustic percepts, etc.
– NumberNodes

• Logical links
– InheritanceLink
– SimilarityLink
– ImplicationLink
– EquivalenceLink

• Intensional logical relationships
• HebbianLinks
• Procedure evaluation links



  150

Novamente mechanisms
● A map = a fuzzy set of nodes or links that corresponds to 

abstract concept or schema (event); they obey emergent 
dynamics similar to that of nodes and are habitually activated 
together, either all at once or in a particular habitual sequence.

● Probabilistic reasoning carried directly on the 
hypergraph. (Probabilistic Logic Networks, 
successor of Probabilistic Term Logic.)

● Evolutionary learning carried out using 
MOSES (descendant of BOA for evolving 
programs/scripts).

● Attention allocation by combination of 
inference and evolutionary pattern mining. 
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Novamente Past Applications
● Biomind: 

– BOA uncovers patterns in labeled datasets 
(microarray gene expression), and learn 
classification models

– PTL incorporates background knowledge: gene and 
protein function, research papers, gene sequence 
alignment, protein interactions, and pathways

● INLINK:
– PTL learns disambiguation by interactive knowledge 

entry.

– BOA Pattern Mining is used to spontaneously create 
queries that are judged interesting.
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More on Atoms
● ConceptNodes, which derive their meaning via 

interrelationships with other nodes

● PerceptNodes nodes representing perceptual inputs 
into the system (e.g., pixels, points in time, etc.)

● TimeNodes representing moments and intervals of time

● PredicateNodes representing complex patterns 
(procedures that output truth values)

● SchemaNodes embodying procedures (procedures 
that output Atoms)

● Inheritance links implement hierarchical network

● Similarity links implement heterarchical network

● Procedures can be represented as terms or as variable-
free combinators (see Curry and Feys)
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Novamente Architecture
● Each of functionally specialized Lobes (or Units) 

contains a hypergraph and a number of 
MindAgents.

● Some MindAgents perform basic system 
maintenance, other apply PLN (PTL) and 
MOSES (BOA) inferences in conjunction with 
simple heuristics to carry out particular cognitive 
tasks like procedure learning, probabilistic 
inference on declarative knowledge, language 
parsing.

● The Mind OS builds on a distributed processing 
framework to enable distributed MindAgents to 
act efficiently on large populations of Nodes and 
Links
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Probabilistic Logic Networks
● More complex than logic in NARS
● Gracefully deals with inconsistencies e.g. by 

iteratively correcting premises (example: 
sensory input to agree with understanding)

● Higher-order PTL deals with 
links pointing to links

● Distinction between 
intensional and extensional 
(in NARS these are 
symmetric)

– Inheritance A B =         
Subset A B or 
IntensionalInheritance A B
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MOSES Meta-Optimizing Semantic 
Evolutionary Search

● The properties of programs and program spaces 
can be leveraged as inductive bias to reduce the 
burden of manual representation-building, 
leading to competent program evolution.

● Programs are normalized for better correlation of 
syntactic and semantic distance

● Programs are aligned before cross-over
● Programs are generated according to a learned 

distribution



  

The Fundamental Cognitive Dynamic

S(t+1) = B( F(S(t) + I(t)) )

Forward: create new mental forms by combining existing 
ones

Backward: seek simple explanations for the forms in the 
mind, including the newly created ones.  The 
explanation itself then comprises additional new forms 
in the  mind

Forward: …
Backward: …
Etc.

… Combine … Explain … Combine … Explain … Combine …
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Intelligence and Self

● The reflexive process of flexibly 
recognizing patterns in oneself and then 
improving oneself based on these patterns 
is the “basic algorithm of intelligence”

● The phenomenal self, a key aspect of 
intelligent systems, is the result of an 
intelligent system recognizing itself as a 
pattern in its (internal and external) 
behaviors



  

Stages of Cognitive Development



  

Sources

● „Essentials of General Intelligence: The direct 
path to AGI” Peter Voss, 2002

● „A Gentle Introduction to the Universal 
Algorithmic Agent AIXI” Marcus Hutter, 2003



  

Sources

● „An Introduction to SNePS 3”, Stuart Shapiro 
2000

● „SNePS 2.6.1 User's Manual”, Stuart Shapiro, 
The SNePS Implementation Group 2004

● „SNePS: A Logic for Natural Language 
Understanding and Commonsense Reasoning”, 
Stuart C. Shapiro 1999

