A* in Dynamic Environments

by Łukasz Stafiniak

Instytut Informatyki Uniwersytetu Wrocławskiego

Real-Time Adaptive A^*

A^{*} maintains ("A New Principle for Incremental Heuristic Search: Theoretical Results" Maxim Likhachev Sven Koenig):

- estimated minimal cost g(s) from current state s_{curr} to every state s (initially $+\infty$)
- a heuristic h(s) estimating the goal distance
- a priority queue (open list=fringe nodes \mathcal{F}) weighted by f(s) = g(s) + h(s)initially with s_{curr} only
- pop a state s, update g(s') for each successor of s, push onto the queue each successor for which g(s') dropped, put s into closed list=internal nodes \mathcal{I} .

Take $s \in \text{closed}$ (an expanded state=internal node). After a complete A^* search, g(s) is the cost-minimal path from s_{start} to s. Let gd(s) – the goal distance of s, $f^* = gd(s_{start})$ – the optimal cost. Then:

 $f^* - g(s) \leqslant \operatorname{gd}(s)$

so the updated heuristic $f^* - g(s)$ is admissible. It is a better heuristic:

$$h(s) \leqslant f^* - g(s)$$

Adaptive A^* repeatedly finds cost-minimal paths for problems with the same goal vertices and non-decreasing edge costs. The updated heuristic is consistent:

$$h'(s) \leqslant h'(\operatorname{succ}(s,a)) + c(s,a) \leqslant h'(\operatorname{succ}(s,a)) + c'(s,a)$$

[Compare admissibility and increasing costs requirement to exploration.]

("Real-Time Adaptive A*" Sven Koenig Maxim Likhachev) s_{term} -a state that bounded-lookahead A* is about to expand when it terminates.

```
procedure realtime_adaptive_astar():
```

```
while (s_{\text{curr}} \notin \text{GOAL}) do
```

lookahead := any desired integer greater than zero;

astar();if s = FAILURE then

return FAILURE;

for all $s \in \text{CLOSED}$ do

 $h(s) := g(s_{\text{term}}) + h(s_{\text{term}}) - g(s);$

movements := any desired integer greater than zero; while $(s_{curr} \neq s_{term} \land movements > 0)$ do

> a := the action in $A(s_{curr})$ on the cost-minimal trajectory from s_{curr} to s_{term} ; $s_{curr} := \operatorname{succ}(s_{curr}, a)$; movements := movements - 1; for any desired number of times (including zero) do

> > increase any desired c(s, a) where $s \in S$ and $a \in A(s)$;

if any increased c(s, a) is on the cost-minimal trajectory from s_{curr} to s_{term} then

break;

return SUCCESS;

Model learning is easy: start with the most optimistic $c(s, a) = \varepsilon$ (e.g., $\varepsilon = 1$), update costs from experience (e.g. $c(s, a) := \infty$ when $a \notin A(s)$).

Because of simplicity, RTAA^{*} is the best method for heavily time-constrained domains.

Prioritorized Learning Real-Time A*

("Real-Time Heuristic Search with a Priority Queue" D. Chris Rayner, Katherine Davison, Vadim Bulitko, Kenneth Anderson, Jieshan Lu)

```
\begin{array}{l} \texttt{function PLRTA}^*(s):\\ \texttt{while } s \neq s_{\texttt{goal}} \texttt{ do}\\ \texttt{StateUpdate}(s)\\ \texttt{repeat}\\ p = \texttt{queue.Pop}()\\ \texttt{if } p \neq s_{\texttt{goal}} \texttt{ then StateUpdate}(p)\\ \texttt{until } N \texttt{ states are updated or queue} = \varnothing\\ s \leftarrow \texttt{neighbor } s' \texttt{ with lowest } f(s,s') = c(s,s') + h(s') \end{array}
```

function StateUpdate(s)

find neighbor s' with lowest f(s, s') = c(s, s') + h(s') $\Delta \leftarrow f(s, s') - h(s)$ if $\Delta > 0$ then $h(s) \leftarrow f(s, s')$ for all neighbors n of s do AddToQueue (n, Δ) function AddToQueue (s, Δ_s) if $s \notin$ queue then

