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Introduction

In this talk we will isolate four common recursion schemes
(naturally associated with recursive data types), give them a
generic theoretical treatment and prove a number of general laws
about them. Then we will use these laws in an example.
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Motivation

It is sometimes quite hard to reason about arbitrary recursively
de�ned functions.

By sticking to well-de�ned recursion patterns, we are able to:

use already proven theorems to optimize or prove properties

calculate programs and reason about them more easily (chie�y
because we can now refer to the recursion scheme in isolation)

reuse code and ideas
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Introducing fold

sum [ ] = 0
sum ( x : x s ) = x + sum xs

This sort of pattern is very common in functional programs.

h [ ] = e
h ( x : x s ) = f x ( h xs )

It's so common that it deserves its own higher-order function in the
standard library:

f o l d r : : ( a −> b −> b) −> b −> [ a ] −> b
f o l d r f e [ ] = e
f o l d r f e ( x : x s ) = f x ( f o l d r f e xs )
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Introducing fold

But is it only for lists?

We could've de�ned our own list type:

data L i s t a = N i l | Cons a ( L i s t a )

Then the fold function for that type would be:

f o l d L i s t : : ( a −> b −> b) −> b −> L i s t a −> b
f o l d L i s t f e N i l = e
f o l d L i s t f e ( Cons x xs ) = f x ( f o l d L i s t f e xs )

What about other data structures?
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Introducing fold

data Tree a = Tip a | Bin ( Tree a ) ( Tree a )

f o l dT r e e : : ( a −> b) −> (b −> b −> b) −>
Tree a −> b

f o l dT r e e f g ( Tip x ) = f x
f o l dT r e e f g ( Bin xs ys ) = g ( f o l dT r e e f g xs )

( f o l dT r e e f g ys )
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Introducing fold

data Rose a = Node a [ Rose a ]

f o l dRo s e : : ( a −> [ b ] −> b) −> Rose a −> b
fo l dRo s e f (Node x t s ) = f x (map ( f o l dRo s e f ) t s )

Do you see the pattern?

Folds in a sense �replace� data constructors with the
functions/values that you pass as arguments.
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Datatype-generic fold

We separate the �list shape� from type recursion:

data L i s t S a b = Ni lS | ConsS a b
data F i x s a = In ( s a ( F i x s a ) )
type L i s t a = F i x L i s t S a

As an example, list [1, 2] is represented by

I n ( ConsS 1 ( I n ( ConsS 2 ( I n N i l S ) ) ) )

We also de�ne an inverse to in named out:

out : : F i x s a −> s a ( F i x s a )
out ( I n x ) = x
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Datatype-generic fold

We separate the �list shape� from type recursion:

data L i s t S a b = Ni lS | ConsS a b
data F i x s a = In { out : : s a ( F i x s a )}
type L i s t a = F i x L i s t S a

Now we de�ne a function bimap which applies its arguments f and
g to all the a's and b's in an argument of type ListS a b:

bimap : : ( a −> a ' ) −> (b −> b ' ) −>
L i s t S a b −> L i s t S a ' b '

bimap f g N i l S = N i lS
bimap f g ( ConsS a b ) = ConsS ( f a ) ( g b )
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Datatype-generic fold

data L i s t S a b = Ni lS | ConsS a b
data F i x s a = In { out : : s a ( F i x s a )}
type L i s t a = F i x L i s t S a

bimap : : ( a −> a ' ) −> (b −> b ' ) −>
L i s t S a b −> L i s t S a ' b '

Now we can write a di�erent version of fold on List:

f o l d L i s t : : ( L i s t S a b −> b) −> L i s t a −> b
f o l d L i s t f = f . bimap id ( f o l d L i s t f ) . out

f gives the �interpretation� of constructors. For example
sum = foldList add :: List Integer -> Integer, where

add : : L i s t S Integer Integer −> Integer
add N i l S = 0
add ( ConsS m n ) = m + n
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Datatype-generic fold

