

Artificial General Intelligence

„General intelligence doesn't comprise one single,
brilliant knock-out invention or design feature;

instead, it emerges from the synergetic integration
of a number of essential fundamental

components.” (Peter Voss)

Artificial General Intelligence
„Of all the people working in the field called 'AI',

80% don't believe in the concept of General
Intelligence (but instead, in a large collection

of specific skills and knowledge)
Of those that do, 80% don't believe that

artificial, human-level intelligence is possible -
either ever, or for a long, long time

Of those that do, 80% work on domain-specific
AI projects for commercial or academic-

political reasons (results are more immediate)
Of those left, 80% have a poor conceptual

framework...” (half-seriously, Peter Voss)

Artificial General Intelligence

„Only a small community has concentrated on
general intelligence. No one has tried to make a

thinking machine. The bottom line is that we really
haven't progressed too far toward a truly intelligent
machine. We have collections of dumb specialists

in small domains; the true majesty of general
intelligence still awaits our attack. We have got to

get back to the deepest questions of AI and
general intelligence and quit wasting time on little

projects that don't contribute to the main goal.”
(Marvin Minsky, 2000)

General Intelligence definitions

● „the ability to solve complex goals in complex
environments” (Ben Goertzel)

● „the capability to adapt to the environment and
to work with insufficient knowledge and
resources” (Pei Wang)

● „the ability to acquire (and adapt) the knowledge
and skills required for achieving a wide range of
goals in a variety of domains”, „a property of an
entity that engages in two way interaction with
an external environment” (Peter Voss)

Universal Algorithmic Agent AIXI

● Parameter-free theory of universal Artificial
Intelligence based on ideas from decision theory
(known priors) and Solomonoff's universal
induction (unknown priors).

● Strong arguments that the AIXI model is the
most intelligent unbiased agent possible (but it
is uncomputable).

● AIXItl is more intelligent than any time t and
space l bounded agent. Its time complexity is
t*2^l.

AIXI

● replace the unknown environmental distribution
μ in Bellman equations by suitably generalized
Solomonoff distribution ξ (state space is the
space of complete histories); AIXI=AIξ

● (Bellman equations are solved iteratively by
integrating current solution wrt. env. distribution)

Chronological Turing Machines
● Each (agent, environment) pair (p, q) produces a

unique I/O sequence y1 x1 y2 x2... xi = x'i ri,
where ri is the reward

● but q is unknown or stochastic, known to agent
by distribution μ(q)

AIXI

Define universal prior:

SNePS
● Integrates:

– intensional relevance logics for commonsense
reasoning

– frame-based system (feature-structure subtyping)

– semantic network: frame slots are labeled directed
arcs (recursive path constructors)

● Designed to support natural language
competent agents

● The „domain of discourse” is the domain of all
mental entities of the agent

● Propositional assertional: only nodes have
semantics (arcs don't denote propositions)

SNePS

proposition-denoting terms may
be arguments of other terms
without leaving first order logic

Monotonic Logic: belief revision
(removing a contradiction) must
retract some hypotheses and all
beliefs supported by them.
(But retracted facts can be
reconsidered when new knowledge
arrives.)

SNePS

● Not interested in representing the „meaning”, rather the
changes to Cassie's mind that result from her understanding.

● Every SNePS term denotes a mental entity. Even
„variable nodes” have compositional semantics.

● Proposition nodes have assertional status, rule
nodes can be used for inference, act nodes can be
performed, individual (or thing) nodes are „the
rest”.

Cassie, a SNePS Agent

nodes with ! are asserted

SNePS Syntax
● Nodes, relations (arcs), case frames (feature-

structure-like types for atomic nodes)
● user can specify any case frames for atomic nodes
● Relation: <name, type, adjust, limit>

– name: symbol identifying relation (given on arcs)

– type: class of nodes pointed by the arc

– adjust: expand, reduce, none, for wire-based inference

– limit: minimal size of a cable containing this relation

● examples:

SNePS Inference

● Wire-based inference (reduction inference):
introducing a node with a subset (or superset) of
arcs of an existing node

● Path-based inference: (perhaps undirected)
path from m1 to m2 implies a proposition m3
with all m1's arcs plus arc to m2

● Node-based inference: uses nodes
representing FOL formulas

● Subsumption inference: introduces an
instantation for a variable node, which connects
to nodes subsumed by variable node neighbors

SNePS Logic
● andor(i, j){P1, ..., Pn}: at least i and at most j of Pk

are true; e.g. andor(1, 1) is a disjoint alternative
– all(x)(andor(1, 3){animal(x), vegetable(x), mineral(x)})

● thresh(i, j){P1, ..., Pn}: fewer than i or more than j of
Pk are true
– all(x)(thresh(1, 2){human(x), featherles-biped(x), rational-

animal(x)})

● {P1, ..., Pn} v=> {Q1, ..., Qm} (or-entailment): for
every i, j, Pi => Qj (people don't use or-introduction)

– {in(Hilda, Boston), in(Cathy, Las-Vegas)} v=> {in(Eve,
Providence)}

● {P1, ..., Pn} &=> {Q1, ..., Qm} := P1&...&Pn => Q1&...&Qn

SNePS Logic
● Unique variable binding rule: universal instantiation

can't replace two variables by the same term in one
formula.

● Set arguments:
– Marry, Sue and Sally are sisters.

● Higher-order user language: e.g. Transitive(bigger)

– bigger (elephant, lion) := Holds (bigger, elephant, lion)

– all(p)(Believes(Bob, p) => p). (proposition denoting terms)

● nexists(i, j, k)(x)({P1(x), ..., Pn(x)} : {Q(x)}): k
individuals satisfy P1&...&Pn and at least i, at most j,
also satisfy Q.
– „At least two members of the committee are women.”

nexists(2,_,4)(x)({Member(x)} : {Woman(x)})

SNePS Logic
● Contexts are sets of assumptions. Assertions only

hold in default context (change between contexts).
● Belief revision: if system detects a contradiction, it

can ask the user if to keep it or change assumptions.
– When retracting a hypothesis, the system retracts assertions

that no longer hold.

● SNePS can infer relevant implications, handle
recursive definitions, etc.

● SNePS performs bidirectional inference: forward and
backward chaining.

● Relevance: P => Q means „if I believe P, I'm justified
to believe Q” („I will believe Q when the rule fires”)
– P => Q is a function from propositions to propositions

Cassie, GLAIR and SNePS
Metacognition

● acting susbsystem:
– acts that affect what an agent believes

– acts that specify knowledge-contingent acts lack-of-
knowledge acts

– policies that serve as “daemons”, triggering acts when
certain propositions are believed or wondered about

● a policy: a rule that connects propositions and acts
● action: act-valued function symbol
● policy-forming function symbols:

– ifdo(p, a): to determine whether p, do a

– whendo(p, a), wheneverdo(p, a): when(ever) p, perform a

Grounded Layered
Architecture with

Integrated Reasoning

SNePS Cassie
● external acts either sense or affect the outside world
● mental acts:

– believe(p): assert p and do forward inference (and some
belief revision); disbelieve(p) – just unassert p

– adopt(p), unadopt(p) – whether to follow policy p

● control acts:
– achieve(p): (when p unasserted) infer plans (instances of

GoalPlan(p,x)) to bring about p, perform do-one on them

– prdo-one performs an action selected by roulette-wheel

– withall(x, p(x), a(x), [d]) finds entities e such that p(e) is
believed, and performs a on them; if no such e is found, d
is performed.

