A* in Dynamic Environments

BY ŁUKASZ Stafiniak

Instytut Informatyki Uniwersytetu Wrocławskiego

Real-Time Adaptive A^{*}

A^{*} maintains ("A New Principle for Incremental Heuristic Search: Theoretical Results" Maxim Likhachev Sven Koenig):

- estimated minimal cost $g(s)$ from current state $s_{\text {curr }}$ to every state s (initially $+\infty$)
- a heuristic $h(s)$ estimating the goal distance
- a priority queue (open list=fringe nodes \mathcal{F}) weighted by $f(s)=g(s)+h(s)$ initially with $s_{\text {curr }}$ only
- pop a state s, update $g\left(s^{\prime}\right)$ for each successor of s, push onto the queue each successor for which $g\left(s^{\prime}\right)$ dropped, put s into closed list=internal nodes \mathcal{I}.

Take $s \in \operatorname{closed}$ (an expanded state $=$ internal node).
After a complete A^{*} search, $g(s)$ is the cost-minimal path from $s_{\text {start }}$ to s.

Let $\operatorname{gd}(s)$ - the goal distance of $s, f^{*}=\operatorname{gd}\left(s_{\text {start }}\right)$ - the optimal cost. Then:

$$
f^{*}-g(s) \leqslant \operatorname{gd}(s)
$$

so the updated heuristic $f^{*}-g(s)$ is admissible. It is a better heuristic:

$$
h(s) \leqslant f^{*}-g(s)
$$

Adaptive A^{*} repeatedly finds cost-minimal paths for problems with the same goal vertices and non-decreasing edge costs.
The updated heuristic is consistent:

$$
h^{\prime}(s) \leqslant h^{\prime}(\operatorname{succ}(s, a))+c(s, a) \leqslant h^{\prime}(\operatorname{succ}(s, a))+c^{\prime}(s, a)
$$

[Compare admissibility and increasing costs requirement to exploration.]
("Real-Time Adaptive A*" Sven Koenig Maxim Likhachev)
$s_{\text {term }}-$ a state that bounded-lookahead A* is about to expand when it terminates.
procedure realtime_adaptive_astar():
while ($s_{\text {curr }} \notin$ GOAL) do
lookahead $:=$ any desired integer greater than zero;
astar();
if $s=$ FAILURE then
return FAILURE;
for all $s \in \mathrm{CLOSED}$ do
$h(s):=g\left(s_{\text {term }}\right)+h\left(s_{\text {term }}\right)-g(s) ;$
movements $:=$ any desired integer greater than zero;
while $\left(s_{\text {curr }} \neq s_{\text {term }} \wedge\right.$ movements $\left.>0\right)$ do
$a:=$ the action in $A\left(s_{\text {curr }}\right)$ on the cost-minimal trajectory
from $s_{\text {curr }}$ to $s_{\text {term }}$;
$s_{\text {curr }}:=\operatorname{succ}\left(s_{\text {curr }}, a\right)$;
movements $:=$ movements -1 ;
for any desired number of times (including zero) do increase any desired $c(s, a)$ where $s \in S$ and $a \in A(s) ;$
if any increased $c(s, a)$ is on the cost-minimal trajectory from $s_{\text {curr }}$ to $s_{\text {term }}$ then
break;
return SUCCESS;

Model learning is easy: start with the most optimistic $c(s, a)=\varepsilon$ (e.g., $\varepsilon=1$), update costs from experience (e.g. $c(s, a):=\infty$ when $a \notin A(s)$).

Because of simplicity, RTAA* is the best method for heavily time-constrained domains.

