Uniwersytet Wrocławski Wydział Matematyki i Informatyki Instytut Matematyczny specjalność: matematyka teoretyczna

Maciej Kucharski

Niezależne od wymiaru szacowania transformat Riesza związanych z oscylatorem harmonicznym

Praca magisterska napisana pod kierunkiem dr. hab. inż. Błażeja Wróbla

Wrocław 2020 r.

DIMENSION-FREE ESTIMATES FOR RIESZ TRANSFORMS RELATED TO THE HARMONIC OSCILLATOR

MACIEJ KUCHARSKI

ABSTRACT. We study L^p bounds for two kinds of Riesz transforms on \mathbb{R}^d related to the harmonic oscillator. We pursue an explicit estimate of their L^p norms that is independent of the dimension d and linear in $\max(p, p/(p-1))$.

1. INTRODUCTION

The aim of this paper is to prove a dimension-free estimate for the L^p norm of vectors of a specific kind of generalized Riesz transforms. Recall that the classical Riesz transforms on \mathbb{R}^d are the operators

$$R_i f(x) = \partial_{x_i} \left(-\Delta\right)^{-1/2} f(x), \quad i = 1, \dots, d.$$

A well-known result concerning Riesz transforms, proved by Stein in [14], is the L^p boundedness of the vector of the Riesz transforms

$$\mathbf{R}f = (R_1f, \dots, R_df)$$

with a norm estimate independent of *d*. Since then, the question about dimensionfree estimates for the Riesz transforms has been asked in various contexts. For example Carbonaro and Dragičević proved in [1] a dimension-free estimate with an explicit constant for the shifted Riesz transform on a complete Riemannian manifold. Another path of generalizing the result of Stein is to consider operators of the form

$$R_i = \delta_i L^{-1/2},\tag{1.1}$$

where δ_i is an operator on $L^2(\mathbb{R}^d)$ and

$$L = \sum_{i=1}^{d} L_i = \sum_{i=1}^{d} \left(\delta_i^* \delta_i + a_i \right), \quad a_i \ge 0.$$

Such Riesz transforms were studied systematically by Nowak and Stempak in [13]. We will focus on the Riesz transforms of the form as in (1.1) where L is the harmonic

²⁰¹⁰ Mathematics Subject Classification. 42C10, 42A50, 33C50.

Key words and phrases. Riesz transform, Hermite expansions, Bellman function.

oscillator $(L = -\Delta + |x|^2)$, i.e.

$$\delta_i = \partial_{x_i} + x_i, \quad \delta_i^* = -\partial_{x_i} + x_i, \quad a_i = 1.$$
(1.2)

From this point δ_i and δ_i^* are defined as above.

This so-called *Hermite-Riesz transform* was introduced by Thangavelu in [15], who proved its L^p boundedness. Then a dimension-free estimate of its norm was proved in [7] and [8], which later was sharpened by Dragičević and Volberg in [5] to an estimate linear in $\max(p, p/(p-1))$.

In the first part we will give a result analogous to Theorem 10 from [16], however concerning a slightly altered operator, namely

$$R'_i = \delta^*_i L'^{-1/2}$$

with

$$L'_{i} = \delta_{i}\delta^{*}_{i} + 1, \quad L' = \sum_{i=1}^{d} L'_{i}.$$

It arises as a result of swapping δ_i and δ_i^* in the definition of $R_i = \delta_i L^{-1/2}$. As explained in Section 3, the results from [16] do not apply to this operator. The key step in the proof is, as in [16], the method of Bellman function but we use its more subtle properties to achieve the goal.

In the second part we consider the vector of the Riesz transforms

$$\tilde{\mathbf{R}}f = \left(\tilde{R}_1 f, \dots, \tilde{R}_d f\right),\,$$

where

 $\tilde{R}_i = \delta_i^* L^{-1/2}.$

Its boundedness was proved in [5] (where \tilde{R}_i was denoted by R_i^*), [7] and [8] with an implicit constant independent of the dimension. Our goal is to give an explicit constant. Due to reasons explained in Section 4 we will focus on proving the boundedness of the operator S defined as

$$Sf(x) = |x|L^{-1/2}f(x).$$

We obtain it by an explicit estimate of the kernel of S. As a corollary we get a dimension-free estimate of the norm of the vector of the operators

$$R_i^* = \delta_i^* (L+2)^{-1/2}$$

with each R_i^* being the adjoint of $R_i = \delta_i L^{-1/2}$ studied in [5] and [16].

2. Preliminaries

In order to define the operators L', L, R'_i and \tilde{R}_i on $L^2(\mathbb{R}^d)$ (later abbreviated as L^2) we introduce the Hermite polynomials and the Hermite functions. The Hermite polynomials are given by

$$H_n(x) = (-1)^n e^{x^2} \frac{\mathrm{d}^n}{\mathrm{d}x^n} e^{-x^2}, \ x \in \mathbb{R}$$

or, equivalently, by

$$H_n(x) = 2xH_{n-1}(x) - 2(n-1)H_{n-2}(x), \quad n \ge 2, \ x \in \mathbb{R},$$
$$H_0(x) = 1, \ H_1(x) = 2x.$$

The Hermite functions are

$$h_n(x) = \frac{1}{\sqrt{2^n n! \sqrt{\pi}}} e^{-x^2/2} H_n(x), \ x \in \mathbb{R}.$$

It is well known that the Hermite functions form an orthonormal basis of $L^2(\mathbb{R})$ and that their linear span is dense in $L^p(\mathbb{R})$ for every $1 \leq p < \infty$.