Now we also want to abstract away from the speci�c ListS shape.
To be suitable, a shape must support bimap (so it must be a
bifunctor):

c l a s s B i f u n c t o r s where
bimap : : ( a −> a ' ) −> (b −> b ' ) −> s a b −> s a ' b '

Then fold works for any suitable shape:

f o l d : : B i f u n c t o r s => ( s a b −> b) −> Fix s a −> b
f o l d f = f . bimap id ( f o l d f ) . out

...and one of these shapes is ListS:

instance B i f u n c t o r L i s t S where
bimap f g N i l S = N i lS
bimap f g ( ConsS a b ) = ConsS ( f a ) ( g b )
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Datatype-generic fold

Now we also want to abstract away from the speci�c ListS shape.
To be suitable, a shape must support bimap (so it must be a
bifunctor):

c l a s s B i f u n c t o r s where
bimap : : ( a −> a ' ) −> (b −> b ' ) −> s a b −> s a ' b '

Then fold works for any suitable shape:

f o l d : : B i f u n c t o r s => ( s a b −> b) −> Fix s a −> b
f o l d f = f . bimap id ( f o l d f ) . out

...but binary trees also �t:

data TreeS a b = TipS a | BinS b b
instance B i f u n c t o r TreeS where

bimap f g ( TipS a ) = TipS ( f a )
bimap f g ( BinS b 1 b 2) = BinS ( g b 1) ( g b 2)
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The categorical view

A category consists of:

a collection of objects

for each pair A, B of objects, a collection Mor(A, B) of arrows
(also called morphisms)

an identity arrow id A : A → A for each object A

composition f ◦ g : A → C of compatible arrows
f : B → C and g : A → B

composition is associative, and identities are neutral elements
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The categorical view

The category SET consists of:

a collection of objects (sets, or in our case types)

for each pair A, B of objects, a collection Mor(A, B) of arrows
(total functions)

an identity arrow id A : A → A for each object A

composition f ◦ g : A → C of compatible arrows
f : B → C and g : A → B

composition is associative, and identities are neutral elements
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The categorical view

Before we go any further...

A
g

- B

C

j

? h
- D

f

?

We compose morphisms along the arrows. We say that the diagram
commutes when f ◦ g = h ◦ j.
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The categorical view

A functor F is simultaneously

an operation on objects

an operation on arrows

such that

F f : F A → F B when f : A → B

F id = id

F (f ◦ g) = F f ◦ F g

(think fmap in Haskell)

Filip Pawlak Algebra of Functional Programs



The categorical view

Functor List is simultaneously

an operation on objects (List A = [A])

an operation on arrows (List f = map f)

such that

List f : List A → List B when f : A → B

List id = id

List (f ◦ g) = List f ◦ List g
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The categorical view

Functor ListS A is simultaneously

an operation on objects ((ListS A) B = ListS A B)

an operation on arrows ((ListS A) f = bimap id f)

such that

(ListS A) f : ListS A B → ListS A B' when f : B → B'

(ListS A) id = id

(ListS A) (f ◦ g) = (ListS A) f ◦ (ListS A) g
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The categorical view

An F-algebra for functor F is a pair (A, f) where f : F A→A.

Eg. (List Integer, In) and (Integer, add) are both F-algebras for
ListS Integer:

I n : : L i s t S Integer ( L i s t Integer ) −> L i s t Integer
add : : L i s t S Integer Integer −> Integer
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The categorical view
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The categorical view

A homomorphism between F-algebras (A, f) and (B, g) is a
morphism h : A→B such that the following diagram commutes:

F A
f

- A

F B

Fh

? g
- B

h

?

...or, equivalently, that h ◦ f = g ◦ F h.

An F-algebra (A, f) is initial if there is a unique homomorphism to
each F-algebra (B, g).
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The categorical view

A homomorphism between F-algebras (A, f) and (B, g) is a
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The categorical view

It turns out that for an initial F-algebra (A, f) the action f has an
inverse, so F A is isomorphic to A (which is what we really want for
our inductive data types). In this sense A is a �xed point of F.