– snif (switch on condition), sniterate (switch and loop)

SNePS Metacognition
● „Self” is a term like other agents' terms
● Perceptuo-Motor Layer models embodiedness: a source of

beliefs about what an agent is doing and percepts

● deictic registers: I, YOU, NOW, ...
● modality registers: current acts and percepts in each

effector and affector; used to advance deictic regs
● retracted (unasserted) belief is kept in the system

and can still be reasoned about
● metabeliefs can represent credibility (uncertainty

etc.); the least credible facts are retracted on revision
● dependency-directed reconsideration, e.g. when we

learn that a source is/was not credible

Cognitive Architectures
Soar and ACT-R

● Available for download
● Heavily documented
● With long history and many applications
● Based on cognitive psychology insights
● Related psychological research
● cognitive architecture = a theory about the fixed

computational structure of cognition

Soar

● Descendant of General Problem Solver
● by Allen Newell
● ...all problem solving activity is formulated

as the selection and application of operators
to a state, to achieve some goal.

● Since 1982, initially in Lisp then rewritten to C
and Tcl.

● Basic knowledge: state and operators
● Control knowledge: heuristics
● Knowledge can be learned

Soar knowledge and action

● production rules: conditions --> actions. Conditions test
for patterns in working memory.

● productions = associative long term memory

● cognitive loop of alternating operator selection and
application both done by productions

● can have a stack contexts (problem spaces) active at
once

● Impasse: no operator applies in the active context (no-
change) or no unique one can be determined (tie).

● Knowledge: operator proposal, comparison, selection,
application; state elaboration

Soar knowledge and action
● States are objects with feature structures (attribute-

value matrices) (working memory = set of objects)

● All productions that match WM, apply in parallel,
rewriting the working memory

● Goals are desirable patterns in states

● Rules vote for changes by preferences which are stored
in preference memory

● Elaboration rules monotonically add facts to WM, are
backtracked when no longer supported

● Actions (operator application rules) are persistent

● Decision cycle: apply elaboration rules until fixpoint,
select operator based on preference memory (if not
possible: impasse), apply action rules

Soar learning
● When in impasse, record it in WM, create a new

context, which generates a chunk: new production.
(This mechanism is recursive.)

● States in new context are called substates.

● The RHS is the result of new context. The LHS are things
that have been tested by the linked chain of rule firings
leading to the result, the set of things that exist in the
higher context (“pre-impasse”) on which the result
depends.

● Problems:
– overgeneralization: e.g. if result dependent on search

control knowledge (solution: request condition explicitly)

– overspecialization: e.g. chunk variable identifies objects
realized by the same element in a particular impass

Soar Goal Dependency Set

● to solve symbol-level quirks of Soar
„psychology”: problems
– logical inconsistency in symbol manipulations,

– non-contemporaneous constraints in chunks,

– race conditions in rule firings and in the decision
process,

– contention between original task knowledge and
learned knowledge

● follow from inconsistency between persistent
WM elements and their context (all superstates
of a state)

goal is a synonym for state or substate

Soar Goal Dependency Set

● three primary types of persistence (in Soar 7):
– i-support: feature exists in memory only as long as its

creator production remains instantiated; instantiation
is retracted when one of production conditions no
longer matches

– o-support: crated by action of operator, remains until
explicitly removed

– c-support: (removed in Soar 8) makes an operator
persistent (only retracted explicitly)

● solution inspired by chunking: when o-supported
WME is created, the superstate dependencies of
that feature are added to GDS of that state

Soar Goal Dependency Set

● Elements added to GDS for an o-supported
feature:
– elements (WMEs) in a superstate on which it

depends

– WMEs in a superstate supporting i-supported
features on which it depends

● In Soar 8, any change to the current
dependency set will cause the retraction of all
subgoal structure.

● Remembering facts should be stored in the top state,
non-monotonic reasoning about context should be done
locally (will be retracted on relevant context change).

ACT-R
Adaptive Control of Thought-Rational
● parallel processing local to modules, sequential

processing by productions
● modules are interfaced by buffers, productions

match and change buffer contents
● a buffer can contain only one chunk (object = a

named feature structure) at a time
● subsymbolic processes guide the selection of

rules to fire
● the goal buffer keeps state of solving a problem,

● retrieval buffer holds information retrieved from long-
term declarative memory, etc.

ACT-R

● A module can access other buffers than its own,
but usually doesn't

● Slots in a chunk are usually filled by other chunks
● Chunks are typed (with inheritance subtyping)
● Chunks are called declarative, productions –

procedural
● Productions specify a set of conditions to match

against buffers and the states of the modules
(LHS) and a set of actions that will then modify the
contents of the buffers and make requests to the
modules.

ACT-R
● conflict resolution: from the productions that match, the one

with highest utility is chosen (can be probabilistically); utility
from Q-learning

● production compilation: combination of productions that fire
in sequence

● declarative module: adding a chunk when there is an
equivalent chunk merges them

● retrieval either deterministic or based on activation:
– A = B + S + P + e;

● B: base-level activation reflects the recency and frequency of use of
the chunk

● S: spreading activation: weighed sum of activations of buffer-residing
chunks which contain this chunk

● P: partial matching – the degree to which the chunk matches the
specification requested

● e: noise – specific to chunk, and transient for curr. activation

OSCAR
● individual acts are rational only in context of plans
● epistemic cognition – what to believe, practical

cognition – what to do
● OSCAR expresses most of the latter in terms of the

former: practical cognition evaluates the world and
then poses queries concerning how to make it better

● epistemic reasoning vs. quick and inflexible modules
● epistemic query can span plans for empirical

investigation
● reflexive cognition – applying practical cognition to

reasoning e.g. by altering the priority of cognitive
tasks waiting to be performed

OSCAR Epistemic Reasoning

● backwards from epistemic interests to epistemic
interests and forward from beliefs to beliefs
(„natural deduction” theorem prover)

● reductio at absurdum is invalid for defeasible
argumentation

● defeasible perception, generalization, time
projection, planning

● Rebutting defeaters attack the conclusion of the
inference. Undercutting defeaters attack the
connection between the premise and the
conclusion.

OSCAR Epistemic Reasoning
● inference graph records constructed arguments
● status-assignment

– if a defeating argument for an inference in A is assigned
“undefeated”, A is assigned “defeated”;

– if all defeating arguments for inferences in A are assigned
“defeated”, A is assigned “undefeated”.

● an argument is undefeated iff it is “undefeated” in
every (maximal) status-assignment; a belief is
justified iff it is supported by an undefeated argument
(rel. to current epistemological state)

● Warranted conclusions are undefeated relative to the set of all
possible arguments given the current inputs. Well-behaved
reasoner for each (un)warranted proposition P will eventually
reach a stage P stays (un)justified thereafter.

OSCAR Epistemic Reason Schemas

● PERCEPTION: Having a percept at time t with content P is a
defeasible reason to believe P-at-t.

● PERCEPTUAL-RELIABILITY: “R is true and having a percept
with content P is not a reliable indicator of P’s being true when R
is true” is an undercutting defeater for PERCEPTION.

● TEMPORAL-PROJECTION: “P-at-t” is a defeasible reason for “P-
at-(t+∆t)”, the strength of the reason being a monotonic
decreasing function of ∆t.

● STATISTICAL-SYLLOGISM: “c is a B & prob(A/B) is high” is a
defeasible reason for “c is an A”.

● CAUSAL-IMPLICATION: If t* > t, “A-at-t and P-at-t and (A when P
is causally-sufficient for Q)” is a defeasible reason for “Q-at-t*”.

● CAUSAL-UNDERCUTTER – causal knowledge precedences
temporal projection.