if queue.Full() then

 $(r, \Delta_r) \leftarrow \text{queue.Pop}()$ if $\Delta_r < \Delta_s$ then $\text{queue.Push}(s, \Delta_s)$ else $\text{queue.Push}(r, \Delta_r)$

else queue. $\operatorname{Push}(s, \Delta_s)$

Moving Target Adaptive A*

- instead of the "optimal" minimax (escaping opponent), just generalize A*
- based on Adaptive A^* (see the previous notes file)
- we want linear space complexity (don't store distances between arbitrary states visited)
- correct the h values when the goal state changes; let H be the original heuristic

$$h(s) := \max\left(H(s, s'_{\text{target}}), h(s) - h(s'_{\text{target}})\right)$$

• the lazy version accumulates updates and applies them when a state is visited (remembering that the previous update was n times ago)

D* Lite

("D* Lite" Sven Koenig, Maxim Likhachev)

D^{*} Lite is based on **Lifelong Planning A**^{*} (LPA^{*}) which performs A^{*} and accommodates cost changes by replanning backwards from the change points only backing-up distance from start for relevant states.

- no assumptions about how the costs change (up or down, close or far from the current/start state)
- the priority queue always contains the locally inconsistent states $g(s) \neq rhs(s)$
- Initialize() should perform lazily not to tabulate all states

D* Lite lets the current state move by planning backwards from the goal state, replacing as g the distance from current state by the more stable distance from goal state. Heuristic h now measures distances from the current state.

- h admissible $h(s, s') \leq c^*(s, s')$ and obeys the triangle inequality
- not to reorder the queue, accumulate changes $h(s_{\text{prev}}, s_{\text{curr}})$

Minimax LPA* algorithm results by replacing $\min_{s' \in \operatorname{Succ}(u)} (c(u, s') + g(s'))$ with $\min_{a \in \mathcal{A}(u)} \max_{s' \in \operatorname{Succ}(u)} (c(u, s') + g(s'))$ (and performing $\arg\min_{a \in \mathcal{A}(u)}$).

Lifelong Planning A* algorithm

```
procedure CalculateKey(s):
```

 $\texttt{return} \; (\min \left(g(s), \texttt{rhs}(s) \right) + h(s, s_{\texttt{goal}}), \min \left(g(s), \texttt{rhs}(s) \right))$ procedure Initialize():

$$\begin{array}{l} U \leftarrow \varnothing;\\ \texttt{for all } s \in \mathcal{S} \texttt{ do } rhs(s) \leftarrow g(s) \leftarrow \infty\\ rhs(s_{\texttt{start}}) \leftarrow 0\\ U.\text{Insert}(s_{\texttt{start}}, \texttt{CalculateKey}(s_{\texttt{start}})) \end{array}$$

procedure UpdateVertex(u):

$$\begin{array}{l} \text{if } u \neq s_{\text{start}} \text{ then } \operatorname{rhs}(u) \leftarrow \min_{s' \in \operatorname{Pred}(u)} \left(g(s') + c(s', u)\right) \\ \text{if } u \in U \text{ then } U.\operatorname{Remove}(u) \\ \text{if } g(u) \neq \operatorname{rhs}(u) \left\{ \wedge \operatorname{NotYet}(u) \right\} \text{ then } U.\operatorname{Insert}(u, \operatorname{CalculateKey}(u)) \end{array}$$

procedure ComputeShortestPath():

while $U.\text{TopKey}() \dot{<} \text{CalculateKey}(s_{\text{goal}}) \lor \text{rhs}(s_{\text{goal}}) \neq g(s_{\text{goal}})$

 $\begin{array}{l} u \leftarrow U.\operatorname{Pop}() \\ \texttt{if } g(u) > \operatorname{rhs}(u) \\ g(u) \leftarrow \operatorname{rhs}(u) \\ \texttt{for all } s \in \operatorname{Succ}(u) \texttt{ do } \operatorname{UpdateVertex}(s) \end{array}$

else

 $g(u) \leftarrow \infty$ for all $s \in \operatorname{Succ}(u) \cup \{u\}$ do $\operatorname{UpdateVertex}(s)$

procedure Main():