We usually call the f function for an initial algebra in. We usually
call the inverse function out.

Sidenote 1: (List Integer, In) is an initial algebra for the functor
ListS Integer. (Integer, add) is not, as add doesn't even have an
inverse.
Sidenote 2: the existence of initial algebras is guaranteed for
so-called polynomial functors (so all functors that we consider in
this talk).
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The categorical view
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The categorical view

Once again, for an initial F-algebra (A, in), there is a unique
homomorphism to each F-algebra (B, f). We call this
homomorphism fold f.

Sidenote: this homomorphism is also called a catamorphism.
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The categorical view

Once again, for an initial F-algebra (A, in), there is a unique
homomorphism to each F-algebra (B, f). We call this
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The categorical view

For an initial F-algebra (A, in), there is a unique homomorphism to
each F-algebra (B, f). We call this homomorphism fold f.

F A
in

- A

F B

F (fold f)

? f
- B

fold f

?

Its de�ning property is that fold f ◦ in = f ◦ F fold f.

Intuitively, it means that it behaves nicely with F.
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The categorical view

For an initial F-algebra (A, in), there is a unique homomorphism to
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F A
in

- A

F B

F (fold f)

? f
- B

fold f

?

Its de�ning property is that fold f ◦ in = f ◦ F fold f.

Intuitively, it means that it behaves nicely with F.

Filip Pawlak Algebra of Functional Programs



The categorical view

F A
in

- A

F B

F (fold f)

? f
- B

fold f

?

We have that fold ◦ in = f ◦ F fold f.

Because in ◦ out = id, we can also write fold f = f ◦ F fold f ◦ out.

f o l d : : B i f u n c t o r s => ( s a b −> b) −> Fix s a −> b
f o l d f = f . bimap id ( f o l d f ) . out
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The categorical view

F A
in

- A

F B

F (fold f)

? f
- B

fold f

?
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The categorical view

F A
in

- A

F B

F (fold f)

? f
- B

fold f

?
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The categorical view

An F-coalgebra is a pair (A, f) where f : A → F A.

A homomorphism between F-coalgebras (A, f) and (B, g) is a
morphism h : A → B such that the following diagram commutes:

A
f

- F A

B

h

? g
- F B

Fh

?

...or, equivalently, that g ◦ h = F h ◦ f.

An F-coalgebra (B, g) is terminal if there is a unique
homomorphism to it from every F-coalgebra (A, f).
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The categorical view
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The categorical view
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The categorical view

It turns out that for a terminal F-coalgebra (B, g) the action g has
an inverse, so B is isomorphic to F B (which is what we really want
for our inductive data types). In this sense B is a �xed point of F.

We usually call the g function for a terminal coalgebra out. We
usually call the inverse function in.

Sidenote: the existence of terminal coalgebras is guaranteed for all
functors that we consider in this talk.
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The categorical view
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The categorical view
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The categorical view

Once again, for a terminal F-coalgebra (B, out), there is a unique
homomorphism to it from each F-algebra (A, f). We call this
homomorphism unfold f.

Sidenote: this homomorphism is also called an anamorphism.

Filip Pawlak Algebra of Functional Programs



The categorical view

Once again, for a terminal F-coalgebra (B, out), there is a unique
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The categorical view

For a terminal F-coalgebra (B, out), there is a unique
homomorphism to it from each F-algebra (A, f). We call this
homomorphism unfold f.

A
f

- F A

B

unfold f

? out
- F B

F (unfold f)

?

Its de�ning property is that out ◦ unfold f = F unfold f ◦ f.

Intuitively, unfold f takes some seed of type A and generates
something of type B (eg. a list). f takes a seed and generates both
an intermediate value (eg. a list element) and a seed for unfold to
generate the rest of the structure (the tail of the list).
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The categorical view
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The categorical view

(Note: there can be many values and many seeds, depending on
the functor/the shape of the inductive type de�nition - take binary
trees as an example.)