OSCAR Practical Cognition
● goal selection, plan-construction, plan-selection, plan-

execution; goals have values and plans have expected values

● “performing action A under circumstances C is
causally sufficient for achieving goal G”: (A/C) G⇒

● impossible to rule out threats before merging plans;
whether a plan will achieve a goal is a factual (epistemic) matter

● defeasible reason-schemas for reasoning about plans

(each ends with defeasibly inferring that the plan achieves the goal):
– GOAL-REGRESSION: for G-at-t, adopt (A/C) G. Then ⇒

adopt C-at-t*. Then, construct a plan by (1) adding action
A-at-t*, (2) adding a constraint (t* < t)

– SPLIT-CONJUNCTIVE-GOAL: for (G1-at-t1 & G 2-at-t2),
adopt G1-at-t1 and G2-at-t2 and merge inferred plans

Instead of maximizing we
must satisfice — seek plans
with positive expected values,
and always maintain an
interest in finding better plans.

Jadex: A BDI Reasoning Engine

● Agent acts towards some of the world states it
desires to be true and believes to be possible.

● Beliefs are objects – named facts or named sets
of facts – stored in beliefbase which monitors
belief state conditions and can lead to actions.

● Capabilities: reusable modules of beliefs, goals,
plans and events encapsulating a certain
functionality.

● Agents defined in XML with procedural parts of
plans in Java

● run on top of multi-agent middleware like Jade

Jadex: A BDI Reasoning Engine

assign a capability by
ongoing conversation or by

matching a pattern

select plans matching the
event, choose subset of

plans to realize

Jadex (Blocksworld)

The explicit
specification and
strong typing of
beliefs, goals,
etc. facilitates
consistency
checks of XML
Agent Definition
Files to detect
errors (e.g.
spelling mistakes)
as early as
possible.

Jadex: Goal Deliberation
● BDI system ensures that constraints, set by an agent developer, are

respected and only consistent goal sets are pursued at any one time.

● Different goal types:
– perform: act disregarding of action result,

– achieve: defines desired world state only,

– query: like „achieve” wrt. internal state,

– maintain: monitor state and re-establish it when needed.

● Goal states: active,
– option: explicitly not pursued, e.g. conflicts with some active goal

– suspended: its context is invalid

● Other goal properties:
– creation condition, context condition, drop condition

(when a goal instance is removed)

Jadex: Goal Deliberation

Jadex: Goal Deliberation
● cardinalities: how many goals of given type at

once
● inhibition links: between goal types and between

goal instances
● deliberation initiated by:

– a new goal adopted, or a context of a suspended
goal valid again ==> deliberate new option

– a goal becomes inactive (suspended, finished or
dropped) ==> which inhibited options can be
reactivated

● consider a local subset of the agent’s goals,
derived from the goal that triggered deliberation,
plus relevant (e.g. linked) others

old
interpre

ter

new
interpreter
deliberates
only when
it's needed

Jadex: Goal Deliberation
● Limitations:

– The strategy does only consider bilateral relationships: e.g. not
possible that two goals together are more important than another
single goal.

– Conflicts between subgoals cannot always be resolved
optimally, e.g. a conflict between subgoals cannot be resolved by
replacing one of the subgoals with another non-conflicting subgoal.

– Conflicts at plan level are not considered, which means that
inconsistencies between plans e.g. because of access to
conflicting resources are not detected.

– Positive interactions between goals are not considered, which
means that the strategy cannot identify and exploit potentially
common subgoals.

● The reason for choosing inhibition links instead of using utility values
is that it allows to adopt a local view and frees the agent developer
from establishing a global ordering between all goals.

Jadex: Planning BDI Agents
● „Theory of Practical Reasoning” (BDI) to

overcome the poor performance of propositional
planners by timely reactivity and goal deliberation

● combine their strength with flexible means-ends
reasoning of deliberative planners:
– The planner applied to produce long term plans and to

handle single parts to a reactive BDI subsystem:
● serious performance concerns especially in dynamic

environments where continuous changes force the planner to
re-plan (algorithms have been devised for one shot planning)

– Or: augment the BDI system with a relatively simple
planner that is invoked from the BDI controller and
used for the purpose of creating short-term plans that
need a proof of correctness.

Jadex Planner
● The planner reasons about states of the

environment and agent’s own inner mental states
– environment: objects with state-dependent attributes

– mental states: a stack of goals (measures how far a
goal state is from a given state)

● actions are transition functions between states
– a triple: <precondition; change of goals; change in objects>

● agent desires, in respect to possible solutions,
assumed not to change within the short scope of
operational planning

● Planning assumed to be a higher cognitive activity than
reacting and controlling – granted more computational
resources. But Jadex planner is at a level below BDI.

With an advanced BDI
system, one is equipped
with reasoning and a
strong conceptual
framework, so there is
no need to duplicate the
functionality of both.

actions current state

desires

inverse utility estimate

precondition, change of goals, change of objects

Jadex Planner

● Under tight timing constraints, state-based
planners augmented with domain specific
knowledge are superior to partial-order planners.

● State contains reference to parent state allowing
for temporal conditions.

● The domain specific knowledge used to guide
the planner is hidden in the action applicability
predicates, in the goal distance functions, and in
the inverse utility functions.

● reasons about the goal stack at each step

Jadex Planner-BDI Integration

● Goals are used by the BDI reasoner to chose
among plan schemata and create the action
structure on the agenda of intentions.

● The intentional structure is given by current plan
instances.

● Reactive subsystem, triggered by belief changes
or a percept, generates new goals for the
reasoner.

● At the meta-level goal deliberation analyzes
dependencies and modifies the intentional
structure accordingly to agent’s preferences.

Jadex Planner-BDI Integration

Jadex Planner-BDI Integration

● Metric for state-to-goal distance can be derived
automatically from goal schema (but better hand
coded with domain knowledge).

● Created plans go directly into the intentions
structure (with their BDI goal as parent node)
and are not stored in a plan library. Because plans
are created at low-level, their parameters are tightly bound
and they are applicable only to a particular situation.

● Monitoring correct plan execution: component
similar to the planner is used to evaluate the
remainder in a simulated environment.

Jadex Planner-BDI Integration

● Planning can fail because:
– No way to improve the agent’s situation. The BDI

reasoner may retry finding a plan after some time.

– No correct plan satisfying all goals and subgoals. The
partial plan may be executed with the hope the future
planning, starting from a better situation, may find a
complete plan.

– Timeout. This case can be handled as the previous one.

– A number of correct plan instances is returned in
successive trials but they fail to reach the goal. In this
case the domain description is too abstract and lacks
the knowledge needed by the planner to recognize
specific reasons for failure.

TouringMachines Hybrid Architecture
● a resource-bounded, goal-directed agent to

react promptly to unexpected changes in its
environment;

● at the same time, to reason predictively about
potential conflicts by constructing and projecting
theories which hypothesise other agents’ goals
and intentions

● developed to understand the role of different
functional capabilities in constraining an agent’s
behaviour under varying environmental
conditions, an experimental testbed comprising
a simulated multi-agent world

TouringMachines Hybrid Architecture

● Agents following a different route from some
starting to some goal location within certain time
bounds and/or spatial constraints. Agent starts
with some geographical knowledge of the world
(e.g. locations of paths and path intersections),
but no prior knowledge of other agents’ locations
or goals or static obstacles.

