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Model-free Reinforcement LearningMarkov Decision Processes

• a probabilistic �nite state automaton

• each transition (s, a, s′) has a reward Rs,s′

a

• V π(s) � expected discounted sum of rewards starting from state s

• Qπ(s, a) � action value of a state under a policy π: expected discountedsum of rewards after action a from state s

• Bellman optimality equations:
V (s) =max

a∈A

(

∑

s′

Ps,s′

a [Rs,s′

a + γV (s′)]
)

• Reinforcement Learning (RL) approximates V without prior knowledge ofprobabilities and rewards
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Temporal Di�erence Learning: Sarsa

• (a prediction method) subsequent predictions are correlated
• estimates both the expected value and the true V in

V π(s)= Eπ

{

∑

τ=t+1

Rτ

∣

∣

∣

∣

∣

st = s

}

= Eπ{Rt+1 + γV π(st+1) |st = s}

• to �nd the action we need rather (state, action) pairs:
Q(st, at)←Q(st, at)+ α[Rt+1 + γQ(st+1, at+1)−Q(st, at)]

• an ε-greedy strategy can update π(s) ← argmaxaQ(s, a), but still chooserandom action with prob. ε (to assure exploration)
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Q-Learning

• one-step Q-Learning:

Q(st, at)←Q(st, at)+ α
[

Rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]

• aprpoximates the optimal action value Q regardless of the policy used
• enough that the policy assures exploration
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RL in Homogeneous Multi-Agent Systems...by Dynamically Merging Markov Decision Processes�A Multiagent Reinforcement Learning by Dynamically Merging Markov DecisionProcesses�, student paper by M. Ghavamzadeh and S. Mahadevan,
• when multiple similar agents work in an environment, optimal behavior isnot automatically de�ned

• applying Q-Learning not e�cient: state and action spaces grow exponen-tially with the number of agents

• use individually learned agent knowledge to �nd a multiagent solution(coordination skills)

• assume that decision-making is synchronous
• assume total reward = summation of individual rewards

• MultiAgent Policy LEarning (MAPLE) based on Temporal Di�erenceslearning and Q-learning
• multiagent semi-Markov Decision Process (SMDP), state space and actionspace are product spaces
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Multiagent Homogeneous Semi-MDPs

• hierarchical methods � temporally extended actions (composite actions,closed-loop policies, micro-plans)

• options (a framework for extended actions): o= (π, β, I)

◦ a policy π: S ×A→ [0, 1],

◦ a termination condition β: S→ [0, 1],
◦ an initiation set I ⊂S.

• de�ne a multiagent system with joint option set instead of joint action set

• need to de�ne termination condition: e.g. when all options terminate

• state transitions of agents independent, reward of the system = sum ofrewards
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Planning algorithm1. Initialize ∀s∈S:2. Lv(s)=maxi=1
N V ∗,i(si)3. Uv(s) =

∑

i=1
N

V ∗,i(si)4. A(s)= A5. Initialize s6. repeat1. Lv(s)←maxa∈A(s)

(
∑

s′
Ps,s′

a [Rs,s′

a + γLv(s
′)]
)2. Uv(s)←maxa∈A(s)

(
∑

s′
Ps,s′

a [Rs,s′

a + γUv(s′)]
)3. A(s) ←

{

a ∈ A(s)
∣

∣

∑

s′
Ps,s′

a [Rs,s′

a + γUv(s′)] >maxb∈A(s)

∑

s′
Ps,s′

a [Rs,s′

a + γLv(s
′)]
}4. s← s′∈S |∃a∈A(s), Ps,s′

a > 07. until algorithm converges

Learning Algorithm (MAPLE) [on next slide]9



1. Initialize ∀s∈S:2. LQ(s, a)=maxi=1
N Q∗,i(si, ai)3. UQ(s, a)=

∑

i=1
N

Q∗,i(si, ai)4. A(s)= A5. repeat1. Initialize s2. repeata. Choose a from A(s) using policy derived from UQ (e.g., ε-greedy)b. Take action a, observe reward R and state s′c. LQ(s, a)← (1−α)LQ(s, a)+ α[R + γmaxa′ LQ(s′, a′)]d. UQ(s, a)← (1−α)LQ(s, a) + α[R + γmaxa′ LQ(s′, a′)]e. A(s)←
{

a∈A(s)
∣

∣UQ(s, a)>maxb∈A(s) LQ(s, b)
}f. s← s′3. until s is terminal6. until algorithm converges
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Model-based Reinforcement Learning�Reinforcement Learning: An Introduction�, Richard S. Sutton and Andrew G.Barto 1997, Chapter 9

• model-based RL is like state-space planning; tries to approximate optimalvalue function for a current model with limited computation
• model→ simulated experience �backups values→ policy
• to enhance exploration, esp. with changing environment, add κ n

√ to thereward of state that was visited n steps ago
• when planning, explore states that are expected to change value (and theirpredecessors)