Prioritorized Learning Real-Time A*

("Real-Time Heuristic Search with a Priority Queue" D. Chris Rayner, Katherine Davison, Vadim Bulitko, Kenneth Anderson, Jieshan Lu)
function $\operatorname{PLRTA}^{*}(s)$:

$$
\begin{aligned}
& \text { while } s \neq s_{\text {goal }} \text { do } \\
& \quad \text { StateUpdate }(s) \\
& \text { repeat } \\
& \quad p=\text { queue.Pop }() \\
& \quad \text { if } p \neq s_{\text {goal }} \text { then } \operatorname{StateUpdate}(p)
\end{aligned}
$$

until N states are updated or queue $=\varnothing$
$s \leftarrow$ neighbor s^{\prime} with lowest $f\left(s, s^{\prime}\right)=c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right)$
function StateUpdate (s)

$$
\text { find neighbor } s^{\prime} \text { with lowest } f\left(s, s^{\prime}\right)=c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right)
$$

$$
\Delta \leftarrow f\left(s, s^{\prime}\right)-h(s)
$$

$$
\text { if } \Delta>0 \text { then }
$$

$$
h(s) \leftarrow f\left(s, s^{\prime}\right)
$$

$$
\text { for all neighbors } n \text { of } s \text { do }
$$

AddToQueue (n, Δ)
function $\operatorname{AddToQueue}\left(s, \Delta_{s}\right)$
if $s \notin$ queue then
if queue.Full() then

$$
\left(r, \Delta_{r}\right) \leftarrow \text { queue. } \operatorname{Pop}()
$$

$$
\text { if } \Delta_{r}<\Delta_{s} \text { then queue. } \operatorname{Push}\left(s, \Delta_{s}\right)
$$

$$
\text { else queue. } \operatorname{Push}\left(r, \Delta_{r}\right)
$$

else queue. $\operatorname{Push}\left(s, \Delta_{s}\right)$

Moving Target Adaptive A*

- instead of the "optimal" minimax (escaping opponent), just generalize A*
- based on Adaptive A* (see the previous notes file)
- we want linear space complexity (don't store distances between arbitrary states visited)
- correct the h values when the goal state changes; let H be the original heuristic

$$
h(s):=\max \left(H\left(s, s_{\text {target }}^{\prime}\right), h(s)-h\left(s_{\text {target }}^{\prime}\right)\right)
$$

- the lazy version accumulates updates and applies them when a state is visited (remembering that the previous update was n times ago)

D* Lite
("D* Lite" Sven Koenig, Maxim Likhachev)
D* Lite is based on Lifelong Planning A* (LPA*) which performs A* and accommodates cost changes by replanning backwards from the change points only backing-up distance from start for relevant states.

- no assumptions about how the costs change (up or down, close or far from the current/start state)
- the priority queue always contains the locally inconsistent states $g(s) \neq$ rhs (s)
- Initialize() should perform lazily not to tabulate all states
D^{*} Lite lets the current state move by planning backwards from the goal state, replacing as g the distance from current state by the more stable distance from goal state. Heuristic h now measures distances from the current state.
- h admissible $h\left(s, s^{\prime}\right) \leqslant c^{*}\left(s, s^{\prime}\right)$ and obeys the triangle inequality
- not to reorder the queue, accumulate changes $h\left(s_{\text {prev }}, s_{\text {curr }}\right)$

Minimax LPA* algorithm results by replacing $\min _{s^{\prime} \in \operatorname{Succ}(u)}\left(c\left(u, s^{\prime}\right)+g\left(s^{\prime}\right)\right)$ with $\min _{a \in \mathcal{A}(u)} \max _{s^{\prime} \in \operatorname{Succ}(u)}\left(c\left(u, s^{\prime}\right)+g\left(s^{\prime}\right)\right)$ (and performing $\left.\arg \min _{a \in \mathcal{A}(u)}\right)$.