● Three-layered: each connecting perception to action

– reactive: fast capabilities for unplanned or unmodelled

– planning: forward route planning

– modelling: e.g. hypothetical reasoning, attention

TouringMachines control framework

TouringMachines Reactive Layer

● situation-action rules for avoiding obstacles,
walls, kerbs or other agents, and for preventing
agent from straying over path lane markings

● agent can be made reactive or inert by choosing
thresholds for and strength of its reactions

● rules stimulated solely by input from sensors;
actions sent to effectors if approved by control
framework

● actions are not combined like in „boids”, the one
for the closest object is selected

● when rule fires, modelling layer is notified

TouringMachines Planning Layer
● hierarchical, partial planner interleaving plan

formation and execution, and defer committing to
specific subplan execution methods or temporal orderings of subplans

until absolutely necessary
● embedded: its operation can regularly be pre-

empted and its state suspended for subsequent use
● template plans or schemata: procedural structures

– consisting of: a body,

– a set of preconditions,

– a set of applicability conditions (e.g. temporal ordering constraints),

– a set of postconditions,

– cost in terms of computational resources.

TouringMachines Planning Layer
Primitive schemata can either
submit physical actions to be
effected or perform various
arithmetic or geometric
calculations. Composite schemata
trigger library searches and
subplan expansion.

The planner uses a fixed,
combined earliest-first
depth-first search strategy
for constructing single-
agent plans.

TouringMachines Modelling Layer
● predictions allow to detect conflicting goals and

accomodate by taking correcting action
● deliberation steps are resource (time) bounded
● <C, B, D, I>(t) models an entity’s behaviour:

– C is the entity’s Configuration:
● (x,y)-location, speed, acceleration, orientation,
● signalled communications;

– B: Beliefs, D: prioritised goals or Desires; I: plan or
Intention structure.

● desires can be achievable or homeostatic
● reasoning is about detecting discrepancies between

actual and predicted (them) / desired (me)

sensitivity to environmental
change controlled by
discrepancy thresholds to
trigger model revision

only intentions (plans) of
other agents are revised;
beliefs and goals
assumed identical
(modulo parameters)

 TouringWorld Experimental Testbed

● realized by discrete event simulator by action
scheduling

● various agent- and environment-level parameters:
– distribution of computational resources within control

layers, amount of forward planning, sensitivity of reactive
rules, frequency of sensing or modeling

– sensing horizon, initial goal deadline, # of other fast-
moving agents, ratio of CPU to simulated world time

● behavioral ecology: design-behavior-environment
tradeoffs

● the fourth layer: self-tuning (classify operational
contexts)

Cyc

● Commonsense knowledge is essential to
understanding...

● and to provide a specific workable context for
each situation.

● Prime the „knowledge pump” with the millions of
everyday terms, concepts, facts, and rules of
thumb that comprise human consensus reality.

● Represented in a form of second order predicate
calculus.

Cyc lessons

● Holding probabilities for each sentence had bad
consequences. To decide whether to believe
something, CYC gathers up all the pro and con
arguments it can think of, examines them, and
then reaches a conclusion.

● Expressive language (EL) for knowledge entry
and heuristic language (HL) for knowledge
processing

● Only contexts, or microtheories, are hold
consistent (coarse-grained paraconsistency)

Cyc architecture
● Knowledge Base

● Worlds: images of Cyc state

● Inference Engine

● User Interfaces

● Transcripts and the Transcript Server

– synchronizing multiple Cyc installations
● Partitions

– knowledge exchange
● Semantic Knowledge Source Integration (SKSI) Facility

– communication with structured information sources,
„outsourcing” knowledge

● Application Programming Interfaces (APIs)

Cyc architecture

Cyc Some ideas for inference
● Inference engine is composed of approximately a thousand

specialized reasoners, called inference modules, handling from
subsumption to transitivity.

● An inference harness breaks a problem down into sub-problems
and selects among the modules that may apply to each and
chooses follow-up approaches.

● The behavior of the inference harness is defined by a set of
manually coded heuristics.

● Strategist keeps track of resource constraints (e.g. memory or
time)

● Tactician orders proof actions, e.g.:

– Balanced Tactician selects backward inference tactics in best-
first manner, where tactics are scored by: tactic type,
productivity (the more subgoals the worse), completeness /
preference (estimating if leads to all true answers)

● Successful experiments in learning tacticians by reinforcement.

Cyc logic (representation language)

● Has all logical connectives of FOPC.
● 5 truth values: monotonically false, default false,

unknown, default true, and monotonically true.
● Default assertions can be overriden by entered

or inferred knowledge.
● Argumentation: different proofs are compared,

and one is selected basing on heuristics, e.g.
that monotonic values are stronger than default.

● Justification chains of selected proofs are kept.

Cyc logic (representation language)
● Microtheories (Mt) e.g. NormalPhysicalConditionsMt.

– provide contexts of reference
– form a hierarchy (actually, a directed graph);

an assertion true in a Mt must be consistent
with all Mts above it

– Cyc currently contains about 4.6 million
assertions in 23,627 microtheories

● Mechanisms for learning:

– induction: rule production by generalization
– abduction is done as deduction-in-reverse:

generates hypotheses from unfinished proofs
of known facts

Cyc Learning
● Gathering facts via Web Search:

– Generating strings for web searches:
● (occupation Lenat ?WHAT) ==> [“Lenat has been a

__”; “Doug Lenat has been a __”; “Lenat is a __”]
– Identifying and interpreting a match

– Eliminating bad interpretations: verifying against KB

– Verifying the correctness by web-searching for nat-lang
representation of constructed assertion

● Abduction: The candidate sentences suggested are
checked (via inference and specialized well-formedness-
checking modules) for consistency with the current
knowledge in the KB. They are then evaluated for inferential
productivity.

● Rule Induction: now can only help human experts, making
their task 3 x faster.

Cyc Learning

● Where to place new knowledge in an existing ontology?

● Research showed statistical classification (Naive Bayes and
SVMs) have high (98% for SVMs) precision and recall
success placing whole axioms in Mt hierarchy (but for a
selected well-behaved fragment of the hierarchy)

● A bit similar to classification of text documents into a
hierarchy, but: sparse data (e.g. (isa Cat Mammal) instead
of a whole document) into deep hierarchy

Principles Underlying Polyscheme
● Procedural Substrate. Most high-order

reasoning and problem solving algorithms can
be implemented using the same set of basic
computational operation: forward inference,
subgoaling, grounding, representing alternate
worlds and identity matching.

● Multiple representations. Each basic operation
can be implemented using multiple
representations.

● Representational Substrate. Cognition about a
basic set of relations (involving times, space,
events, identity, causality and belief).

Polyscheme Architectural Summary

● Specialists: modules based on a particular
representation. Each executes each of the basic
operations of the procedural substrate.

● Integrative focus of cognitive attention. All
the specialists focus on the same aspect of the
world simultaneously.

● Attention control implements algorithms. For
example, the policy, when uncertain about A,
focus on the world where A and focus on the
world where not-A implements backtracking
search.

Polyscheme Integration

● Integration of "high-level" and "low-level"
cognition, perception and action. All high-
level reasoning and planning algorithms are
implemented by a focus of attention that
integrates all lower-level representations and
perceptual and motor processes.

● Integration of multiple higher-level cognitive
processes with each other. Very different
reasoning algorithms, from truth-maintenance,
backtracking search, stochastic simulation and
logic theorem proving are each implemented
using the same focus of attention.

Polyscheme Unique Features

● Higher-level basic services than most cognitive architectures:
reasoning about events, time, space, causality, identity, desire and
beliefs (if the cognitive substrate principle is correct, is sufficient for
reasoning in most domains)

● No homunculus: choose actions as the result of reasoning and
problem-solving instead of a priori modeler decisions.

● Only one model: accounts of reasoning multiple tasks as part of the
same model so that integration is an unavoidable and constant process
and so that it is more difficult to gloss over hard problems.

● Multiple representations. Polyscheme does not commit users to a
single representational formalism.