Dyna Architecture11



Prioritized SweepingInitialize Q(s, a),Model(s, a) for all s∈S, a∈A(s) and PQueue to empty. Loop:1. s← current (nonterminal) state2. a← policy(s, Q)3. Execute action a; observe s′, R4. Model(s, a)← s′, R (assume deterministic environment)5. p←|R + γmaxa′ Q(s′, a′)−Q(s, a)|6. if p > θ, then insert s, a into PQueue with priority p7. Repeat N times, while PQueue is not empty:a. s, a← �rst(PQueue)b. s′, R←Model(s, a)c. Q(s, a)←Q(s, a)+ α[R + γmaxa′ Q(s′, a′)−Q(s, a)]d. Repeat, for all s̄ , ā predicted to lead to s:i. R̄← predicted rewardii. p←
∣

∣R̄ + γmaxa Q(s, a)−Q(s̄ , ā)
∣

∣iii. if p > θ then insert s̄ , ā into PQueue with priority p
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More on Model-based RL

• full backup (like in dynamic programming):

Q(s, a)←
∑

s′

P̂s,s′

a
[

R̂s,s′

a
+ γmax

a′

Q(s′, a′)
]

vs. sample backup (like in Q-learning):

Q(s, a)←Q(s, a) + α
[

R̂s,s′

a
+ γmax

a′

Q(s′, a′)−Q(s, a)
]

• where eligibility methods update more backwards than one-step Q-learning, heuristic methods search more forwards to select better nextaction (the maximization goes deeper down the state-tree)
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Bayesian Exploration�Model based Bayesian Exploration�, R. Dearden, N. Friedman, D. Andre 1999.
• Dirichlet priors for multinomial distributions (ξ is domain assumptions)

P (XN+1 = i|x1,� , xN , ξ)=
αi + Ni

∑

j
(αj + Nj)where Nj is #{xk = j |k = 1,� , N }.

• Priors for sparse multinomial distributions:
P (XN+1 = i|D)=







α + Ni

koα + N
C(D, L) if i∈Σo

1

n − ko
(1−C(D, L)) if i � Σowhere C(D, L) is a scaling factor computed from a prior over the sizes ofthe set of feasible observations, and ko is the number of observed symbols.

• Assumption of parameter independence:Pr(θ |µ)=
∏

s

∏

a

Pr(θs,a
t |µ)Pr(θs,a

R |µ)is not destroyed by new evidence.
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Q-Value distribution: exploiting the uncertainty

• value of information: balance expected gains from exploration againstexpected cost of suboptimal action

• suppose qs,a is the current estimate and qs,a
∗ is the true value of Q(s, a),

a1 is the best action under q and a2 is the second-best, then:

Gains,a(qs,a
∗ )=







E[qs,a2
]− qs,a

∗ if a = a1, qs,a
∗ < E[qs,a2

]

qs,a
∗ −E[qs,a1

] if a� a1, qs,a
∗ > E[qs,a1

]

0 otherwise
• value of perfect information:VPI(s, a)=

∫

−∞

∞ Gains,a(x)Pr(qs,a = x)dx

• choose the action that maximizes:
E[qs,a] +VPI(s, a)
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Estimating Q-Value Distributions

• sample several MDPs and compute sample Q-values from them bydynamic programming

• computing Q-values is expensive; keep weights for Q-samples and updateweights when updating MDPs distribution instead of resampling; for asample MDP M from distribution µ, when observed 〈s, a, r, t〉:
wµ◦〈s,a,r,t〉=

Pr(M |µ◦ 〈s, a, r, t〉)Pr(M |µ)
wµ =

Pr(〈s, a, r, t〉|M)Pr(〈s, a, r, t〉|µ)
wµ

• for initial weights k, when the weights drop below kmin, resample k − kminnew samples

• don't resample whole MDPs: �repair� � resample only around s, a, wherethe distribution changed; then correct the Q-value by generalized priori-tized sweeping (performs several Bellman updates on states a�ected by thechange, accounts for approximate settings)
• alternative approach is to represent distribution locally for each point s, a

• generalization: use the samples to estimate a distribution from a class ofdistributions (important esp. for the alternative approach: improves much)
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Reinforcement Learning with ImitationHeterogeneous Objectives but Homogeneous Actions�Reinforcement Learning with Imitation in Heterogeneous Multi-Agent Systems�,Bob Price and Craig Boutilier, 1999

• an IQ-learner uses the observations it has made of an expert agent to biasits exploration in promising directions

• no direct communication between the mentor (agent being imitated) andthe observer or apprentice (agent imitating the other)
• agents may be heterogenous: may have di�erent objectives and abilities

• the apprentice cannot directly observe the actions taken by the mentor,only the results

• assumption: the apprentice can evaluate its reward function at states thementor has visited, but that it hasn't
• the apprentice projects its reward function on a trajectory it has observedthe mentor follow, assuming it could follow this trajectory

• if the apprentice cannot follow the trajectory and agents are deterministic,the apprentice can sometimes fall in a loop
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Augmented Bellman Equation

• two assumptions: the mentor implements a deterministic stationary policy
πm, which induces a Markov chain Prm(t|s)=Prm(t|s, πm(s))