For $n = (n_1, \ldots, n_d) \in \mathbb{N}^d$ with $\mathbb{N} = \{0, 1, 2 \dots\}$ and $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$ we define

$$h_n(x) = h_{n_1}(x_1) \cdots h_{n_d}(x_d).$$

We can see that $\{h_n\}_{n\in\mathbb{N}^d}$ is an orthonormal basis of L^2 . Throughout the paper we will use $\mathcal{D} = \lim\{h_n : n \in \mathbb{N}^d\} = \lim\{\delta_i^* h_n : n \in \mathbb{N}^d\}.$

Let L' be the operator given on $C_c^{\infty}(\mathbb{R}^d)$ by

$$L' = \sum_{i=1}^{a} L'_i, \quad L'_i = \delta_i \delta^*_i + 1, \quad \delta_i = \partial_{x_i} + x_i.$$

In a similar way we define on $C_c^{\infty}(\mathbb{R}^d)$

$$L = \sum_{i=1}^{d} L_i, \quad L_i = \delta_i^* \delta_i + 1$$

Since $\delta_i \delta_i^* = \delta_i^* \delta_i + 2$, we can also write

$$L' = L + 2d. \tag{2.1}$$

Note that the formal adjoint of δ_i with respect to the inner product on L^2 is $\delta_i^* = -\partial_{x_i} + x_i$. We recall well-known relations concerning the Hermite functions.

Lemma 1. For $n \in \mathbb{N}^d$ and $i = 1, \ldots, d$ we have

1.
$$\delta_i h_n(x) = \begin{cases} \sqrt{2n_i}h_{n-e_i}(x) & \text{if } n_i \neq 0\\ 0 & \text{otherwise} \end{cases}$$

2.
$$\delta_i^* h_n(x) = \sqrt{2(n_i+1)h_{n+e_i}(x)}$$

3. $L'_i h_n(x) = (2n_i+3)h_n(x)$,
4. $L_i h_n(x) = (2n_i+1)h_n(x)$.

Hence, the multivariate Hermite functions $\{h_n\}_{n\in\mathbb{N}^d}$ are eigenvectors of L' and L corresponding to positive eigenvalues $\{\lambda'_n\}_{n\in\mathbb{N}^d}$ and $\{\lambda_n\}_{n\in\mathbb{N}^d}$ respectively, where $\lambda'_n = 2|n|_1 + 3d$, $\lambda_n = 2|n|_1 + d$ with $|n|_1 = n_1 + \cdots + n_d$ for $n = (n_1, \ldots, n_d) \in \mathbb{N}^d$. It is well known that L (and L') are essentially self-adjoint on $C_c^{\infty}(\mathbb{R}^d)$ with the self-adjoint extensions given by

$$L'f = \sum_{n \in \mathbb{N}^d} \lambda'_n \langle f, h_n \rangle h_n, \quad Lf = \sum_{n \in \mathbb{N}^d} \lambda_n \langle f, h_n \rangle h_n,$$

where $\langle \cdot, \cdot \rangle$ denotes the L^2 inner product, acting on the domains

$$\operatorname{Dom}(L') = \{ f \in L^2 : \sum_{n \in \mathbb{N}^d} \lambda_n'^2 |\langle f, h_n \rangle|^2 < \infty \},\$$

$$\operatorname{Dom}(L) = \{ f \in L^2 : \sum_{n \in \mathbb{N}^d} \lambda_n^2 |\langle f, h_n \rangle|^2 < \infty \}.$$

Then $R'_i = \delta^*_i L'^{-1/2}$ can be defined rigorously as

$$R'_{i}f = \sum_{n \in \mathbb{N}^{d}} \lambda_{n}^{\prime-1/2} \left\langle f, h_{n} \right\rangle \delta_{i}^{*}h_{n}$$

and $\tilde{R}_i = \delta_i^* L^{-1/2}$ as

$$\tilde{R}_i f = \sum_{n \in \mathbb{N}^d} \lambda_n^{-1/2} \langle f, h_n \rangle \, \delta_i^* h_n$$

It is clear that R'_i and \tilde{R}_i are bounded on L^2 .

In what follows we will often identify a densely defined bounded operator on a Banach space with its unique bounded extension to the whole space. As for the notation, we will abbreviate

$$L^{p} = L^{p}(\mathbb{R}^{d}), \quad \|\cdot\|_{p} = \|\cdot\|_{L^{p}} \text{ and } \|\cdot\|_{p \to p} = \|\cdot\|_{L^{p} \to L^{p}}$$

and for $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$ we will use $|x| = \left(\sum_{i=1}^d x_i^2\right)^{1/2}$. For $1 we denote <math>p^* = \max\left(p, \frac{p}{p-1}\right)$.

3. Riesz transforms of the first kind

Let $\mathbf{R}' f = (R'_1 f, \dots, R'_d f)$. The main result of this section gives an explicit estimate for the L^p norm of \mathbf{R}' .