● Language is an important focus of Polyscheme modeling, which has
historically (and with a few exceptions) not been the case in most other
modeling communities.

Grammatical Processing using Physical Inference

● construct a cognitive model of syntactic parsing
that uses only the mechanisms required for
infant physical reasoning

● Category(e, MotionEvent), Agent(e, x), Origin(e, p1),
Destination(e, p2), Occurs(e, t), Before(t, t2), Meets(t2, t3),
PartOf(e, e2), Subcategory(Fly, MotionEvent)

● Physical and verbal event perception both have
a linear order.

● Utterances are events.
● Physical and linguistic events both belong to

categories, which exist in hierarchies.

Grammatical Processing using Physical Inference

● „the dog”: Category(e, CommonNounPhrase), Category(e1,
Determiner), Occurs(e1, t1), Category(e2, CommonNoun),
Occurs(e2, t2), PartOf(e1,e), PartOf(e2,e), Meets(e1,e2)

● Category(verb, TransitiveVerb) + Occurs(verb, t-verb) ==>
Exists(object) + Category(object, NounPhrase) + Occurs(object,
t-object) + Before(t-verb, t-object)

● object identity: e.g. looking at sth another time
● event identity: e.g. sth falls from the shelf; there are marks

of cat claws on the shelf; pushing event = cat walking event?

● object permanence: reasoning about sth not
perceived

● cohesion principle, part inhibition, c-command:
[The doctor [Mary] met at [[Bill]’s house]] likes herself.

Grammatical Processing using Physical Inference

Adaptive AI (a2i2)

●General rather than domain-specific cognitive ability

●Acquired knowledge and skills, versus loaded
databases and coded skills

●Bi-directional, real-time interaction, versus batch
processing

●Adaptive attention (focus & selection), versus human
pre-selected data

●Core support for dynamic patterns, versus static data

●Unsupervised and self-supervised, versus supervised
learning

Adaptive AI (a2i2)

● Adaptive, self-organizing data structures, versus
fixed neural nets or databases

● Contextual, grounded concepts, versus hard-coded,
symbolic concepts

● Explicitly engineering functionality, versus evolving it

● Conceptual design, versus reverse-engineering

● General proof-of-concept, versus specific real
applications development

● Animal level cognition, versus abstract thought,
language, and formal logic.

Adaptive AI (a2i2)

● Pattern learning, matching, completion, and
recall.

● Data accumulation and forgetting.
● Categorization and clustering.
● Pattern hierarchies and associations.
● Pattern priming and activation spreading. (helps

at disambiguation)
● Action patterns. (feature extractors, actuators,

meta-cognition)

Adaptive AI (a2i2)

Adaptive AI (a2i2)

● embodied systems (Brooks 1994),
● vector encoded representation (Churchland

1995),
● adaptive self-organizing neural nets (esp.

Growing Neural Gas, Fritzke 1995),
● unsupervised and self-supervised learning,
● perceptual learning (Goldstone 1998),
● fuzzy logic (Kosko 1997)
● lang = C#

Lazy Learning (a2i2)
● (Aha, 1997) A memory-based technique that

postpones all the computation until an explicit
request for a prediction is received. The
examples considered relevant according to a
distance measure are interpolated locally.
Learning of:
– a family of local approximators

– parameters of the local approximator

– a metric to evaluate which examples are more
relevant

– bandwidth which indicates the size of the region
correctly modeled by local approximator family

Growing Neural Gas (a2i2)

● Grows a topological map by processing input
one at a time
– select two nodes s (at ws) closest and t (at wt)

second-closest to the input x

– error_s += |ws – x|, ws += ew*(x – ws)

– wn += en*(x – wn) for all n joined with s (neighbors)

– connect s and t with edge (or set edge age to 0)

– remove too old edges

– from time to time, add new node between largest
error node u and its largest error neighbor v

Vector Encoded Representation
(a2i2)

● Ideas from P. Churchland: functions of the brain
are represented in multidimensional spaces,
neural networks should therefore be treated as
“geometrical objects”, and “the internal language
of the brain is vectorial”,

● thinking is the changing of activation vectors by
matrix multiplication and nonlinear
transformations.

● In a2i2: all concepts are grounded; no high-level
inference mechanisms; no genetic
programming, scripts, or other direct symbolic
representation.

Hierarchical Temporal Memory
● hierarchical in both time and space
● HTMs are similar to Bayesian Networks; differ by

handling time, hierarchy, self-training, discovery of
causes, action, attention.
– Discover causes in the world

– Infer causes of novel input

– Make predictions

– Direct behavior

● inputs are topologically arrayed and must be
continuous in time; the input space is tiled

● hierarchical bottom-up Bayes-like net (internal nodes
are called „causes”) by conditioning in time

Hierarchical Temporal Memory
● each node in a layer of a hierarchy learns causes from

nearby nodes in the layer below

● each node has a fixed-size Bayes-like net whose variables
represent sequences in input

● it quantisizes input and assigns a probability of occurring in
each variable's sequence

● nodes pass quantization (clustering) info down the hierarchy;
(input-output discriminant-like clustering, coalescing and
expansion of time-based sequences)

● the nodes-tree structure is fixed

● belief propagation can enter cycles (high fan-in and fan-out of
variables reduces reinforcement of false beliefs)

● each node dynamically selects believed sequence based on
memory (mapping from spatial to temporal patterns)

Hierarchical Temporal Memory
● covert attention by switching on only some area
● attentional priming by setting a desired belief at the

top of the hierarchy (directed search)
● predictions: node sequences generate distribution of

expected patterns and pass it down as a prior
● each node has a single conditional probab. table
● fixed architecture allows for continuous change
● each variable is associated with one quantization

point (so there is a fixed number of each input occurrences in
learned sequences)

● cannot remember specific events (no one-instance
learning) (but expected to be added and based on „emotions”)

Developmental Robotics

● No Monolithic Internal Models
– people minimise internal representations

– and have multiple internal representations not
mutually consistemt

● No Monolithic Control (e.g. split brain patients)
● Not General Purpose (e.g. emotional content)
● Alternate Essences

– development, social interaction, physical interaction
and integration

Developmental Robotics

● Developmental Organization
– A process in which the acuity of both sensory and

motor systems are gradually increased significantly
reduces the difficulty of the learning problem.

– The caregiver also acts to gradually increase the
task complexity by structuring and controlling the
complexity of the environment.

– Reusing structures and information gained from
previously learned behaviors, allows to learn
increasingly sophisticated behaviors.

– Development gives a structured decomposition
(situated context of earlier behavior).

Cog
learning to

reach
target with

arm

Hand-programmed!

Requirements for Autonomous
Mental Development

● Environmental openness: AMD must deal with
unknown and uncontrolled environments.

● High-dimensional sensors: AMD must directly
deal with continuous raw signals from high-
dimensional sensors (e.g., vision, audition and
taction).

● Completeness in using sensory information:
don't discard, at the program design stage,
sensory information that may be useful for some
future, unknown tasks.

Requirements for AMD
● Online processing: At each time instant, what

the machine will sense next depends on what
the machine does now.

● Real-time speed: The sensory/memory
refreshing rate must be high enough (e.g., about
15Hz for vision). AMD must handle learning from
one instance of experience.

● Incremental processing: Acquired skills must
be used to assist in the acquisition of new skills,
as a form of ``scaffolding.'' Each new
observation must update the current complex
representation and the raw sensory data must
be discarded after it is used for updating.

Requirements for AMD

● Perform while learning: An AMD machine must
perform while it ``builds'' itself "mentally.''

● Scale up to large memory: For large
perceptual and cognitive tasks, an AMD
machine must handle multimodal contexts, large
long-term memory and generalization, and
capabilities for increasing maturity, all in real
time speed.