Lifelong Planning A* algorithm
procedure CalculateKey (s) :
return $\left(\min (g(s), \operatorname{rhs}(s))+h\left(s, s_{\text {goal }}\right), \min (g(s), \operatorname{rhs}(s))\right)$
procedure Initialize():

$$
\begin{aligned}
& U \leftarrow \varnothing ; \\
& \text { for all } s \in \mathcal{S} \text { do } \operatorname{rhs}(s) \leftarrow g(s) \leftarrow \infty \\
& \operatorname{rhs}\left(s_{\text {start }}\right) \leftarrow 0 \\
& U . \operatorname{Insert}\left(s_{\text {start }}, \text { CalculateKey }\left(s_{\text {start }}\right)\right)
\end{aligned}
$$

procedure UpdateVertex (u) :
if $u \neq s_{\text {start }}$ then $\operatorname{rhs}(u) \leftarrow \min _{s^{\prime} \in \operatorname{Pred}(u)}\left(g\left(s^{\prime}\right)+c\left(s^{\prime}, u\right)\right)$
if $u \in U$ then U.Remove (u)
if $g(u) \neq \operatorname{rhs}(u)\{\wedge \operatorname{NotYet}(u)\}$ then U.Insert $(u, \operatorname{CalculateKey}(u))$
procedure ComputeShortestPath():
while U. TopKey ()$\dot{<}$ CalculateKey $\left(s_{\text {goal }}\right) \vee \operatorname{rhs}\left(s_{\text {goal }}\right) \neq g\left(s_{\text {goal }}\right)$

```
\(u \leftarrow U . \operatorname{Pop}()\)
if \(g(u)>\operatorname{rhs}(u)\)
    \(g(u) \leftarrow \operatorname{rhs}(u)\)
    for all \(s \in \operatorname{Succ}(u)\) do \(\operatorname{UpdateVertex}(s)\)
else
\[
\begin{aligned}
& g(u) \leftarrow \infty \\
& \text { for all } s \in \operatorname{Succ}(u) \cup\{u\} \text { do UpdateVertex }(s)
\end{aligned}
\]
```

procedure Main():
Initialize()
forever
ComputeShortestPath(); \{insert all inconsist. states to $U\}$
Wait for changes in edge costs
for all directed edges (u, v) with changed costs
update $c(u, v)$
UpdateVertex (v)

D* Lite algorithm
procedure CalculateKey (s) :
$\operatorname{return}\left(\min (g(s), \operatorname{rhs}(s))+h\left(s_{\text {start }}, s\right)+k_{m}, \min (g(s), \operatorname{rhs}(s))\right)$
procedure Initialize():

$$
\begin{aligned}
& U \leftarrow \varnothing \\
& k_{m} \leftarrow 0 \\
& \text { for all } s \in \mathcal{S} \text { do } \operatorname{rhs}(s) \leftarrow g(s) \leftarrow \infty \\
& \operatorname{rhs}\left(s_{\text {goal }}\right) \leftarrow 0 \\
& U . \text { Insert }\left(s_{\text {goal }}, \text { CalculateKey }\left(s_{\text {goal }}\right)\right)
\end{aligned}
$$

procedure UpdateVertex (u) :
if $u \neq s_{\text {goal }}$ then $\operatorname{rhs}(u) \leftarrow \min _{s^{\prime} \in \operatorname{Succ}(u)}\left(c\left(u, s^{\prime}\right)+g\left(s^{\prime}\right)\right)$
if $u \in U$ then U.Remove (u)
if $g(u) \neq \operatorname{rhs}(u)\{\wedge \operatorname{NotYet}(u)\}$ then U.Insert $(u, \operatorname{CalculateKey}(u))$
procedure ComputeShortestPath():
while $U . \operatorname{TopKey}() \dot{<} \operatorname{CalculateKey}\left(s_{\text {start }}\right) \vee \operatorname{rhs}\left(s_{\text {start }}\right) \neq g\left(s_{\text {start }}\right)$
$k_{\text {old }} \leftarrow U . \operatorname{TopKey}()$
$u \leftarrow U . \operatorname{Pop}()$
if $k_{\text {old }} \dot{<}$ CalculateKey (u)
U.Insert (u, CalculateKey (u))
else if $g(u)>\operatorname{rhs}(u)$
$g(u) \leftarrow \operatorname{rhs}(u)$ for all $s \in \operatorname{Pred}(u)$ do UpdateVertex (s)
else

$$
\begin{aligned}
& g(u) \leftarrow \infty \\
& \text { for all } s \in \operatorname{Pred}(u) \cup\{u\} \text { do UpdateVertex }(s)
\end{aligned}
$$