Theorem 2. For $f \in L^p$ we have

$$\|\mathbf{R}'f\|_{p} \coloneqq \left(\int_{\mathbb{R}^{d}} |\mathbf{R}'f(x)|^{p} dx\right)^{1/p} \leqslant 48(p^{*}-1)\|f\|_{p}.$$

In order to prove Theorem 2, we will need some auxiliary objects. One can see that $L'_i = -\partial_{x_i}^2 + x_i^2 + 2$, so we can write

$$-\Delta = -\sum_{i=1}^{d} \partial_{x_i}^2 = L' - r, \quad \text{where } r(x) = |x|^2 + 2d.$$

We will also need the operators M_i defined on $C_c^{\infty}(\mathbb{R}^d)$ as

$$M_i = \sum_{j \neq i} \delta_j \delta_j^* + \delta_i^* \delta_i = L' + [\delta_i^*, \delta_i] = L' - 2,$$

where

$$[\delta_i^*, \delta_i] = \delta_i^* \delta_i - \delta_i \delta_i^*.$$

Note that in our case $[\delta_i^*, \delta_i] = -2 < 0$. This means that the crucial assumption from [16] does not hold and the theory does not apply.

Non-zero elements of $\{c_n^i \delta_i^* h_n\}_{n \in \mathbb{N}^d}$ (where c_n^i are the normalizing constants) form an orthonormal system of eigenvectors of M_i with eigenvalues $\{\lambda'_n\}_{n \in \mathbb{N}^d}$. Thus, we can define the self-adjoint extensions of M_i by

$$M_i f = \sum_{n \in \mathbb{N}^d} \lambda'_n \left\langle f, c_n^i \delta_i^* h_n \right\rangle c_n^i \delta_i^* h_n$$

on the domain

$$\operatorname{Dom}(M_i) = \{ f \in L^2 : \sum_{n \in \mathbb{N}^d} \lambda_n^{\prime 2} | \langle f, c_n^i \delta_i^* h_n \rangle |^2 < \infty \}.$$

Having these operators, we can introduce the semigroups

$$P_t = e^{-tL'^{1/2}}$$
 and $Q_t^i = e^{-tM_i^{1/2}}$

rigorously defined as

$$P_t f = \sum_{n \in \mathbb{N}^d} e^{-t\lambda_n^{\prime 1/2}} \langle f, h_n \rangle h_n, \quad Q_t^i f = \sum_{n \in \mathbb{N}^d} e^{-t\lambda_n^{\prime 1/2}} \langle f, c_n^i \delta_i^* h_n \rangle c_n^i \delta_i^* h_n.$$

Lemma 3. Let $i = 1, \ldots, d$. If $f, g \in \mathcal{D}$, then

$$\langle R'_i f, g \rangle = -4 \int_0^\infty \left\langle \delta^*_i P_t f, \partial_t Q^i_t g \right\rangle t \, dt.$$

Proof. The proof is analogous to the proof of Proposition 3 in [16] but we give it for the sake of completeness. By linearity it is sufficient to prove the lemma for $f = h_n$ and $g = \delta_i^* h_k$ for some $n, k \in \mathbb{N}^d$. We proceed as follows:

$$-4\int_{0}^{\infty} \left\langle \delta_{i}^{*} P_{t} h_{n}, \partial_{t} Q_{t}^{i} \delta_{i}^{*} h_{k} \right\rangle t \, dt = -4\int_{0}^{\infty} \left\langle e^{-t\lambda_{n}^{\prime 1/2}} \delta_{i}^{*} h_{n}, -\lambda_{k}^{\prime 1/2} e^{-t\lambda_{k}^{\prime 1/2}} \delta_{i}^{*} h_{k} \right\rangle t \, dt$$
$$= 4\lambda_{k}^{\prime 1/2} \left\langle \delta_{i}^{*} h_{n}, \delta_{i}^{*} h_{k} \right\rangle \int_{0}^{\infty} e^{-t(\lambda_{n}^{\prime 1/2} + \lambda_{k}^{\prime 1/2})} t \, dt$$
$$= \frac{4\lambda_{k}^{\prime 1/2}}{\left(\lambda_{n}^{\prime 1/2} + \lambda_{k}^{\prime 1/2}\right)^{2}} \left\langle \delta_{i}^{*} h_{n}, \delta_{i}^{*} h_{k} \right\rangle.$$

Hence, we get

$$\left\langle \delta_i^* L'^{-1/2} h_n, \delta_i^* h_k \right\rangle + 4 \int_0^\infty \left\langle \delta_i^* P_t h_n, \partial_t Q_t^i \delta_i^* h_k \right\rangle t \, dt$$

$$= \lambda_n'^{-1/2} \left\langle \delta_i^* h_n, \delta_i^* h_k \right\rangle + \frac{4 \lambda_k'^{1/2}}{\left(\lambda_n'^{1/2} + \lambda_k'^{1/2}\right)^2} \left\langle \delta_i^* h_n, \delta_i^* h_k \right\rangle$$

$$= \left(\lambda_n'^{-1/2} - \frac{4 \lambda_k'^{1/2}}{\left(\lambda_n'^{1/2} + \lambda_k'^{1/2}\right)^2} \right) \left\langle \delta_i^* h_n, \delta_i^* h_k \right\rangle.$$

If $\lambda'_n = \lambda'_k$, then the expression in parentheses is 0, otherwise $\delta^*_i h_n$ and $\delta^*_i h_k$ — eigenvectors of M_i — are orthogonal.