● Mental architecture should be:
– observation driven, selective, rehearsable, self-ware,

self-effecting, multi-level and developmental.

 T – attention
selector
 R – learned possible
actions (Incremental
Hierarchical
Discriminant
Regression)
 V – action values
(motivational system)
 L – context
clusterization
(prototypes)
 M – motor mapping
(allows for rehearsal)
 D – delay module
 Si1, Si2, Si3 –
internal sensors
 Ei1, Ei2 – internal
effectors

Incremental Hierarchical Discirminant Regression

● IHDR automatically derives the most discriminant features
subspaces in every node of the tree.

● One-instance learning is realized by either a new prototype
(when sufficiently distinct), or a similar prototype.

● IHDR dynamically grows subtrees to adapt to the increased
complexity.

● IHDR uses a data-driven coarse-to-fine search tree to
contain the local minima problem.

● The long-term memory stored as tree structure and micro-
prototypes prevent catastrophic memory loss.

● Given a input vector l(t), the time complexity for IHDR to find
a match and update the IHDR tree with n leaf nodes is O(d
log(n)) where d is the constant dimension of l(t).

(in CompSci terms, a search tree)

(SAIL) IHDR Details

● clustering of output space provides labels for
discriminant analysis (allows disregard input components
irrelevant to output)

● each node of the tree clusters input and output
(local-hierarchical probability distribution approximation;
clusters represented by f.o. statistics – Gaussian mixture)

● Mahalanobis distance (Euclidean when little of samples)
– which cluster to descend

● fully incremental: updated with every input vector
which is then discarded

● Observation-driven Markov Decision Process (time
invariants)

(SAIL) IHDR Details

A solid black cycle indicates a primitive prototype (context
state) in one of the four leaf nodes. An arrow between two

states indicates observed temporal transitions.

SAIL

● Supervised and reinforcement online learning:
pressure detectors let the teacher push the robot
in desired directions, „good – bad” buttons.

● With no teacher feedback, the robot acts from
context-sensitive memory.

● Has learned real-time vision-guided navigation
in complex indoor environment.

SAIL

Cognitive mapping M : S * X -> X' * A * Q
●S – state (context)
●X – sensory input (sensation)
●X' – primed sensation (prognostic)

prototype: a set of primed contexts
primed context: action a, expected
sensation s, expected value Q(a, s)

probability of choosing action a in context s:

SAIL

● novelty n(t): error of prediction normalized wrt.
speed of change

● combined reward:
● Q-learning update:

–

● prediction update:
–

● updates are backpropagated through a fixed-
length queue of recent contexts (Q-algorithm
would update all contexts)

SAIL (and Dav)

SAIL Action Chaining

SAIL Action Chaining

IDA

gener
al

cogni
tive

archit
ectur

e

IDA’s Architecture

IDA’S Modules and Mechanisms

● Perception—Copycat Architecture—Hofstadter

● Action Selection—Behavior Net—Maes

● Episodic Memory—Sparse Distributed Memory—Kanerva

● Emotions—Pandemonium Theory—Jackson

● Metacognition—Fuzzy Classifier Systems—Holland

● Learning—Copycat Architecture, Reinforcement

● Constraint Satisfaction—Linear Functional

● Language Generation—Pandemonium Theory

● Deliberation—Pandemonium Theory

● ‘Consciousness’ —Pandemonium Theory

(IDA) Action Selection
Paradigm of Mind

● Best viewed as degreed rather than as Boolean
● Aggregate rather than monolithic
● Enabled by disparate mechanisms
● Overriding task to produce the next action
● Operates on sensations to create information
● Reconstructs memories (prior information)
● Is implementable on machines

 124

(IDA) Cognitive Cycle Processing

● Hypothesis: Like IDA’s, human cognitive
processing is via a continuing sequence of
Cognitive Cycles

● Duration: Each cognitive cycle takes roughly
200 ms with steps 1 through 5 occupying about
80 ms

● Overlapping: Several cycles may have parts ru
nning simultaneously in parallel

● Seriality: Consciousness maintains serial order
and the illusion of continuity

● Start: with perception or action selection

 125

Declarative
Memory

Transient
Episodic
Memory

Workspace
Attention
Codelets

Sensory-Motor
Memory

External Stimulus

Internal Stimulus

Perceptual
Associative Memory

(Slip Net)

Procedural Memory
(Scheme Net)

Action
Selection

(Behavior Net)

2
Move

Percept

3
Cue

3
Cue3

Local
Associations

3
Local

Associations

4
Form

Coalitions

4
Move

Coalitions

5
Conscious
Broadcast

6,7
Instantiate
schemes

Attentional
Learning

Episodic
Learning

Perceptual Learning

Procedural Learning

R
e-

af
fe

re
nc

e

1
Perceptual

Codelets

Global
Workspace

8

Action
Selected

9
Action
Taken

Sensory
Memory

Environment

Consolidation

IDA

 126

(IDA) Virtual Machine on a Brain

● Entities include qualia, objects, categories, feelin
gs, intentions, internal images, internal speech,
etc.

● Relations include cause, before, on top of, isa, is
 not, can drink from, etc.

● Processes include perception, memory, action s
election, learning, etc.

● Note the partial ontology just created.
● Cognition: the endless cycle of deciding what to

do next.

 127

IDA finds jobs for sailors

● Communicates with sailors in English via email
● Selects jobs to offer a sailor, taking into account

– the Navy’s policies and needs

– the sailor’s preferences

● Deliberates about feasible dates
● Negotiates with the sailor about job selection

over the course of several emails

 128

IDA Consciousness

● What’s in the spotlight
● Limited capacity
● Coalition of codelets
● Message from these codelets broadcast to all

other codelets
● “...serves to disseminate a small amount of

information to a vast unconscious audience…”
● “The payoff for limited capacity seems to be vast

access.”

 129

(IDA) Tickets to the Spotlight

● Novelty, Relevancy, Informativeness
● Problems, Inconsistency, Violated expectations
● Whatever can’t be dealt with by unconscious,

automatic processors.
● Conscious imagery and inner speech allow

metacognitive reflection and control
● Self­system maintains stability under changing

internal and external conditions

 130

(IDA) Contexts
● coalitions of processors (codelets)
● include unconscious expectations and intentions
● Similar to but not the same as: Frames, Scripts,

Schemas, Semantic nets
● Perceptual, Conceptual, Goal, Cultural

 131

IDA

 132

(IDA) Slipnet = Simple Activation Net
● Directed graph of nodes, representing concepts, and

labeled links

● Links represent relations between nodes

● Nodes support activation, links pass it

● Slipnet does not learn

● Nodes don’t decay, but activation does

● Slipnet is long­term memory

● Temerature control of stability (temerature inversely
measures understanding of situation)

● Activation passes from node to node until the slipnet
stabilizes

● All slipnet nodes are feature detectors

 133

(IDA) Schema = Hierarch. Behavior Net
● Triple: context (makes schema more likely),

action, result (should be more likely after action)
● Spin­off schemas built when a relation between

items and actions is discovered
● Composite actions (implemented by schemas)

coordinated to achieve some goal
● Synthetic item — a state not expressible as

some combination of current states
● Synthetic items permit the invention of radically

new concepts, for example conservation
● Schemas keep track of reliability statistically

 134

(IDA) Finding Reliable Schema

● Schema mechanism looks for results that follow
from actions, reliably or not

● If a result follows unreliably, the mechanism
looks for added context to improve reliability

● When successful, it spins off a new schema
adding the newly discovered context to a copy of
the old schema

● Plan—a set of reliable schemas coordinated to
achieve some specified result.