\{insert remaining locally inconsistent states to U \}
procedure Main():
$s_{\text {last }} \leftarrow s_{\text {start }}$
Initialize()
ComputeShortestPath()
while $s_{\text {start }} \neq s_{\text {goal }}$
$s_{\text {start }} \leftarrow \arg \min _{s^{\prime} \in \operatorname{Succ}\left(s_{\text {start }}\right)}\left(c\left(s_{\text {start }}, s^{\prime}\right)+g\left(s^{\prime}\right)\right)$
Move to $s_{\text {start }}$
Scan graph for any changed edge costs
if any edge cost changed

$$
\begin{aligned}
& k_{m} \leftarrow k_{m}+h\left(s_{\text {last }}, s_{\text {start }}\right) \\
& s_{\text {last }} \leftarrow s_{\text {start }} \\
& \text { for all directed edges }(u, v) \text { with changed costs } \\
& \quad \text { Update } c(u, v) \\
& \quad \text { UpdateVertex }(u) \\
& \text { ComputeShortestPath }()
\end{aligned}
$$

A Generalized Framework for LPA* with inconsistent heuristics ("A Generalized Framework for Lifelong Planning A* Search" Sven Koenig, Maxim Likhachev)

- Heuristic Search-based Planning (HSP) used in modern symbolic planners
- planners that find minimum-cost plans do not scale to large domains: the need to use more informed but inconsistent heuristics
- the bigger the cost heuristic, the less states expanded
- experimentally A* works better with inconsistent heuristics, when for f value tie bigger g is prefered (not smaller)
- LPA* is not even correct: it can fail to find a finite cost solution
- no matter whether smaller or bigger g is prefered, LPA* is worse than A^{*} (replanning from scratch) on inconsistent heuristics
- solution: the priority queue of GLPA* does not contain all locally inconsistent states but only those not yet expanded as overconsistent; however, GLPA* updates the priority queue to contain all locally inconsistent states between calls to ComputePlan(); (NotYet in the algorithms)
- now one can use inconsistent heuristics and reversed g tie breaks

When the Model is Wrong - Dyna+

Dyna- $Q+$ uses a heuristic to enforce exploration (especially useful in non-stationary environments): if a transition has not been tried in n time steps, then planning backups are done as if that transition produced a reward of $r+\kappa \sqrt{n}$, for some small κ. Perhaps a similar idea can be incorporated into above algorithms.

Appendix

D* Lite optimized algorithm

procedure CalculateKey (s) :
return $\left(\min (g(s), \operatorname{rhs}(s))+h\left(s_{\text {start }}, s\right)+k_{m}, \min (g(s), \operatorname{rhs}(s))\right)$
procedure Initialize():

$$
\begin{aligned}
& U \leftarrow \varnothing \\
& k_{m} \leftarrow 0 \\
& \text { for all } s \in \mathcal{S} \text { do } \operatorname{rhs}(s) \leftarrow g(s) \leftarrow \infty \\
& \operatorname{rhs}\left(s_{\text {goal }}\right) \leftarrow 0 \\
& U . \operatorname{Insert}\left(s_{\text {goal }},\left(h\left(s_{\text {start }}, s_{\text {goal }}\right), 0\right)\right)
\end{aligned}
$$