We will also need a bilinear embedding theorem. First, for $f = (f_1, \ldots, f_N) : \mathbb{R}^d \times (0, \infty) \to \mathbb{R}^N$ we set

$$|f(x,t)|_{*}^{2} = r(x)|(f_{1}(x,t),\ldots,f_{N}(x,t))|^{2} + |(\partial_{t}f_{1}(x,t),\ldots,\partial_{t}f_{N}(x,t))|^{2} + \sum_{i=1}^{d} |(\partial_{x_{i}}f_{1}(x,t),\ldots,\partial_{x_{i}}f_{N}(x,t))|^{2}$$

We also define two auxiliary functions F and G. For $f \in \mathcal{D}$ and $g = (g_1, \ldots, g_d)$ with $g_i \in \mathcal{D}$ let

$$F(x,t) = P_t f(x)$$
 and $G(x,t) = Q_t g(x) = (Q_t^1 g_1(x), \dots, Q_t^d g_d(x)).$

Theorem 4. Take $d \ge 2$. Then we have

$$\int_0^\infty \int_{\mathbb{R}^d} |F(x,t)|_* |G(x,t)|_* \, dx \, t \, dt \leqslant 6(p^*-1) \|f\|_p \|g\|_q.$$

3.1. The Bellman function. In order to prove Theorem 4, let us introduce the Bellman function. Take $p \ge 2$ and let q be its conjugate exponent. Define β : $[0,\infty)^2 \to [0,\infty)$ by

$$\beta(s,t) = s^p + t^q + \gamma \begin{cases} s^2 t^{2-q} & \text{if } s^p \leq t^q \\ \frac{2}{p} s^p + \left(\frac{2}{q} - 1\right) t^q & \text{if } s^p \geqslant t^q \end{cases}, \quad \gamma = \frac{q(q-1)}{8}.$$

The Nazarov–Treil Bellman function is then the function

$$B(\zeta,\eta) = \frac{1}{2}\beta\left(|\zeta|,|\eta|\right), \quad \zeta \in \mathbb{R}^{m_1}, \eta \in \mathbb{R}^{m_2}.$$

It was introduced by Nazarov and Treil in [11] and then simplified and used by Carbonaro and Dragičević in [1, 2] and by Dragičević and Volberg in [3, 4, 5]. Note that B is differentiable but not smooth, so we convolve it with a mollifier ψ_{κ} to get $B_{\kappa} = B * \psi_{\kappa}$, where

$$\psi_{\kappa}(x) = \frac{1}{\kappa^{m_1 + m_2}} \psi\left(\frac{x}{\kappa}\right) \quad \text{and} \quad \psi(x) = c_{m_1, m_2} e^{-\frac{1}{1 - |x|^2}} \chi_{B(0, 1)}(x), \quad x \in \mathbb{R}^{m_1 + m_2}$$

and c_{m_1,m_2} is the normalizing constant. The functions B and ψ_{κ} are biradial and so is B_{κ} , hence there exists $\beta_{\kappa}: [0,\infty)^2 \to [0,\infty)$ such that

$$B_{\kappa}(\zeta,\eta) = \frac{1}{2}\beta_{\kappa}\left(|\zeta|,|\eta|\right).$$

We invoke some properties of β_{κ} and B_{κ} that were proved in [5] and [9].

Theorem 5. Let $\kappa \in (0, 1)$ and s, t > 0. Then we have

1. $0 \leq \beta_{\kappa}(s,t) \leq (1+\gamma)\left((s+\kappa)^p + (t+\kappa)^q\right),$ 2. $0 \leq \partial_s \beta_\kappa(s,t) \leq C_p \max((s+\kappa)^{p-1},t+\kappa),$ $0 \leq \partial_t \beta_\kappa(s,t) \leq C_p (t+\kappa)^{q-1}.$

The function B_{κ} is smooth and for every $z = (x, y) \in \mathbb{R}^{m_1+m_2}$ there exists $\tau_{\kappa} > 0$ such that for $\omega = (\omega_1, \omega_2) \in \mathbb{R}^{m_1 + m_2}$ we have

3.
$$\langle \operatorname{Hess}(B_{\kappa})(z)\omega,\omega\rangle \geq \frac{\gamma}{2} \left(\tau_{\kappa}|\omega_{1}|^{2}+\tau_{\kappa}^{-1}|\omega_{2}|^{2}\right).$$

There is a continuous function $E_{\kappa}: \mathbb{R}^{m_1+m_2} \to \mathbb{R}$ such that

- 4. $\langle \nabla B_{\kappa}(z), z \rangle \geq \frac{\gamma}{2} \left(\tau_{\kappa} |x|^{2} + \tau_{\kappa}^{-1} |y|^{2} \right) \kappa E_{\kappa}(z) + B_{\kappa}(z),$ 5. $|E_{\kappa}(z)| \leq C_{m_{1},m_{2},p} \left(|x|^{p-1} + |y| + |y|^{q-1} + \kappa^{q-1} \right).$

3.2. **Proof of Theorem 4.** Having defined the Bellman function, we proceed to the proof. First we should emphasize that the presence of the term $B_{\kappa}(z)$ in 4. is the key ingredient for the Bellman method to work despite the fact that $[\delta_i^*, \delta_i] < 0$. Because of that, the proof of Lemma 6 is more involved than in [16].

Let

$$u(x,t) = (P_t f(x), Q_t g(x)) = (P_t f(x), Q_t^1 g_1(x), \dots, Q_t^d g_d(x))$$

for $x \in \mathbb{R}^d$ and t > 0 and fix $p \ge 2$. We will use the Bellman function B_{κ} and $b_{\kappa} = B_{\kappa} \circ u$ with $m_1 = 1$ and $m_2 = d$. Our aim is to estimate the integral

$$I(n,\varepsilon) = \int_0^\infty \int_{X_n} \left(\partial_t^2 + \Delta\right) (b_{\kappa(n)})(x,t) \, dx \, t e^{-\varepsilon t} \, dt,$$

where $\kappa(n)$ is a number depending on n and $X_n = [-n, n]^d$ so that $\{X_n\}_{n \in \mathbb{N}}$ is an increasing family of compact sets such that $\mathbb{R}^d = \bigcup_n X_n$.