 135

(IDA)
Strict

Behavi

or

Nets
●do not learn
●hand-coded

 136

Behavior Net „Fuzzy” Plans

● Sequence of competencies transform present
situation into desired one

● Sequence can become highly activated by
forward spreading from current state &
backward spreading from a goal state

● May occur in competition with other sequences
striving towards other goals

● In LIDA (strict) behavior nets are not learnable

 137

IDA Codelets

● Small pieces of code each performing a simple,
specialized task

● Many watch for a chance to act
● Most subserve some high level entity, e.g.

behavior, slipnet node
● Some codelets work on their own, e.g.

– watching for incoming mail

– checking for time and place conflicts

● Specialized perception codelets find features
and activate appropriate nodes in the slipnet

 138

IDA Sparse Distributed Memory

● random access (constant time)
● similar to a mix of Hopfield nets and self

organizing maps, based on binary code vectors
and Hamming distance, input space = output
space

● writing: nearby code vectors move their source
vectors towards input

● reading: fixpoint on coordinate-wise majority rule
reading the sources of nearby code vectors

 139

NARS Methodology

● Minimalism: not to maximize the system’s
performance, but to minimize its theoretical
assumptions and technical instruments, while
still achieving desired performance.

● There are scientific and engineering reasons for
following a unified approach.

● Many such attempts have failed, but they might
have followed wrong ideas. (General Problem
Solver, Fifth Generation Computers)

● The system should:
– rely on constant processing capacity,
– be open to unexpected tasks,
– learn from experience.

 140

NARS Semantics
● The truth value of a sentence is determined by

available evidence in the experience:
 F = W+/W, C = W/(W+1)
● Truth value uniformly represents randomness,

fuzziness, and ignorance.
● The meaning of a term is defined by its

experienced relations with other terms.

S P

S

M

P

abduction

S

M

P

M

S P

deduction

induction revision

bird  animal [1.0, 0.9]

subject  predicate
[frequency, confidence]

extension of subject inside
extension of predicate

intension of predicate inside
intension of subject

 141

NARS Semantics

● complete inheritance: base case
when F=C=1

● extension and intension:
–

● when premises are complete inh.:
–

● generalized to truth values

 142

(NARS) Compound Terms

● Compound terms: sets, intersections,
differences and images in extensional and
intensional versions, products.

● Variants of the inheritance relation: similarity,
instance, and property.

● New inference rules are added to carry out
compound composition and decomposition.

● Related changes in memory and control.

 143

NARS Higher-Order Reasoning

● Two higher-order relations, implication and
equivalence, are defined between statements.

● Compound statements: negations, conjunctions,
and disjunctions.

● The implication relation is used to carry out
conditional and hypothetical inferences.

● Variable terms are used to carry out general and
abstract inferences. Variable can be
independent or dependent on other variables.

● Some rules are the same (e.g. deduction,
abduction, induction), some are new.

 144

NARS Procedural Reasoning

● An event has a time-dependent truth-value.
● Events can be simultaneous or one can happen

before another.
● New operators and relations are formed, such

as sequential conjunction (“,”), parallel
conjunction (“;”), predictive implication (“/ ”), ⇒
retrospective implication (“\ ”), and concurrent ⇒
implication (“| ”).⇒

operations = executable
events

the system issues execution commands and
collects execution consequences by I/O

 145

NARS Control Strategy

● Task: a question or an assertion to assimilate.
● Beliefs and tasks are links of the belief network,

a concept is a node with all its links.
● Concepts, tasks and beliefs have priority-values.
● High-priority concept is selected probabilistically,

some its task and belief are processed by an
inference rule.

● Factors influence the priority of an item: quality
of the item, usefulness of the item in history, and
relevance of the item to the current context.

● Events have desirability-values, the system uses
decision-making procedure to create new goals
from desirable and achievable events.

 146

(NARS) Defence of Logical Approach
● „In its original and broad sense, “logic” is just the attempt of

capturing valid patterns of inference in a content-independent
manner, and “inference” is just the process by which new
knowledge is derived from existing knowledge.”

● „Non-Axiomatic Logic of NARS is fundamentally different from
traditional mathematical logic, in that it is an attempt to capture
the principle of adaptation with insufficient knowledge and
resources. In this logic, a “term” is an identifiable item or pattern
in the system’s experience; a “statement” is a relation between
two terms indicating their substitutability; the “truth-value” of a
statement measures how a statement is supported or refuted by
the system’s experience; the “meaning” of a term indicates the
role it plays in the system’s experience; the function of an
“inference rule” is to accomplish a single inference step, which
build term(s) and/or statement(s) to summarize the information in
existing ones; and an “reasoning process” is a sequence of steps
to carry out the tasks needed by the system for surviving and
adapting.”

 147

Novamente

• Components of the system have been commercially deployed:
– Biomind OnDemand product for bioinformatic data analysis

– ImmPort: NIH Web portal with Biomind/Novamente based
analytics on the back end

– INLINK language processing system developed for INSCOM
(Army Intelligence)

• Work in progress:

– Electric Sheep Company: Virtual Pets (early 2008)

– Virtual Agents with rudimentary English capability (2010)

• “Software and mathematics alone, no matter how advanced,
cannot create an AGI. Intelligence most naturally emerges
through situated and social experience.”

• AGI-Sim based on CrystalSpace, no much physics yet but robot-
like steering.

 148

PsyNet Philosophy of Mind
● Association. Patterns, when given attention, spread some of this

attention to other patterns that they have previously been
associated with in some way. Every idea in the memory is an
active agent, continually acting on those ideas with which the
memory associates it.

● Hierarchical network (inheritance). Patterns are habitually in
relations of control over other patterns that represent more
specialized aspects of themselves. Heterarchical network
(similarity). (Hierarchical + heterarchical = dual network.)

● Differential attention allocation. Patterns that have been
valuable for goal-achievement are given more attention, and are
encouraged to participate in giving rise to new patterns.

● Pattern creation. Patterns that have been valuable for goal-
achievement are mutated and combined with each other to yield
new patterns.

● Credit Assignment. Habitual patterns in the system that are
found valuable for goal-achievement are explicitly reinforced and
made more habitual.

● Self structure. A portion of the network of patterns forms into an
approximate image of the overall network of patterns.

 149

Novamente’s “Atom Space”

● Atoms = Nodes or Links
● Atoms have

– Truth values (probability + weight of evidence)
– Attention values (short and long term importance)

● The Atomspace is a weighted, labeled hypergraph

– ConceptNodes
• “tokens” for links to attach to

– PredicateNodes
– ProcedureNodes
– PerceptNodes

• Visual, acoustic percepts, etc.
– NumberNodes

• Logical links
– InheritanceLink
– SimilarityLink
– ImplicationLink
– EquivalenceLink

• Intensional logical relationships
• HebbianLinks
• Procedure evaluation links

 150

Novamente mechanisms
● A map = a fuzzy set of nodes or links that corresponds to

abstract concept or schema (event); they obey emergent
dynamics similar to that of nodes and are habitually activated
together, either all at once or in a particular habitual sequence.

● Probabilistic reasoning carried directly on the
hypergraph. (Probabilistic Logic Networks,
successor of Probabilistic Term Logic.)

● Evolutionary learning carried out using
MOSES (descendant of BOA for evolving
programs/scripts).

● Attention allocation by combination of
inference and evolutionary pattern mining.

 151

Novamente Past Applications
● Biomind:

– BOA uncovers patterns in labeled datasets
(microarray gene expression), and learn
classification models

– PTL incorporates background knowledge: gene and
protein function, research papers, gene sequence
alignment, protein interactions, and pathways

● INLINK:
– PTL learns disambiguation by interactive knowledge

entry.