procedure UpdateVertex (u) :
if $u \neq s_{\text {goal }} \wedge u \in U$ then $\operatorname{rhs}(u) \leftarrow \min _{s^{\prime} \in \operatorname{Succ}(u)}\left(c\left(u, s^{\prime}\right)+g\left(s^{\prime}\right)\right)$
if $u \in U \wedge g(u)=\operatorname{rhs}(u)$ then U.Remove (u)
if $g(u) \neq \operatorname{rhs}(u) \wedge u \in U\{\wedge \operatorname{NotYet}(u)\}$
U.Insert $(u, \operatorname{CalculateKey}(u))$
procedure ComputeShortestPath():

$$
\begin{gathered}
\text { while } U . \text { TopKey }() \dot{<} \operatorname{Calculate\operatorname {Key}(s_{\text {start}})\vee \operatorname {rhs}(s_{\text {start}})\neq g(s_{\text {start}})} \\
k_{\text {old }} \leftarrow U . \operatorname{TopKey}() \\
u \leftarrow U . \operatorname{Pop}() \\
k_{\text {new }} \leftarrow \operatorname{CalculateKey}(u) \\
\text { if } k_{\text {old }} \dot{<} k_{\text {new }} \\
U . \operatorname{Insert}\left(u, k_{\text {new }}\right) \\
\text { else if } g(u)>\operatorname{rhs}(u) \\
g(u) \leftarrow \operatorname{rhs}(u) \\
\text { for all } s \in \operatorname{Pred}(u) \\
\quad \operatorname{if~} s \neq s_{\text {goal }} \\
\operatorname{rhs}(s) \leftarrow \min (\operatorname{rhs}(s), c(s, u)+g(u)) \\
\quad \operatorname{UpdateVertex}(s)
\end{gathered}
$$

$$
\begin{aligned}
& \text { for all } s \in \operatorname{Pred}(u) \cup\{u\} \\
& \quad \text { if } \operatorname{rhs}(s)=c(s, u)+g_{\text {old }} \wedge s \neq s_{\text {goal }} \\
& \qquad \operatorname{rhs}(s) \leftarrow \min (\operatorname{rhs}(s), c(s, u)+g(u))
\end{aligned}
$$

UpdateVertex (s)
\{insert remaining locally inconsistent states to U \}
procedure Main():
$s_{\text {last }} \leftarrow s_{\text {start }}$
Initialize()
ComputeShortestPath()
while $s_{\text {start }} \neq s_{\text {goal }}$
$s_{\text {start }} \leftarrow \arg \min _{s^{\prime} \in \operatorname{Succ}\left(s_{\text {start }}\right)}\left(c\left(s_{\text {start }}, s^{\prime}\right)+g\left(s^{\prime}\right)\right)$
Move to $s_{\text {start }}$
Scan graph for any changed edge costs
if any edge cost changed

$$
k_{m} \leftarrow k_{m}+h\left(s_{\text {last }}, s_{\text {start }}\right)
$$

$s_{\text {last }} \leftarrow s_{\text {start }}$
for all directed edges (u, v) with changed costs

$$
\begin{aligned}
& c_{\text {old }} \leftarrow c(u, v) \\
& \text { Update } c(u, v) \\
& \text { if } c_{\text {old }}>c(u, v) \\
& \qquad \text { if } u \neq s_{\text {goal }} \\
& \qquad \quad \operatorname{rhs}(u) \leftarrow \min (\operatorname{rhs}(u), c(u, v)+ \\
& \quad g(v))
\end{aligned}
$$

$$
\begin{aligned}
& \text { else if } \operatorname{rhs}(u)=c_{\text {old }}+g(v) \\
& \text { if } u \neq s_{\text {goal }} \\
& \operatorname{rhs}(u) \leftarrow \min _{s^{\prime} \in \operatorname{Succ}(u)}\left(c\left(u, s^{\prime}\right)+\right. \\
& \left.g\left(s^{\prime}\right)\right)
\end{aligned}
$$

UpdateVertex (u)
ComputeShortestPath()