Lemma 6. We have

$$\liminf_{\varepsilon \to 0^+} \liminf_{n \to \infty} I(n, \varepsilon) \ge \gamma \int_0^\infty \int_{\mathbb{R}^d} |F(x, t)|_* |G(x, t)|_* \, dx \, t \, dt.$$

Proof. In order to make formulae more compact, we will sometimes write ∂_{x_0} instead of ∂_t . The first step will be to prove that

$$\left(\partial_t^2 + \Delta\right)(b_{\kappa})(x,t) \ge \gamma |F(x,t)|_* |G(x,t)|_* - \kappa r(x) E_{\kappa}(u(x,t)) + r(x) B_{\kappa}(u(x,t)) - 2 \sum_{i=1}^d \partial_{\eta_i} B_{\kappa}(u(x,t)) Q_t^i g_i(x).$$

$$(3.1)$$

From the chain rule we get $\partial_{x_i} b_{\kappa}(x,t) = \langle \nabla B_{\kappa}(u(x,t)), \partial_{x_i} u(x,t) \rangle$ for $i = 0, \ldots, d$. Then, again by the chain rule, we have

$$\partial_{x_i}^2 b_{\kappa}(x,t) = \left\langle \nabla B_{\kappa}(u(x,t)), \partial_{x_i}^2 u(x,t) \right\rangle + \left\langle \operatorname{Hess}(B_{\kappa})(u(x,t))(\partial_{x_i}u(x,t)), \partial_{x_i}u(x,t) \right\rangle.$$

Summing for $i = 0, \ldots, d$, we get

$$(\partial_t^2 + \Delta) (b_\kappa)(x,t) = \left\langle \nabla B_\kappa(u(x,t)), (\partial_t^2 + \Delta)(u)(x,t) \right\rangle + \sum_{i=0}^d \left\langle \operatorname{Hess}(B_\kappa)(u(x,t))(\partial_{x_i}u(x,t)), \partial_{x_i}u(x,t) \right\rangle$$

By the definition of P_t and Q_t we see that

$$(\partial_t^2 - L')P_t f = 0$$

and

$$(\partial_t^2 - L')Q_t^i g_i = (\partial_t^2 - M_i)Q_t^i g_i - 2Q_t^i g_i = -2Q_t^i g_i$$

Therefore, using the fact that $-\Delta = L' - r$ we get

$$(\partial_t^2 + \Delta) (b_{\kappa})(x,t) = r(x) \langle \nabla B_{\kappa}(u(x,t)), u(x,t) \rangle - 2 \sum_{i=1}^d \partial_{\eta_i} B_{\kappa}(u(x,t)) Q_t^i g_i(x) + \sum_{i=0}^d \langle \operatorname{Hess}(B_{\kappa})(u(x,t)) (\partial_{x_i} u(x,t)), \partial_{x_i} u(x,t) \rangle .$$

Next, inequalities 3. and 4. from Theorem 5 and the inequality of arithmetic and geometric means imply that

$$\begin{split} \left(\partial_t^2 + \Delta\right)(b_{\kappa})(x,t) \geqslant r(x)\frac{\gamma}{2} \left(\tau_{\kappa}|P_t f(x)|^2 + \tau_{\kappa}^{-1}|Q_t g(x)|^2\right) \\ &- r(x)\kappa E_{\kappa}(u(x,t)) + r(x)B_{\kappa}(u(x,t)) \\ &- 2\sum_{i=1}^d \partial_{\eta_i}B_{\kappa}(u(x,t))Q_t^i g_i(x) \\ &+ \frac{\gamma}{2}\sum_{i=0}^d \left(\tau_{\kappa}|\partial_{x_i}P_t f(x)|^2 + \tau_{\kappa}^{-1}|\partial_{x_i}Q_t g(x)|^2\right) \\ &= \frac{\gamma\tau_{\kappa}|P_t f(x)|_*^2 + \gamma\tau_{\kappa}^{-1}|Q_t g(x)|_*^2}{2} - r(x)\kappa E_{\kappa}(u(x,t)) \\ &+ r(x)B_{\kappa}(u(x,t)) - 2\sum_{i=1}^d \partial_{\eta_i}B_{\kappa}(u(x,t))Q_t^i g_i(x) \\ &\geqslant \gamma|F(x,t)|_*|G(x,t)|_* - \kappa r(x)E_{\kappa}(u(x,t)) \\ &+ r(x)B_{\kappa}(u(x,t)) - 2\sum_{i=1}^d \partial_{\eta_i}B_{\kappa}(u(x,t))Q_t^i g_i(x). \end{split}$$

In summary

$$\left(\partial_t^2 + \Delta\right)(b_{\kappa})(x,t) \ge \gamma |F(x,t)|_* |G(x,t)|_* - \kappa r(x) E_{\kappa}(u(x,t)) + r(x) B_{\kappa}(u(x,t)) - 2 \sum_{i=1}^d \partial_{\eta_i} B_{\kappa}(u(x,t)) Q_t^i g_i(x).$$

$$(3.2)$$

The next step is to show that

$$r(x)B(u(x,t)) - 2\sum_{i=1}^{d} \partial_{\eta_i} B(u(x,t))Q_t^i g_i(x) \ge 0.$$
(3.3)