– BOA Pattern Mining is used to spontaneously create
queries that are judged interesting.

 152

More on Atoms
● ConceptNodes, which derive their meaning via

interrelationships with other nodes

● PerceptNodes nodes representing perceptual inputs
into the system (e.g., pixels, points in time, etc.)

● TimeNodes representing moments and intervals of time

● PredicateNodes representing complex patterns
(procedures that output truth values)

● SchemaNodes embodying procedures (procedures
that output Atoms)

● Inheritance links implement hierarchical network

● Similarity links implement heterarchical network

● Procedures can be represented as terms or as variable-
free combinators (see Curry and Feys)

 153

 154

 155

 156

Novamente Architecture
● Each of functionally specialized Lobes (or Units)

contains a hypergraph and a number of
MindAgents.

● Some MindAgents perform basic system
maintenance, other apply PLN (PTL) and
MOSES (BOA) inferences in conjunction with
simple heuristics to carry out particular cognitive
tasks like procedure learning, probabilistic
inference on declarative knowledge, language
parsing.

● The Mind OS builds on a distributed processing
framework to enable distributed MindAgents to
act efficiently on large populations of Nodes and
Links

 157

 158

 159

Probabilistic Logic Networks
● More complex than logic in NARS
● Gracefully deals with inconsistencies e.g. by

iteratively correcting premises (example:
sensory input to agree with understanding)

● Higher-order PTL deals with
links pointing to links

● Distinction between
intensional and extensional
(in NARS these are
symmetric)

– Inheritance A B =
Subset A B or
IntensionalInheritance A B

 160

MOSES Meta-Optimizing Semantic
Evolutionary Search

● The properties of programs and program spaces
can be leveraged as inductive bias to reduce the
burden of manual representation-building,
leading to competent program evolution.

● Programs are normalized for better correlation of
syntactic and semantic distance

● Programs are aligned before cross-over
● Programs are generated according to a learned

distribution

The Fundamental Cognitive Dynamic

S(t+1) = B(F(S(t) + I(t)))

Forward: create new mental forms by combining existing
ones

Backward: seek simple explanations for the forms in the
mind, including the newly created ones. The
explanation itself then comprises additional new forms
in the mind

Forward: …
Backward: …
Etc.

… Combine … Explain … Combine … Explain … Combine …

 162

Intelligence and Self

● The reflexive process of flexibly
recognizing patterns in oneself and then
improving oneself based on these patterns
is the “basic algorithm of intelligence”

● The phenomenal self, a key aspect of
intelligent systems, is the result of an
intelligent system recognizing itself as a
pattern in its (internal and external)
behaviors

Stages of Cognitive Development

Sources

● „Essentials of General Intelligence: The direct
path to AGI” Peter Voss, 2002

● „A Gentle Introduction to the Universal
Algorithmic Agent AIXI” Marcus Hutter, 2003

Sources

● „An Introduction to SNePS 3”, Stuart Shapiro
2000

● „SNePS 2.6.1 User's Manual”, Stuart Shapiro,
The SNePS Implementation Group 2004

● „SNePS: A Logic for Natural Language
Understanding and Commonsense Reasoning”,
Stuart C. Shapiro 1999

● „Metacognition in SNePS”, Stuart C. Shapiro,
William J. Rapaport, Michael Kandefer, Frances
L. Johnson, and Albert Goldfain 2006

Sources

● „An Introduction to the Soar Cognitive
Architecture”, Tony Kalus, Frank Ritter 2003
(slides)

● „Cognitive Theory, SOAR”, Richard L. Lewis
1999

● „The Soar User’s Manual Version 8.6.3” John E.
Laird, Clare Bates Congdon, Karen J. Coulter
2006

Sources

● „An Integrated Theory of the Mind”, John R.
Anderson, Daniel Bothell, Michael D. Byrne,
Scott Douglass, Christian Lebiere, Yulin Qin,
2004

● „ACT-R 6.0 Reference Manual”, Dan Bothell,
2006

● „Rational Cognition in OSCAR” John L. Pollock,
●

Sources

● „Augmenting BDI Agents with Deliberative
Planning Techniques”, A. Walczak, L. Braubach,
A. Pokahr, W. Lamersdorf, 2006

● „A Goal Deliberation Strategy for BDI Agent
Systems”, Alexander Pokahr, Lars Braubach,
Winfried Lamersdorf 2005

● „Jadex: A BDI Reasoning Engine”, Alexander
Pokahr, Lars Braubach, Winfried Lamersdorf,
2005

Sources

● „TouringMachines: Autonomous Agents with
Attitudes”, Innes A. Ferguson 1992

● „TouringMachines: an architecture for dynamic,
rational, mobile agents”, Innes A. Ferguson
1992

Sources
● „From 2001 to 2001: Common Sense and the

Mind of HAL”, Douglas B. Lenat
● „The Cyc® System: Notes on Architecture” Nick

Siegel, Keith Goolsbey, Robert Kahlert, and
Gavin Matthews 2004

● „Guiding Inference with Policy Search
Reinforcement Learning” Cynthia Matuszek,
Pace Reagan Smith, Michael Witbrock, Matthew
E. Taylor 2007

● „Autonomous Classification of Knowledge into
an Ontology” M. E. Taylor, C. Matuszek, B.
Klimt, M. Witbrock 2007

Sources

● „Common Sense Reasoning – From Cyc to
Intelligent Assistant”, Kathy Panton, Cynthia
Matuszek, Douglas Lenat, Dave Schneider,
Michael Witbrock, Nick Siegel, and Blake
Shepard 2006

Sources

● „Human-level Intelligence Labolatory” directed
by Nick Cassimatis (www.cassimatis.com)

● „Grammatical Processing Using the Mechanisms
of Physical Inference”, Nicholas Cassimatis
2004

http://www.cassimatis.com/

Sources

● „The Lazy Learning Package” Mauro Birattari
and Gianluca Bontempi

● „Growing Neural Gas. Experiments with GNG,
GNG with Utility and Supervised GNG” Jim
Holmström

● „Churchland on Connectionism” Aarre Laasko
● MIT AI Lab, Humanoid Robotics Group, Cog

project
● „Building Behaviors Developmentally: A New

Formalism”, Brian Scassellati 1998

Sources
● „Hierarchical Temporal Memory. Concepts,

Theory, and Terminology” Jeff Hawkins and
Dileep George, 2007

● „SAIL and Dav Developmental Robot Projects:
the Developmental Approach to Machine
Intelligence”, Juyang Weng

● „From Neural Networks to the Brain:
Autonomous Mental Development”, J. Weng and
W. S. Hwang 2006

● "Novelty and Reinforcement Learning in the
Value System of Developmental Robots", X.
Huang and J. Weng, 2002

Sources

● „Hierarchical Discriminant Regression”, W.
Hwang and J. Weng, 2000

● „Incremental Hierarchical Discriminant
Regression”, J. Weng and W. Hwang, 2007

● „Action Chaining by a Developmental Robot with
a Value System”, Y. Zhang and J. Weng, 2002

Sources

● „How Minds Work: A Cognitive Theory of
Everything, Full Tutorial”, Stan Franklin,
University of Memphis Cognitive Computing
Research Group 2006

● „From NARS to a Thinking Machine”, Pei Wang
2006 (also AGI Workshop presentation)

● „Return to Term Logic”, Pei Wang 1997

Sources

● „A Comparison of the Novamente AI Design with
the Human Mind/Brain”, Ben Goertzel 2005

● „Novamente. A Practical Architecture for Artificial
General Intelligence” presentation, Ben Goertzel
2006