We have that out ◦ unfold f = F unfold f ◦ f.
Because in ◦ out = id, we also have unfold f = in ◦ F unfold f ◦ f.

u n f o l d : : B i f u n c t o r s => ( b −> s a b ) −>
(b −> Fix s a )

un f o l d f = In . bimap id ( u n f o l d f ) . f
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The categorical view
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Universal property

F T
in

- T

F B

F (fold f)

? f
- B

fold f

?

Now we can �nally prove some laws about these recursion schemes.
We begin with fold. We will often make use of the following
universal property, which is a consequence of the uniqueness of fold:

h = foldT f ⇐⇒ h ◦ inT = f ◦ Fh

It is a sort of �canned induction proof�.
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Evaluation rule

Intuitively, the evaluation rule shows �one step of evaluation� of a
fold.

foldT f ◦ inT
= {universal property, letting h = fold f }
f ◦ F(foldT f )
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Fusion (exact version)

h ◦ foldT f = foldTg

⇐⇒ {universal property}
h ◦ foldT f ◦ inT = g ◦ F(h ◦ foldT f )

⇐⇒ {functors}
h ◦ foldT f ◦ inT = g ◦ Fh ◦ F(foldT f )

⇐⇒ {evaluation rule}
h ◦ f ◦ F(foldT f ) = g ◦ Fh ◦ F(foldT f )

Again, it's a kind of a �canned induction proof�.
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Fusion (weaker version)

h ◦ foldT f = foldTg

⇐⇒ {exact fusion}
h ◦ f ◦ F(foldT f ) = g ◦ Fh ◦ F(foldT f )

⇐= {Leibniz}
h ◦ f = g ◦ Fh

Much easier to use.
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Identity

The identity function id is a fold:

id = foldT f

⇐⇒ {universal property}
id ◦ inT = f ◦ F id

⇐⇒ {identity}
f = inT

That is, foldT inT = id . Not very suprising, actually.
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Destructors

Also, the destructor outT of a datatype, the inverse of the
constructor outT , can be written a a fold.

inT ◦ foldT f = id

⇐⇒ {identity as a fold}
inT ◦ foldT f = foldT inT

⇐= {weak fusion}
inT ◦ f = inT ◦ F inT

⇐= {Leibniz}
f = F inT

Therefore we can de�ne outT = foldT (F inT ).
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Destructors

We should check that this also makes out the inverse of in when
the composition is reversed:

outT ◦ inT
= {above}
foldT (F inT ) ◦ inT

= {evaluation rule}
F inT ◦ FoutT

= {functors}
F(inT ◦ outT )

= {in ◦ out = id}
id

(Note: this is a corollary of a more general theorem, stating that
every injective function on a recursive data type is a fold).
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Universal property for unfold

A
f

- F A

T

unfold f

? out
- F T

F (unfold f)

?

The universal property for unfold is:

h = unfoldT f ⇐⇒ outT ◦ h = F h ◦ f

Again, a sort of �canned induction proof�.
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Properties of unfolds

The laws are simply duals to the laws for fold, so we just present
them without proof.

Evaluation rule: outT ◦ unfoldT f = F unfoldT f ◦ f
Exact and weak fusion: unfoldT f ◦ h = unfoldT g

⇐⇒ F (unfoldT f ) ◦ f ◦ h = F (unfoldT f ) ◦ F h ◦ g
⇐= f ◦ h = F h ◦ g
Identity: unfoldT outT = id

Constructors: inT = unfoldT (F outT )
The last law is a corollary of a more general law, stating that any
surjective function to a recursive data type is an unfold.
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The slide in which we move to CPO

Unfortunately, the category SET doesn't really suit us: we'd like to
do things like fold f ◦ unfold g , but in this category initial F-algebras
and terminal F-coalgebras can be di�erent objects. Moreover, it
contains only total functions, so we can't express nontermination.

