
A* in Dynamic Environments

by Łukasz Stafiniak

Instytut Informatyki Uniwersytetu Wrocławskiego



Real-Time Adaptive A
∗

A∗ maintains (“A New Principle for Incremental Heuristic Search: Theoretical
Results” Maxim Likhachev Sven Koenig):

• estimated minimal cost g(s) from current state scurr to every state s (ini-
tially +∞)

• a heuristic h(s) estimating the goal distance

• a priority queue (open list=fringe nodes F) weighted by f(s) = g(s) + h(s)
initially with scurr only

• pop a state s, update g(s′) for each successor of s, push onto the queue
each successor for which g(s′) dropped, put s into closed list=internal
nodes I.

Take s∈ closed (an expanded state=internal node).
After a complete A∗ search, g(s) is the cost-minimal path from sstart to s.

2



Let gd(s) – the goal distance of s, f∗= gd(sstart) – the optimal cost. Then:

f∗− g(s)6 gd(s)

so the updated heuristic f∗− g(s) is admissible. It is a better heuristic:

h(s) 6 f∗− g(s)

Adaptive A∗ repeatedly finds cost-minimal paths for problems with the same

goal vertices and non-decreasing edge costs.
The updated heuristic is consistent:

h′(s) 6 h′(succ(s, a)) + c(s, a) 6 h′(succ(s, a)) + c′(s, a)

[Compare admissibility and increasing costs requirement to exploration.]

(“Real-Time Adaptive A*” Sven Koenig Maxim Likhachev)
sterm–a state that bounded-lookahead A* is about to expand when it terminates.

procedure realtime_adaptive_astar():

while (scurr � GOAL) do

lookahead4 any desired integer greater than zero;

3



astar();
if s =FAILURE then

return FAILURE;

for all s∈CLOSED do

h(s)4 g(sterm)+ h(sterm)− g(s);

movements4 any desired integer greater than zero;
while (scurr� sterm∧movements> 0) do

a 4 the action in A(scurr) on the cost-minimal trajectory
from scurr to sterm;
scurr4 succ(scurr, a);
movements4 movements− 1;
for any desired number of times (including zero) do

increase any desired c(s, a) where s∈S and a∈A(s);

if any increased c(s, a) is on the cost-minimal trajectory
from scurr to sterm then

break;

return SUCCESS;

4



Model learning is easy: start with the most optimistic c(s, a) = ε (e.g., ε = 1),
update costs from experience (e.g. c(s, a)4 ∞ when a � A(s)).

Because of simplicity, RTAA* is the best method for heavily time-constrained
domains.

Prioritorized Learning Real-Time A*

(“Real-Time Heuristic Search with a Priority Queue” D. Chris Rayner, Katherine
Davison, Vadim Bulitko, Kenneth Anderson, Jieshan Lu)

function PLRTA∗(s):

while s� sgoal do

StateUpdate(s)
repeat

p= queue.Pop()
if p� sgoal then StateUpdate(p)

until N states are updated or queue= ∅

s← neighbor s′ with lowest f(s, s′) = c(s, s′) + h(s′)

5



function StateUpdate(s)

find neighbor s′ with lowest f(s, s′) = c(s, s′)+ h(s′)
∆← f(s, s′)− h(s)
if ∆ > 0 then

h(s)← f(s, s′)
for all neighbors n of s do

AddToQueue(n, ∆)

function AddToQueue(s, ∆s)

if s � queue then

if queue.Full() then

(r, ∆r)← queue.Pop()
if ∆r < ∆s then queue.Push(s, ∆s)
else queue.Push(r, ∆r)

else queue.Push(s, ∆s)

6



Moving Target Adaptive A*

• instead of the “optimal” minimax (escaping opponent), just generalize A*

• based on Adaptive A* (see the previous notes file)

• we want linear space complexity (don’t store distances between arbitrary
states visited)

• correct the h values when the goal state changes; let H be the original
heuristic

h(s)4 max (H(s, starget
′ ), h(s)−h(starget

′ ))

• the lazy version accumulates updates and applies them when a state is
visited (remembering that the previous update was n times ago)

7



D* Lite

(“D* Lite” Sven Koenig, Maxim Likhachev)
D* Lite is based on Lifelong Planning A* (LPA*) which performs A* and
accommodates cost changes by replanning backwards from the change points
only backing-up distance from start for relevant states.