We have the following equalities:

$$\begin{aligned} \frac{\partial\beta}{\partial y}(x,y) &= qy^{q-1} + \gamma \begin{cases} (2-q)x^2y^{1-q}\\ (2-q)y^{q-1} \end{cases},\\ \frac{\partial|\eta|}{\partial\eta_i} &= \frac{\partial\sqrt{\eta_1^2 + \dots + \eta_d^2}}{\partial\eta_i} = \frac{\eta_i}{\sqrt{\eta_1^2 + \dots + \eta_d^2}} = \frac{\eta_i}{|\eta|},\\ 2\frac{\partial}{\partial\eta_i}B(\zeta,\eta) &= \frac{\partial}{\partial\eta_i}\beta(|\zeta|,|\eta|) = \frac{\partial\beta}{\partial y}(|\zeta|,|\eta|) \cdot \frac{\partial|\eta|}{\partial\eta_i}\\ &= \left(q|\eta|^{q-1} + \gamma(2-q) \left\{ \frac{|\zeta|^2|\eta|^{1-q}}{|\eta|^{q-1}} \right) \frac{\eta_i}{|\eta|} \right.\end{aligned}$$

Using them, we may rewrite inequality (3.3) as

$$(|x|^{2} + 2d) \left(|\zeta|^{p} + |\eta|^{q} + \gamma \begin{cases} |\zeta|^{2} |\eta|^{2-q} \\ \frac{2}{p} |\zeta|^{p} + \left(\frac{2}{q} - 1\right) |\eta|^{q} \end{cases} \right) - \\ 2 \left(q|\eta|^{q} + \gamma (2-q) \begin{cases} |\zeta|^{2} |\eta|^{2-q} \\ |\eta|^{q} \end{cases} \right) \ge 0,$$

$$(3.4)$$

where $\zeta = P_t f(x)$ and $\eta = Q_t g(x)$. Then, we consider two cases. Case 1: $|\zeta|^p \leq |\eta|^q$. We omit $|x|^2$ reducing (3.4) to

$$d|\zeta|^{p} + (d-q)|\eta|^{q} + \gamma(d-2+q)|\zeta|^{2}|\eta|^{2-q} \ge 0.$$

Since $q \leq 2$, this is true as long as $d \geq 2$. Case 2: $|\zeta|^p \geq |\eta|^q$. In this case inequality (3.4) becomes

$$(|x|^{2} + 2d)\left(1 + \frac{2\gamma}{p}\right)|\zeta|^{p} + \left((|x|^{2} + 2d)\left(1 + \frac{2\gamma}{q} - \gamma\right) - 2q - 2\gamma(2 - q)\right)|\eta|^{q} \ge 0.$$

We omit the first term, $|x|^2$ and $|\eta|^q$ in the above. Then we are left with proving

$$2d\left(1+\frac{2\gamma}{q}-\gamma\right)-2q-4\gamma+2\gamma q \ge 0.$$

Plugging the definition of γ into this inequality and rearranging it, we arrive at

$$q^{3} + q^{2}(-d - 3) + q(3d - 6) + 6d \ge 0,$$

which is true for $1 < q \leq 2$ and $d \geq 2$.

Having proved (3.3), we come back to (3.2) and write

$$\left(\partial_t^2 + \Delta\right)(b_{\kappa})(x,t) \ge \gamma |F(x,t)|_* |G(x,t)|_* - \kappa r(x) E_{\kappa}(u(x,t)) + r(x) B_{\kappa}(u(x,t)) - 2 \sum_{i=1}^d \partial_{\eta_i} B_{\kappa}(u(x,t)) Q_t^i g_i(x) - r(x) B(u(x,t)) + 2 \sum_{i=1}^d \partial_{\eta_i} B(u(x,t)) Q_t^i g_i(x).$$

$$(3.5)$$

The last step is to show that

$$\kappa r(x)E_{\kappa}(u(x,t))$$

and the difference between

$$r(x)B(u(x,t)) - 2\sum_{i=1}^{d} \partial_{\eta_i}B(u(x,t))Q_t^i g_i(x)$$

and

$$r(x)B_{\kappa}(u(x,t)) - 2\sum_{i=1}^{d} \partial_{\eta_i}B_{\kappa}(u(x,t))Q_t^i g_i(x)$$

are negligible.

First let us prove that u(x,t) is bounded on $X_n \times [0,+\infty)$. Recall that

$$u(x,t) = (P_t f(x), Q_t g(x)) = (P_t f(x), Q_t^1 g_1(x), \dots, Q_t^d g_d(x)),$$

where

$$P_t f = \sum_{n \in \mathbb{N}^d} e^{-t\lambda_n^{\prime 1/2}} \langle f, h_n \rangle h_n, \quad Q_t^i g_i = \sum_{n \in \mathbb{N}^d} e^{-t\lambda_n^{\prime 1/2}} \langle g_i, c_n^i \delta_i^* h_n \rangle c_n^i \delta_i^* h_n$$

and $f, g_i \in \mathcal{D}$. Since h_k are continuous, they are bounded on X_n , thus

$$|P_t f(x)| \leqslant \sum_{k \in \mathbb{N}^d} e^{-t\lambda_k^{1/2}} |\langle f, h_k \rangle | M_{n,k}$$

for some constants $M_{n,k}$. The above sum has only finitely many non-zero terms and it is a decreasing function of t, so $P_t f(x)$ is bounded uniformly for all $x \in X_n$ and $t \ge 0$. A similar argument shows that each $Q_t^i g_i$ is bounded.