• for each action taken by the mentor, there exists an action a ∈ Ao suchthat the distributions Pro( · |s, a) and Prm( · |s) are the same
• then the Bellman Equation can be rewritten as

V (s)= Ro(s)+ γ







max

a∈Ao

{

∑

t∈S

Pro(t|s, a)V (t)

}

,
∑

t∈S

Prm(t|s)V (t)







• compute model con�dence e.g. by interval estimation, compare with thebottom of interval for Prm(t|s) to discredit regions not visited often by thementor
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Model-free IQ-Learning Algorithm

• instead of learning directly the model for MDP of the mentor, learn sepa-rate estimated state value for trajectory of the mentor
V̂ (s)← (1−α)V̂ (s) + α

(

R(s)+ βωV̂ (t)
)

where ω re�ects the ability of apprentice to duplicate the actions.
• when an apprentice makes a transition 〈s, a, r, t〉, in addition to Q-Learning it applies

Q(s, a)← (1−α)Q(s, a) + α

(

r + β

{

V̂ (t) if V̂ visited tmaxa′ {Q(t, a′)} otherwise )

• to diminish imitation with time, introduce γ(t) =
n − t

n

for t 6 n; putting ittogether

Q(s, a)← (1−α)Q(s, a)+ α(r + βFV(t)), whereFV(t) = (1− γ)max
a
{Q(t, a)}+ γ

{

V̂ (t) if V̂ visited tmaxa {Q(t, a)} otherwise
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Bayesian Approach to Imitation�A Bayesian Approach to Imitation in Reinforcement Learning� Bob Price andCraig Boutilier, 2003

• model-based RL method: the agent maintains an estimated MDP 〈S, Ao,

Ro , D̂
〉 based on the set of experiences 〈s, a, r, t〉 obtained so far

• assume mentor has a stationary policy πm

• Let Ho, Ao denote observer's state and action history, and Hm mentor'sstate history,

P (D |Ho, Ao, Hm) = αPr(Ho|D, Ao)Pr(Hm|D)P (D)

• in the case mentor's action in state s, πm
s , is the same as observer's,

P (Ds,a|Ho
s,a, Hm

s , πm
s = a) = αPr(Ho

s,a|Ds,a)Pr(Hm
s |Ds,a, πm

s = a)P (Ds,a)

• let n
s,a be the prior parameters for P (Ds,a), and co

s,a be the counts ofobserver transitions, and cm
s be the counts of mentor transitions; then

P (Ds,a|Ho
s,a,Hm

s )=
=Pr(πm

s = a|Ho
s,a, Hm

s )P (Ds,a; ns,a + co
s,a + cm

s )
+Pr(πm

s � a|Ho
s,a, Hm

s )P (Ds,a; ns,a + co
s,a)20



• Update beliefs about mentor's policy:Pr(πm|Hm, Ho)=
= αPr(Hm|πm, Ho)Pr(πm|Ho)

= αPr(πm)

∫

D∈D

Pr(Hm|πm, D)P (D |Ho)The integral can be approximated by sampling models. We make param-eter independence assumptions for the prior Pr(πm).
• action selection respecting the �value of information�
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Imitation with Heterogeneous ActionsFeasibility testing for agent actions�Imitation and Reinforcement Learning in Agents with Heterogeneous Actions�,Bob Price and Craig Boutilier, 2000

• action feasibility testing allows the learner to determine whether a speci�cmentor action can be duplicated

◦ at a state, for each observer action, test if it gives the same transi-tion probability as that observed in mentor from the state; if noneobserver action similar, unfeasible mentor action
• emergent ways that bypass (bridge) infeasible transitions s9 t:

◦ drop of the value of infeasible state t together with a small initialprior on states forces exploration of neighborhood of sbut the e�ects of discounting and small priors: only short bridges explored
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Feasibility testing for agent actions

• k-step repair, a learner attempts to determine whether it can approximatethe mentor's trajectory

◦ uses reachability analysis, caches the existence of a bridge
◦ when infeasible state found, observer searches for a bridge of lengthat most k, following only feasible transitions
◦ when a bridge is found, mentor's in�uence is ignored, because thevalue should �ow through the existing bridge
◦ the in�uence of infeasible transition is held for a �xed number ofbridge-search trials (state re-entries), then suppressed thereafter

◦ k-step repairability can measure the similarity of agents and beused to decide when repair attempts are worthwhile

◦ feasibility test and k-step repair can be combined23



Implicit imitation with feasibility tests.�k-step repair possible� here means that further repair attempts are possible (e.g.no bridge found so far, not too many attempts).24



Imitation for Interacting Agents�Accelerating Reinforcement Learning Through Imitation�, Robert Roy Price,PhD. dissertation, 2002.

• learn in the joint state space (product of states of agents)
• Role Swapping: in cooperative environments, the observer can use thelearned mentor's policy to augment action selection and converge to grouppolicy

• general symmetric Markov games: needs action estimation because jointactions index the payo�s matrix, which represents the joint Q-value; littlework in this �eld; (perhaps needs homogeneous action assumption)

• action planning in partially observable environments should deal with thetradeo� of improving the visibility of the mentor
25