• no assumptions about how the costs change (up or down, close or far from
the current/start state)

• the priority queue always contains the locally inconsistent states g(s) �

rhs(s)

• Initialize() should perform lazily not to tabulate all states

D* Lite lets the current state move by planning backwards from the goal state,
replacing as g the distance from current state by the more stable distance from
goal state. Heuristic h now measures distances from the current state.

• h admissible h(s, s′)6 c∗(s, s′) and obeys the triangle inequality

• not to reorder the queue, accumulate changes h(sprev, scurr)

Minimax LPA* algorithm results by replacing min
s
′∈Succ(u) (c(u, s′) + g(s′))

with min
a∈A(u)max

s
′∈Succ(u) (c(u, s′) + g(s′)) (and performing argmin

a∈A(u) ).

8



Lifelong Planning A* algorithm

procedure CalculateKey(s):

return (min (g(s), rhs(s)) + h(s, sgoal),min (g(s), rhs(s)))

procedure Initialize():

U←∅;
for all s∈S do rhs(s)← g(s)←∞
rhs(sstart)← 0
U.Insert(sstart,CalculateKey(sstart))

procedure UpdateVertex(u):

if u� sstart then rhs(u)←min
s
′∈Pred(u) (g(s′) + c(s′, u))

if u∈U then U.Remove(u)
if g(u)� rhs(u) {∧NotYet(u)} then U.Insert(u,CalculateKey(u))

9



procedure ComputeShortestPath():

while U.TopKey()<̇CalculateKey(sgoal)∨ rhs(sgoal)� g(sgoal)

u←U.Pop()
if g(u) > rhs(u)

g(u)← rhs(u)
for all s∈ Succ(u) do UpdateVertex(s)

else

g(u)←∞
for all s∈ Succ(u)∪{u} do UpdateVertex(s)

procedure Main():

Initialize()
forever

ComputeShortestPath(); {insert all inconsist. states to U}
Wait for changes in edge costs
for all directed edges (u, v) with changed costs

update c(u, v)
UpdateVertex(v)

10



D* Lite algorithm

procedure CalculateKey(s):

return (min (g(s), rhs(s)) + h(sstart, s)+ km,min (g(s), rhs(s)))

procedure Initialize():

U←∅

km← 0
for all s∈S do rhs(s)← g(s)←∞
rhs(sgoal)← 0
U.Insert(sgoal,CalculateKey(sgoal))

procedure UpdateVertex(u):

if u� sgoal then rhs(u)←min
s
′∈Succ(u) (c(u, s′) + g(s′))

if u∈U then U.Remove(u)
if g(u)� rhs(u) {∧NotYet(u)} then U.Insert(u,CalculateKey(u))

11



procedure ComputeShortestPath():

while U.TopKey()<̇CalculateKey(sstart)∨ rhs(sstart)� g(sstart)

kold←U.TopKey()
u←U.Pop()
if kold<̇CalculateKey(u)

U.Insert(u,CalculateKey(u))

else if g(u) > rhs(u)

g(u)← rhs(u)
for all s∈Pred(u) do UpdateVertex(s)

else

g(u)←∞
for all s∈Pred(u)∪{u} do UpdateVertex(s)

{insert remaining locally inconsistent states to U}

12



procedure Main():

slast← sstart
Initialize()
ComputeShortestPath()
while sstart� sgoal

sstart← argmin
s
′∈Succ(sstart) (c(sstart, s

′) + g(s′))
Move to sstart
Scan graph for any changed edge costs
if any edge cost changed

km← km + h(slast, sstart)
slast← sstart
for all directed edges (u, v) with changed costs