Initialize()
forever

ComputeShortestPath(); {insert all inconsist. states to U} Wait for changes in edge costs for all directed edges (u, v) with changed costs update c(u, v)

UpdateVertex(v)

D* Lite algorithm

procedure CalculateKey(s):

return $(\min(g(s), \operatorname{rhs}(s)) + h(s_{\operatorname{start}}, s) + k_m, \min(g(s), \operatorname{rhs}(s)))$ procedure Initialize():

$$U \leftarrow \emptyset$$

$$k_m \leftarrow 0$$

for all $s \in S$ do $rhs(s) \leftarrow g(s) \leftarrow \infty$

$$rhs(s_{goal}) \leftarrow 0$$

 $U.Insert(s_{goal}, CalculateKey(s_{goal}))$

procedure UpdateVertex(u):

if
$$u \neq s_{\text{goal}}$$
 then $\operatorname{rhs}(u) \leftarrow \min_{s' \in \operatorname{Succ}(u)} (c(u, s') + g(s'))$
if $u \in U$ then $U.\operatorname{Remove}(u)$
if $g(u) \neq \operatorname{rhs}(u) \{ \land \operatorname{NotYet}(u) \}$ then $U.\operatorname{Insert}(u, \operatorname{CalculateKey}(u))$

procedure ComputeShortestPath():

```
while U.TopKey() \dot{<}CalculateKey(s_{\text{start}}) \lor \text{rhs}(s_{\text{start}}) \neq g(s_{\text{start}})
           k_{\text{old}} \leftarrow U.\text{TopKey}()
           u \leftarrow U.Pop()
           if k_{\text{old}} \dot{<} \text{CalculateKey}(u)
                      U.Insert(u, CalculateKey(u))
           else if g(u) > \operatorname{rhs}(u)
                      g(u) \leftarrow \operatorname{rhs}(u)
                      for all s \in Pred(u) do UpdateVertex(s)
           else
                      q(u) \leftarrow \infty
```

for all $s \in \operatorname{Pred}(u) \cup \{u\}$ do $\operatorname{UpdateVertex}(s)$

{insert remaining locally inconsistent states to U}

procedure Main():

```
s_{\text{last}} \leftarrow s_{\text{start}}
Initialize()
ComputeShortestPath()
while s_{\text{start}} \neq s_{\text{goal}}
          s_{\text{start}} \leftarrow \arg\min_{s' \in \text{Succ}(s_{\text{start}})} \left( c(s_{\text{start}}, s') + g(s') \right)
          Move to s_{\text{start}}
          Scan graph for any changed edge costs
          if any edge cost changed
                     k_m \leftarrow k_m + h(s_{\text{last}}, s_{\text{start}})
                     s_{\text{last}} \leftarrow s_{\text{start}}
                      for all directed edges (u, v) with changed costs
                                Update c(u, v)
                                UpdateVertex(u)
                      ComputeShortestPath()
```

A Generalized Framework for LPA* with inconsistent heuristics

("A Generalized Framework for Lifelong Planning A^{*} Search" Sven Koenig, Maxim Likhachev)

- Heuristic Search-based Planning (HSP) used in modern symbolic planners
- planners that find minimum-cost plans do not scale to large domains: the need to use more informed but inconsistent heuristics
 - the bigger the cost heuristic, the less states expanded
- experimentally A^* works better with inconsistent heuristics, when for f-value tie bigger g is prefered (not smaller)
 - \circ LPA* is not even correct: it can fail to find a finite cost solution
 - no matter whether smaller or bigger g is prefered, LPA* is worse than A* (replanning from scratch) on inconsistent heuristics
- solution: the priority queue of GLPA* does not contain all locally inconsistent states but only those not yet expanded as overconsistent; however, GLPA* updates the priority queue to contain all locally inconsistent states between calls to ComputePlan(); (NotYet in the algorithms)
 - \circ now one can use inconsistent heuristics and reversed g tie breaks

When the Model is Wrong – Dyna+

Dyna-Q + uses a heuristic to enforce exploration (especially useful in non-stationary environments): if a transition has not been tried in n time steps, then planning backups are done as if that transition produced a reward of $r + \kappa \sqrt{n}$, for some small κ . Perhaps a similar idea can be incorporated into above algorithms.