● „Metacognition in SNePS”, Stuart C. Shapiro, 
William J. Rapaport, Michael Kandefer, Frances 
L. Johnson, and Albert Goldfain 2006



  

Sources

● „An Introduction to the Soar Cognitive 
Architecture”, Tony Kalus, Frank Ritter 2003 
(slides)

● „Cognitive Theory, SOAR”, Richard L. Lewis 
1999

● „The Soar User’s Manual Version 8.6.3” John E. 
Laird, Clare Bates Congdon, Karen J. Coulter 
2006
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● „An Integrated Theory of the Mind”, John R. 
Anderson, Daniel Bothell, Michael D. Byrne, 
Scott Douglass, Christian Lebiere, Yulin Qin, 
2004

● „ACT-R 6.0 Reference Manual”, Dan Bothell, 
2006

● „Rational Cognition in OSCAR” John L. Pollock, 
●
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● „Augmenting BDI Agents with Deliberative 
Planning Techniques”, A. Walczak, L. Braubach, 
A. Pokahr, W. Lamersdorf, 2006

● „A Goal Deliberation Strategy for BDI Agent 
Systems”, Alexander Pokahr, Lars Braubach, 
Winfried Lamersdorf 2005

● „Jadex: A BDI Reasoning Engine”, Alexander 
Pokahr, Lars Braubach, Winfried Lamersdorf, 
2005



  

Sources

● „TouringMachines: Autonomous Agents with 
Attitudes”, Innes A. Ferguson 1992

● „TouringMachines: an architecture for dynamic, 
rational, mobile agents”, Innes A. Ferguson 
1992



  

Sources
● „From 2001 to 2001: Common Sense and the 

Mind of HAL”, Douglas B. Lenat
● „The Cyc® System: Notes on Architecture” Nick 

Siegel, Keith Goolsbey, Robert Kahlert, and 
Gavin Matthews 2004

● „Guiding Inference with Policy Search 
Reinforcement Learning” Cynthia Matuszek, 
Pace Reagan Smith, Michael Witbrock, Matthew 
E. Taylor 2007

● „Autonomous Classification of Knowledge into 
an Ontology” M. E. Taylor, C. Matuszek, B. 
Klimt, M. Witbrock 2007
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● „Common Sense Reasoning – From Cyc to 
Intelligent Assistant”, Kathy Panton, Cynthia 
Matuszek, Douglas Lenat, Dave Schneider, 
Michael Witbrock, Nick Siegel, and Blake 
Shepard 2006
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● „Human-level Intelligence Labolatory” directed 
by Nick Cassimatis (www.cassimatis.com)

● „Grammatical Processing Using the Mechanisms 
of Physical Inference”, Nicholas Cassimatis 
2004

http://www.cassimatis.com/
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● „The Lazy Learning Package” Mauro Birattari 
and Gianluca Bontempi

● „Growing Neural Gas. Experiments with GNG, 
GNG with Utility and Supervised GNG” Jim 
Holmström

● „Churchland on Connectionism” Aarre Laasko
● MIT AI Lab, Humanoid Robotics Group, Cog 

project
● „Building Behaviors Developmentally: A New 

Formalism”, Brian Scassellati 1998
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● „Hierarchical Temporal Memory. Concepts, 

Theory, and Terminology” Jeff Hawkins and 
Dileep George, 2007

● „SAIL and Dav Developmental Robot Projects: 
the Developmental Approach to Machine 
Intelligence”,  Juyang Weng

● „From Neural Networks to the Brain: 
Autonomous Mental Development”, J. Weng and 
W. S. Hwang 2006

● "Novelty and Reinforcement Learning in the 
Value System of Developmental Robots", X. 
Huang and J. Weng, 2002
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● „Hierarchical Discriminant Regression”, W. 
Hwang and J. Weng, 2000

● „Incremental Hierarchical Discriminant 
Regression”, J. Weng and W. Hwang, 2007

● „Action Chaining by a Developmental Robot with 
a Value System”, Y. Zhang and J. Weng, 2002
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● „How Minds Work: A Cognitive Theory of 
Everything, Full Tutorial”, Stan Franklin, 
University of Memphis Cognitive Computing 
Research Group 2006

● „From NARS to a Thinking Machine”, Pei Wang 
2006 (also AGI Workshop presentation)

● „Return to Term Logic”, Pei Wang 1997
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● „A Comparison of the Novamente AI Design with 
the Human Mind/Brain”, Ben Goertzel 2005

● „Novamente. A Practical Architecture for Artificial 
General Intelligence” presentation, Ben Goertzel 
2006


