Multiagent Reinforce-
ment Learning

Table of contents

Model-free Reinforcement Learning 4
Markov Decision Processes 4
Temporal Difference Learning: Sarsa 5
Q-Learning e e 6

RL in Homogeneous Multi-Agent Systems 7
...by Dynamically Merging Markov Decision Processes 7
Multiagent Homogeneous Semi-MDPs 8
Planning algorithm 9
Learning Algorithm (MAPLE) [on next slide|] 9

Model-based Reinforcement Learning 11
Prioritized Sweeping 12
More on Model-based RL, 13
Bayesian Exploration 14

(Q-Value distribution: exploiting the uncertainty 15

Estimating Q-Value Distributions 16

Reinforcement Learning with Imitation 17

Heterogeneous Objectives but Homogeneous Actions 17
Augmented Bellman Equation 18
Model-free 1Q-Learning Algorithm 19
Bayesian Approach to Imitation 20

Imitation with Heterogeneous Actions 22
Feasibility testing for agent actions 22
Feasibility testing for agent actions 23

Imitation for Interacting Agents 25

Model-free Reinforcement Learning

Markov Decision Processes
e a probabilistic finite state automaton
e each transition (s,a,s’) has a reward RY 4/
e V™(s) expected discounted sum of rewards starting from state s

e (7(s, a) — action value of a state under a policy m: expected discounted
sum of rewards after action a from state s

e Bellman optimality equations:

V(s) = max (> Pl w<s'>])

acA

e Reinforcement Learning (RL) approximates V without prior knowledge of
probabilities and rewards

Temporal Difference Learning: Sarsa
e (a prediction method) subsequent predictions are correlated
e estimates both the expected value and the true V' in

V™(s)= Eﬁ{ > R,

T=t+1

Sp = s} = F{ARi41+ YV ™ (5¢41) |st=5s}

e to find the action we need rather (state, action) pairs:
Q(st, at) — Q(st,ar) + a[Rip1 +7Q(5t41, ar41) — Q(5¢,)]

e an e-greedy strategy can update 7(s) < argmax,Q(s, a), but still choose
random action with prob. € (to assure exploration)

Q-Learning

e one-step Q-Learning;:
Q(5t,ar) — Q(s¢, az) + O{Rt—kl + ymax Q(s¢41,a) — Q(s¢, at)}

e aprpoximates the optimal action value () regardless of the policy used

e enough that the policy assures exploration

RL in Homogeneous Multi-Agent Systems

...by Dynamically Merging Markov Decision Processes

“A Multiagent Reinforcement Learning by Dynamically Merging Markov Decision
Processes”, student paper by M. Ghavamzadeh and S. Mahadevan,

when multiple similar agents work in an environment, optimal behavior is
not automatically defined

applying Q-Learning not efficient: state and action spaces grow exponen-
tially with the number of agents

use individually learned agent knowledge to find a multiagent solution
(coordination skills)

assume that decision-making is synchronous

assume total reward = summation of individual rewards

MultiAgent Policy LEarning (MAPLE) based on Temporal Differences
learning and Q-learning

multiagent semi-Markov Decision Process (SMDP), state space and action
space are product spaces

Multiagent Homogeneous Semi-MDPs

hierarchical methods — temporally extended actions (composite actions,
closed-loop policies, micro-plans)

options (a framework for extended actions): o= (w, 3, 1)

o a policy m:S x A—10,1],

o a termination condition (:5— [0, 1],

o an initiation set I CS.
define a multiagent system with joint option set instead of joint action set
need to define termination condition: e.g. when all options terminate

state transitions of agents independent, reward of the system = sum of
rewards

Planning algorithm
1. Initialize Vs € S
2. Ly(s) =maxj, V*(s?)
3. Unls) =250, V(')
4. A(s)=A
5. Initialize s
6. repeat
1. Ly(s)«—maxgea(s) (D, Pss/[RS s+ vLy(s")])
2. Uy(s) —maxgea(s) (2, Pss[Re s+ Uu(s)])
3. A(s) «— {a € A@s) X, PruRi. 4+ AU(s)] =
maxXpe A(s)), Ls.s/[15,57+ ’VLU(SI)]}
4. s—s'eS|Fa€c A(s), Pis >0

7. until algorithm converges

Learning Algorithm (MAPLE) [on next slide]

9

1. Initialize Vs € S:

2. Lo(s,a)=max/_; Q*(s%, a’)
3. UQ(s,a):Z,fil Q" (s", a’)
4. A(s)=A

5. repeat

1. Initialize s
2. repeat

a. Choose a from A(s) using policy derived from Ug (e.g., &-
greedy)
b. Take action a, observe reward R and state s’

c. Lg(s,a)— (1—a)Lg(s,a)+ a|R+ ymax, Lg(s’,a’)]
d. Ug(s,a)«— (1 —a)Lg(s,a)+ a[R+ ymax, Lg(s',a’)]
e. A(s)—{acA(s)|Uqg(s,a) >maxpeca(s) Lo(s,b)}
f. s—3s’