Appendix

D* Lite optimized algorithm

 $\verb|procedure CalculateKey(s):|$

 $\texttt{return}\;(\min\left(g(s),\texttt{rhs}(s)\right) + h(s_{\texttt{start}},s) + k_m,\min\left(g(s),\texttt{rhs}(s)\right))$ <code>procedure Initialize():</code>

$$\begin{array}{l} U \leftarrow \varnothing \\ k_m \leftarrow 0 \\ \texttt{for all } s \in \mathcal{S} \texttt{ do } \texttt{rhs}(s) \leftarrow g(s) \leftarrow \infty \\ \texttt{rhs}(s_{\texttt{goal}}) \leftarrow 0 \\ U.\texttt{Insert}(s_{\texttt{goal}}, (h(s_{\texttt{start}}, s_{\texttt{goal}}), 0)) \end{array}$$

procedure UpdateVertex(u):

 $\begin{aligned} & \text{if } u \neq s_{\text{goal}} \wedge u \in U \text{ then } \operatorname{rhs}(u) \leftarrow \min_{s' \in \operatorname{Succ}(u)} \left(c(u, s') + g(s') \right) \\ & \text{if } u \in U \wedge g(u) = \operatorname{rhs}(u) \text{ then } U. \operatorname{Remove}(u) \\ & \text{if } g(u) \neq \operatorname{rhs}(u) \wedge u \in U \ \{ \wedge \operatorname{NotYet}(u) \} \\ & U. \operatorname{Insert}(u, \operatorname{CalculateKey}(u)) \end{aligned}$

procedure ComputeShortestPath():

```
while U.TopKey() \dot{<} CalculateKey(s_{start}) \lor rhs(s_{start}) \neq g(s_{start})
```

```
k_{\text{old}} \leftarrow U.\text{TopKey}()
u \leftarrow U.Pop()
k_{\text{new}} \leftarrow \text{CalculateKey}(u)
if k_{\text{old}} \dot{<} k_{\text{new}}
            U.Insert(u, k_{new})
else if g(u) > \operatorname{rhs}(u)
            g(u) \leftarrow \text{rhs}(u)
            for all s \in \operatorname{Pred}(u)
                        if s \neq s_{\text{goal}}
                                    rhs(s) \leftarrow min (rhs(s), c(s, u) + g(u))
                        UpdateVertex(s)
```

else

$$g_{\text{old}} \leftarrow g(u)$$
$$g(u) \leftarrow \infty$$

for all $s \in \operatorname{Pred}(u) \cup \{u\}$ if $\operatorname{rhs}(s) = c(s, u) + g_{\operatorname{old}} \land s \neq s_{\operatorname{goal}}$ $\operatorname{rhs}(s) \leftarrow \min(\operatorname{rhs}(s), c(s, u) + g(u))$ UpdateVertex(s)

{insert remaining locally inconsistent states to U}

procedure Main():

 $s_{\text{last}} \leftarrow s_{\text{start}}$ Initialize() ComputeShortestPath() while $s_{\text{start}} \neq s_{\text{goal}}$ $s_{\text{start}} \leftarrow \arg\min_{s' \in \text{Succ}(s_{\text{start}})} \left(c(s_{\text{start}}, s') + g(s') \right)$ Move to s_{start} Scan graph for any changed edge costs if any edge cost changed $k_m \leftarrow k_m + h(s_{\text{last}}, s_{\text{start}})$ $s_{\text{last}} \leftarrow s_{\text{start}}$ for all directed edges (u, v) with changed costs $c_{\text{old}} \leftarrow c(u, v)$ Update c(u, v)if $c_{\text{old}} > c(u, v)$ if $u \neq s_{\text{goal}}$ $rhs(u) \leftarrow min (rhs(u), c(u, v) +$ g(v)

else if
$$rhs(u) = c_{old} + g(v)$$

if $u \neq s_{goal}$
 $rhs(u) \leftarrow min_{s' \in Succ(u)} (c(u, s') + g(s'))$
UpdateVertex(u)
ComputeShortestPath()