Using inequality 5. from Theorem 5 and the previous paragraph, we see that there exists a sequence $\{\kappa(n)\}_{n\in\mathbb{N}}$ such that

$$\int_{X_n} \left| \kappa(n) r(x) E_{\kappa(n)}(u(x,t)) \right| dx \leqslant \frac{1}{n}.$$
(3.6)

Now we turn to estimating $|B(u(x,t)) - B_{\kappa}(u(x,t))|$. As we have shown, $u[X_n \times [0, +\infty)]$ is bounded, which means that B is uniformly continuous on this set. Therefore, for each $n \in \mathbb{N}$ there exists $\kappa(n)$ satisfying (3.6) and such that for all $x \in X_n$ and $t \ge 0$

$$|B(u(x,t)) - B_{\kappa(n)}(u(x,t))| \leq \int_{B(0,\kappa(n))} |B(u(x,t)) - B(u(x,t) - y)|\psi_{\kappa(n)}(y) \, dy$$
$$\leq \frac{1}{n} \left(\int_{X_n} |r(x)| \, dx \right)^{-1}.$$
(3.7)

A similar reasoning shows that for each $n \in \mathbb{N}$ there exists $\kappa(n)$ satisfying (3.6) and (3.7) and such that for all $x \in X_n$, $t \ge 0$ and $i = 1, \ldots, d$

$$\left|\partial_{\eta_i} B(u(x,t)) - \partial_{\eta_i} B_{\kappa(n)}(u(x,t))\right| \leq \frac{1}{n} \left(\int_{X_n} \left|2Q_t^i g_i(x)\right| dx\right)^{-1}.$$
 (3.8)

Coming back to inequality (3.5), we get

$$\begin{split} \int_{X_n} \left(\partial_t^2 + \Delta\right) (b_{\kappa(n)})(x,t) \, dx \\ &\geqslant \gamma \int_{X_n} |F(x,t)|_* |G(x,t)|_* \, dx - \int_{X_n} \kappa(n) r(x) E_{\kappa(n)}(u(x,t)) \, dx \\ &+ \int_{X_n} r(x) \left(B_{\kappa(n)}(u(x,t)) - B(u(x,t)) \right) \, dx \\ &- 2 \int_{X_n} \sum_{i=1}^d Q_t^i g_i(x) \left(\partial_{\eta_i} B_{\kappa(n)}(u(x,t)) - \partial_{\eta_i} B(u(x,t)) \right) \, dx. \end{split}$$

Using conditions (3.6), (3.7) and (3.8) on $\kappa(n)$ we get

$$\liminf_{n \to \infty} \int_{X_n} \left(\partial_t^2 + \Delta \right) (b_{\kappa(n)})(x, t) \, dx \ge \gamma \int_{\mathbb{R}^d} |F(x, t)|_* |G(x, t)|_* \, dx$$

and by the monotone convergence theorem

$$\liminf_{\varepsilon \to 0^+} \liminf_{n \to \infty} I(n, \varepsilon) \geqslant \gamma \int_0^\infty \int_{\mathbb{R}^d} |F(x, t)|_* |G(x, t)|_* \, dx \, t \, dt.$$

Lemma 7. For $f, g \in \mathcal{D}$ we have

$$\limsup_{\varepsilon \to 0^+} \limsup_{n \to \infty} I(n, \varepsilon) \ge \frac{1 + \gamma}{2} \left(\|f\|_p^p + \|g\|_q^q \right).$$

Proof. Denote

$$I_1(n,\varepsilon) = \int_0^\infty \int_{X_n} \partial_t^2 \left(b_{\kappa(n)} \right) (x,t) \, dx \, t e^{-\varepsilon t} \, dt,$$
$$I_2(n,\varepsilon) = \int_0^\infty \int_{X_n} \Delta \left(b_{\kappa(n)} \right) (x,t) \, dx \, t e^{-\varepsilon t} \, dt.$$

Then $I(n,\varepsilon) = I_1(n,\varepsilon) + I_2(n,\varepsilon)$. First we prove that $\lim_{n\to\infty} I_2(n,\varepsilon) = 0$. Since

$$I_2(n,\varepsilon) = \sum_{i=1}^d \int_0^\infty \int_{X_n} \partial_{x_i}^2 \left(b_{\kappa(n)} \right) (x,t) \, dx \, t e^{-\varepsilon t} \, dt$$

it is sufficient to prove that each summand tends to 0. We will present the proof for the first term only, call it $I_2^1(n, \varepsilon)$. Let $x' = (x_2, \ldots, x_d)$. Integrating by parts with respect to x_1 , we get

$$I_2^1(n,\varepsilon) = \int_0^\infty \int_{[-n,n]^{d-1}} \partial_{x_1} \left(b_{\kappa(n)} \right) \left(n, x', t \right) - \partial_{x_1} \left(b_{\kappa(n)} \right) \left(-n, x', t \right) dx' t e^{-\varepsilon t} dt.$$

By the chain rule

$$\partial_{x_1} (b_{\kappa(n)}) (\pm n, x', t) = \partial_{\zeta} B_{\kappa(n)} (u(\pm n, x', t)) \partial_{x_1} P_t f(\pm n, x') + \left\langle \nabla_{\eta} B_{\kappa(n)} (u(\pm n, x', t)), \partial_{x_1} Q_t g(\pm n, x') \right\rangle.$$

Recall that $f, g_i \in \mathcal{D}$ and hence $P_t f, Q_t^i g_i \in \mathcal{D}$. Using item 2. of Theorem 5 and the fact that the Hermite functions converge to 0 rapidly we conclude that $\lim_{n\to\infty} I_2(n,\varepsilon) = 0$.