We solve these problems by moving to the category CPO, where
the objects are pointed complete partial orders and the arrows are
continuous functions. Now initial F-algebras and terminal
F-coalgebras are the same objects, up to isomorphism, and are �xed
points of the functor F (for so-called locally continuous functors, so
all functors that appear in this talk). Also we have to include
strictness conditions in some of our laws. So for example the
universal property for fold becomes:

h = foldT f ⇐⇒ h ◦ inT = f ◦ F h for strict f and h
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Hylomorphisms

A hylomorphism h is a function which can be expressed as a
composition of a fold following an unfold:

h = foldT g ◦ unfoldT f

If h is of that form, then it can also be written as g ◦ F h ◦ f :

h

= {de�nition}
foldT g ◦ unfoldT f

= {recursive de�nitions of fold and unfold}
g ◦ F foldT g ◦ outT ◦ inT ◦ F unfoldT f ◦ f

= {out ◦ in = id}
g ◦ F foldT g ◦ F unfoldT f ◦ f

= {functors, de�nition}
g ◦ F h ◦ f
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Hylomorphisms

h = foldT g ◦ unfoldT f =⇒ h = g ◦ F h ◦ f
The law we've just derived is the deforestation law. It sometimes
allows us to compute h without creating the intermediate structure
returned by unfold.

The implication in the other direction also holds, but the proof
requires more machinery.
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Paramorphisms

A paramorphism is like a fold, but on every level of the recursion
we have access to both the original value and the result of applying
the paramorphism (so it �eats its argument and keeps it too�). The
factorial function is a natural example of a paramorphism.

Formally, for an initial F-algebra (T, inT ) and f : F (C x T )→ C ,
paraT f : T → C is de�ned as follows:

paraT f = exl ◦ foldT (f 4 (inT ◦ F exr))

...where exl, exr are pair projections and (g 4 h) x = (g x , h x).
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Paramorphisms

paraT f = exl ◦ foldT (f 4 (inT ◦ F exr))

F T
in

- T

F (C X T )

F (h4 id)

? f
- C

h

?

It enjoys the following universal property:

h = paraT f ⇐⇒ h ◦ inT = f ◦ F (h 4 id) ∧ h⊥ = f ⊥

Unsurprisingly, we can derive for paramorphisms similar laws as
those listed for catamorphisms.
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Example: banana split theorem

The theorem states that the fork of two folds is a fold (so we can
traverse the data structure only once instead of twice):

foldT f 4 foldT g = foldT ((f ◦ F exl)4 (g ◦ F exr))

We will use it to derive a one-pass solution for the problem of
calculating the average of a list.
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Example: banana split theorem

foldT f 4 foldT g = foldT ((f ◦ F exl)4 (g ◦ F exr))

⇐⇒ {universal property}
(foldT f 4 foldT g) ◦ in =

((f ◦ F exl)4 (g ◦ F exr)) ◦ F (foldT f 4 foldT g)

⇐⇒ {property of fork, functors, property of extractions}
(foldT f 4 foldT g) ◦ in = ((f ◦ F (foldT f ))4 (g ◦ F (foldT g)))

⇐⇒ {property of fork}
((foldT f ◦ in)4 (foldT g ◦ in)) =
((f ◦ F (foldT f ))4 (g ◦ F (foldT g)))

⇐⇒ {evaluation rule}
((f ◦ F (foldT f ))4 (g ◦ F (foldT g))) =

((f ◦ F (foldT f ))4 (g ◦ F (foldT g)))
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Example: banana split theorem

average = DIV ◦ sum 4 length

sum = foldListInt(const 0O+)
length = foldListInt(const 0O (1+))

The banana split theorem lets us write:

sum 4 length =
foldListInt(((const 0O+) ◦ F exl)4 (const 0O (1+)) ◦ F exr)

(O is like either in Haskell)
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The end.
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