3. until s is terminal

6. until algorithm converges

10

Model-based Reinforcement Learning

“Reinforcement Learning: An Introduction”, Richard S. Sutton and Andrew G.
Barto 1997, Chapter 9

e model-based RL is like state-space planning; tries to approximate optimal

value function for a current model with limited computation

. ; backups .
e model — simulated experience —— values — policy

e to enhance exploration, esp. with changing environment, add k+/n to the
reward of state that was visited n steps ago

e when planning, explore states that are expected to change value (and their
predecessors)

VAR

& A
Policy/value funct\lons

planning update

simulated
experience

direct RL
update

real
experience

rch
model seatc |
learning contro

Model

[Environment]

Dyna Architecture

11

Prioritized Sweeping

Initialize Q(s,a),Model(s,a) for all s€ S, a € A(s) and PQueue to empty. Loop:
1. s« current (nonterminal) state

a < policy(s, Q)

Execute action a; observe s’, R

Model(s, a) < s’, R (assume deterministic environment)

p | R+ ymaxes Q(s's) — Q(s, a)

if p> 6, then insert s,a into PQueue with priority p

S R

Repeat N times, while PQueue is not empty:
a. s,a+« first(PQueue)
b. s, R+ Model(s, a)
c. Q(s,a)«— Q(s,a)+ a[R+ ymax, Q(s’,a’) — Q(s,a)]
d. Repeat, for all 5§, a predicted to lead to s:
i. R+« predicted reward
ii. p—|R+ymax,Q(s,a) — Q(5,a)|
iii. if p> 6 then insert §,a into PQueue with priority p

12

More on Model-based RL

e full backup (like in dynamic programming):
(s,a <—Z PS o { < S/+7maxQ(s a)}
vs. sample backup (like in Q-learning):
Q(s,a) — Q(s,a) +a| R{.sr+ ymax Q(s',a’) — Q(s,a)
e where eligibility methods update more backwards than one-step Q-

learning, heuristic methods search more forwards to select better next
action (the maximization goes deeper down the state-tree)

13

Bayesian Exploration
“Model based Bayesian Exploration”, R. Dearden, N. Friedman, D. Andre 1999.

Dirichlet priors for multinomial distributions (¢ is domain assumptions)

P(XN+1=|z!,..., 2N, &) =

where N, is #{z*=jlk=1,...,N}.
Priors for sparse multinomial distributions:
ot o(D, L) if i € %0

P(XNT1=¢|D)=¢ Fo+H
_ko<1—c<D,L>> if i ¢ 20

where C(D, L) is a scaling factor computed from a prior over the sizes of
the set of feasible observations, and k° is the number of observed symbols.

Assumption of parameter independence:

Pr(6] 1) H H Pr(0%,q|p)Pr(0%| 1)

is not destroyed by new evidence.

14

Q-Value distribution: exploiting the uncertainty

value of information: balance expected gains from exploration against
expected cost of suboptimal action

suppose ¢s,q is the current estimate and gz , is the true value of Q(s, a),
a1 1s the best action under ¢ and as is the second-best, then:

E[Qs,ag] _q;,a if a:alaqz,a<E[QS,ag]
Gains’a(qz’a): q;,a_E[QS,al] lf a’#a’17 q;k,CL>E[q37al]
0 otherwise

value of perfect information:
VPI(s,a) :/ Gaing o()Pr(gs o =z)dx

choose the action that maximizes:

E|gs o]+ VPI(s,a)

15

Estimating Q-Value Distributions

sample several MDPs and compute sample Q-values from them by
dynamic programming

computing Q-values is expensive; keep weights for Q-samples and update
weights when updating MDPs distribution instead of resampling; for a
sample MDP M from distribution p, when observed (s, a,r,t):

y _Pr(M|po(s,a,r,t)) —_Pr({s,a,r,t)[M)
po(s,a,r,t) = Pr(M|pu) Y Pr((s,a, 7,)|)

for initial weights k£, when the weights drop below knin, resample & — Enin

Wy,

new samples

don’t resample whole MDPs: “repair” — resample only around s, a, where
the distribution changed; then correct the (Q-value by generalized priori-
tized sweeping (performs several Bellman updates on states affected by the
change, accounts for approximate settings)

alternative approach is to represent distribution locally for each point s, a

generalization: use the samples to estimate a distribution from a class of
distributions (important esp. for the alternative approach: improves much)

16

Reinforcement Learning with Imitation

Heterogeneous Objectives but Homogeneous Actions

“Reinforcement Learning with Imitation in Heterogeneous Multi-Agent Systems”,
Bob Price and Craig Boutilier, 1999

an IQ-learner uses the observations it has made of an expert agent to bias
its exploration in promising directions

no direct communication between the mentor (agent being imitated) and
the observer or apprentice (agent imitating the other)

agents may be heterogenous: may have different objectives and abilities

the apprentice cannot directly observe the actions taken by the mentor,
only the results

assumption: the apprentice can evaluate its reward function at states the
mentor has visited, but that it hasn’t

the apprentice projects its reward function on a trajectory it has observed
the mentor follow, assuming it could follow this trajectory

if the apprentice cannot follow the trajectory and agents are deterministic,
the apprentice can sometimes fall in a loop