Update c(u, v)
UpdateVertex(u)

ComputeShortestPath()

13



A Generalized Framework for LPA* with inconsistent heuristics

(“A Generalized Framework for Lifelong Planning A* Search” Sven Koenig,
Maxim Likhachev)

• Heuristic Search-based Planning (HSP) used in modern symbolic planners

• planners that find minimum-cost plans do not scale to large domains: the
need to use more informed but inconsistent heuristics

◦ the bigger the cost heuristic, the less states expanded

• experimentally A* works better with inconsistent heuristics, when for f -
value tie bigger g is prefered (not smaller)

◦ LPA* is not even correct: it can fail to find a finite cost solution

◦ no matter whether smaller or bigger g is prefered, LPA* is worse
than A* (replanning from scratch) on inconsistent heuristics

• solution: the priority queue of GLPA* does not contain all locally incon-
sistent states but only those not yet expanded as overconsistent; however,
GLPA* updates the priority queue to contain all locally inconsistent
states between calls to ComputePlan(); (NotYet in the algorithms)

◦ now one can use inconsistent heuristics and reversed g tie breaks

14



When the Model is Wrong – Dyna+

Dyna-Q + uses a heuristic to enforce exploration (especially useful in non-sta-
tionary environments): if a transition has not been tried in n time steps, then
planning backups are done as if that transition produced a reward of r + κ n

√
,

for some small κ. Perhaps a similar idea can be incorporated into above algo-
rithms.

15



Appendix

D* Lite optimized algorithm

procedure CalculateKey(s):

return (min (g(s), rhs(s)) + h(sstart, s)+ km,min (g(s), rhs(s)))

procedure Initialize():

U←∅

km← 0
for all s∈S do rhs(s)← g(s)←∞
rhs(sgoal)← 0
U.Insert(sgoal, (h(sstart, sgoal), 0))

procedure UpdateVertex(u):

if u� sgoal∧u∈U then rhs(u)←min
s
′∈Succ(u) (c(u, s′) + g(s′))

if u∈U ∧ g(u) = rhs(u) then U.Remove(u)
if g(u)� rhs(u)∧u∈U {∧NotYet(u)}

U.Insert(u,CalculateKey(u))

16



procedure ComputeShortestPath():

while U.TopKey()<̇CalculateKey(sstart)∨ rhs(sstart)� g(sstart)

kold←U.TopKey()
u←U.Pop()
knew←CalculateKey(u)
if kold<̇knew

U.Insert(u, knew)

else if g(u) > rhs(u)

g(u)← rhs(u)
for all s∈Pred(u)

if s� sgoal

rhs(s)←min (rhs(s), c(s, u)+ g(u))

UpdateVertex(s)

else

gold← g(u)
g(u)←∞

17



for all s∈Pred(u)∪{u}
if rhs(s)= c(s, u) + gold∧ s� sgoal

rhs(s)←min (rhs(s), c(s, u)+ g(u))

UpdateVertex(s)

{insert remaining locally inconsistent states to U}

18



procedure Main():

slast← sstart
Initialize()
ComputeShortestPath()
while sstart� sgoal

sstart← argmin
s
′∈Succ(sstart) (c(sstart, s

′) + g(s′))
Move to sstart
Scan graph for any changed edge costs
if any edge cost changed

km← km + h(slast, sstart)
slast← sstart
for all directed edges (u, v) with changed costs

cold← c(u, v)
Update c(u, v)
if cold> c(u, v)

if u� sgoal

rhs(u) ← min (rhs(u), c(u, v) +
g(v))

19



else if rhs(u) = cold+ g(v)

if u� sgoal

rhs(u)← min
s
′∈Succ(u) (c(u, s′) +

g(s′))

UpdateVertex(u)

ComputeShortestPath()

20