17

Augmented Bellman Equation

two assumptions: the mentor implements a deterministic stationary policy
Tm, Which induces a Markov chain Pr,(t|s) =Pr,,(t|s, mm(s))

for each action taken by the mentor, there exists an action a € A, such
that the distributions Pr,(-|s,a) and Pr,,(-|s) are the same

then the Bellman Equation can be rewritten as
V — Lo) m
(s)=Ro(s)+ ;rgqx{ZPr (t]s,a) } ZPr (t|s)V (t)
tes tes

compute model confidence e.g. by interval estimation, compare with the
bottom of interval for Pr,,(t|s) to discredit regions not visited often by the
mentor

18

Model-free I1Q-Learning Algorithm

e instead of learning directly the model for MDP of the mentor, learn sepa-
rate estimated state value for trajectory of the mentor

A

V(s)—=(1=a)V (s)+a R(s)+ 5V (1))

where w reflects the ability of apprentice to duplicate the actions.

e when an apprentice makes a transition (s, a, r, t), in addition to Q-
Learning it applies

A

o V(t) if V visited ¢
Q(s,a)«— (1—a)Q(s,a) —|—Oé<7“‘|— ﬁ{ maxas {Q(¢,a’)} otherwise >

n—t
n

e to diminish imitation with time, introduce y(t) = for t < n; putting it

together
Q(s,a)— (1—a)Q(s,a)+ a(r+ BFV(t)), where

FV) = (1 = y)maxiQ, a)} H{ Xlg;) (Q(t, a)} herme

19

Bayesian Approach to Imitation

“A Bayesian Approach to Imitation in Reinforcement Learning” Bob Price and
Craig Boutilier, 2003

model-based RL method: the agent maintains an estimated MDP <S R

A

R,, D> based on the set of experiences (s, a,r,t) obtained so far

assume mentor has a stationary policy m,,

Let H,, A, denote observer’s state and action history, and H,, mentor’s
state history,

P(D|H,,A,, H,,)=aPr(H,|D, A,)Pr(H,,|D)P(D)
in the case mentor’s action in state s, m,,, is the same as observer’s,

P(D|H®, HE,, 7, = a) = aPr(HS%| D) Pr(HZ,|D*2, w5, = a) P(D*)

let n°* be the prior parameters for P(D*®%), and c¢,’“ be the counts of
observer transitions, and c¢;,, be the counts of mentor transitions; then

P(D**|H, ", Hp,) =
=Pr(my,=alH.", H;)P(D>*n%%+c." + c},)
+Pr(my, #FalH ", Hy) P(DS% n®%+c.)?)

20

Update beliefs about mentor’s policy:

Pr (| Hyn, H,) =
— aPr(Hop [T Ho)Pr (70 | Ho)

_ aPr(my) /D Pr(Hylm. D)P(DIH,)

The integral can be approximated by sampling models. We make param-
eter independence assumptions for the prior Pr(m,,).

action selection respecting the “value of information”

21

Imitation with Heterogeneous Actions

Feasibility testing for agent actions

“Imitation and Reinforcement Learning in Agents with Heterogeneous Actions”,
Bob Price and Craig Boutilier, 2000

action feasibility testing allows the learner to determine whether a specific
mentor action can be duplicated

o at a state, for each observer action, test if it gives the same transi-
tion probability as that observed in mentor from the state; if none
observer action similar, unfeasible mentor action

emergent ways that bypass (bridge) infeasible transitions s - ¢:

o drop of the value of infeasible state ¢ together with a small initial
prior on states forces exploration of neighborhood of s

but the effects of discounting and small priors: only short bridges explored

22

Feasibility testing for agent actions

e Kk-step repair, a learner attempts to determine whether it can approximate

the mentor’s trajectory

©)

uses reachability analysis, caches the existence of a bridge

when infeasible state found, observer searches for a bridge of length
at most k, following only feasible transitions

when a bridge is found, mentor’s influence is ignored, because the
value should flow through the existing bridge

the influence of infeasible transition is held for a fixed number of
bridge-search trials (state re-entries), then suppressed thereafter

k-step repairability can measure the similarity of agents and be
used to decide when repair attempts are worthwhile

feasibility test and k-step repair can be combined

23

lower bound
test

mentor better

observer better sufficient data

feasibility test

infeasible feasible

k-step repair
possible?

reject mentor accept mentor
influence influence

Implicit imitation with feasibility tests.
“k-step repair possible” here means that further repair attempts are possible (e.g.
no bridge found so far, not too many attempts).

24

Imitation for Interacting Agents

“Accelerating Reinforcement Learning Through Imitation”, Robert Roy Price,
PhD. dissertation, 2002.

learn in the joint state space (product of states of agents)

Role Swapping: in cooperative environments, the observer can use the
learned mentor’s policy to augment action selection and converge to group

policy

general symmetric Markov games: needs action estimation because joint
actions index the payoffs matrix, which represents the joint Q-value; little
work in this field; (perhaps needs homogeneous action assumption)

action planning in partially observable environments should deal with the
tradeoff of improving the visibility of the mentor

25