Now we turn to I_1 . Using Fubini's theorem, we may interchange the order of integration to get

$$I_1(n,\varepsilon) = \int_{X_n} \int_0^\infty \partial_t^2 \left(b_{\kappa(n)} \right) (x,t) \, t e^{-\varepsilon t} \, dt \, dx.$$

Next, we use integration by parts on the inner integral twice, neglecting the boundary terms (this is allowed by the same argument as in the previous paragraph). This leads to

$$\begin{split} I_1(n,\varepsilon) &= -\int_{X_n} \int_0^\infty \partial_t \left(b_{\kappa(n)} \right) (x,t) \left(1 - \varepsilon t \right) e^{-\varepsilon t} dt \, dx \\ &= \int_{X_n} b_{\kappa(n)}(x,0) \, dx + \varepsilon^2 \int_{X_n} \int_0^\infty b_{\kappa(n)}(x,t) \, t e^{-\varepsilon t} \, dt \, dx \\ &- 2\varepsilon \int_{X_n} \int_0^\infty b_{\kappa(n)}(x,t) \, e^{-\varepsilon t} \, dt \, dx \\ &\leqslant \int_{X_n} b_{\kappa(n)}(x,0) \, dx + \varepsilon^2 \int_{X_n} \int_0^\infty b_{\kappa(n)}(x,t) \, t e^{-\varepsilon t} \, dt \, dx \end{split}$$

Denote the last two terms by $I_1^1(n)$ and $I_1^2(n,\varepsilon)$. First we will show that $\limsup_{\varepsilon \to 0^+} \limsup_{n \to \infty} I_1^2(n,\varepsilon) = 0$. Item 1. of Theorem 5. implies that

$$I_1^2(n,\varepsilon) \leqslant \varepsilon^2 C_p \int_{X_n} \int_0^\infty \left(|P_t f(x)|^p + |Q_t g(x)|^q + \max\left(\kappa(n)^p, \kappa(n)^q\right) \right) t e^{-\varepsilon t} dt dx.$$

Taking $\kappa(n)$ satisfying (3.6), (3.7) and (3.8) and such that

$$(2n)^d \max\left(\kappa(n)^p, \kappa(n)^q\right) \leqslant \frac{1}{n},\tag{3.9}$$

we get

$$\limsup_{n \to \infty} I_1^2(n,\varepsilon) \leqslant \varepsilon^2 C_p \int_X \int_0^\infty \left(|P_t f(x)|^p + |Q_t g(x)|^q \right) t \, dt \, dx \leqslant C \varepsilon^2.$$

The last step is to estimate $I_1^1(n)$. Using item 1. of Theorem 5 again, we obtain

$$I_1^1(n) \leqslant \frac{1+\gamma}{2} \int_{X_n} \left(|f(x)| + \kappa(n) \right)^p \, dx + \frac{1+\gamma}{2} \int_{X_n} \left(|g(x)| + \kappa(n) \right)^q \, dx.$$

We take $\varepsilon > 0$, denote $A = \{x \in \mathbb{R}^d : \varepsilon | f(x) | \ge |\kappa(n)| \}$ and split these two integrals as follows:

$$\begin{split} I_1^1(n) &\leqslant \frac{1+\gamma}{2} \int_A \left(|f(x)| + \kappa(n) \right)^p \, dx + \int_{A^{\mathcal{C}}} \left(|f(x)| + \kappa(n) \right)^p \, dx \\ &+ \frac{1+\gamma}{2} \int_A \left(|g(x)| + \kappa(n) \right)^q \, dx + \int_{A^{\mathcal{C}}} \left(|g(x)| + \kappa(n) \right)^q \, dx \\ &\leqslant \frac{1+\gamma}{2} \left((1+\varepsilon)^p \|f\|_p^p + (1+\varepsilon)^q \|g\|_q^q \right) \\ &+ \frac{1+\gamma}{2} (2n)^d \left(\left(1+\varepsilon^{-1} \right)^p \kappa(n)^p + \left(1+\varepsilon^{-1} \right)^q \kappa(n)^q \right). \end{split}$$

Since $\kappa(n)$ satisfies (3.9), we get

$$\limsup_{\varepsilon \to 0^+} \limsup_{n \to \infty} I^1_1(n,\varepsilon) \leqslant \frac{1+\gamma}{2} \left(\|f\|_p^p + \|g\|_q^q \right)$$

and hence, as we have shown that other terms are negligible, we obtain

$$\limsup_{\varepsilon \to 0^+} \limsup_{n \to \infty} I(n, \varepsilon) \leqslant \frac{1+\gamma}{2} \left(\|f\|_p^p + \|g\|_q^q \right).$$

Now we are ready to prove the bilinear embedding theorem.

Proof of Theorem 4. Combining Lemma 6 and Lemma 7, we get

$$\int_0^\infty \int_{\mathbb{R}^d} |F(x,t)|_* |G(x,t)|_* \, dx \, t \, dt \leq \frac{1+\gamma}{2\gamma} \left(\|f\|_p^p + \|g\|_q^q \right)$$

Multiplying f by $\left(\frac{q\|g\|_q^q}{p\|f\|_p^p}\right)^{\frac{1}{p+q}}$ and g by the reciprocal of this number, we obtain

$$\int_{0}^{\infty} \int_{\mathbb{R}^{d}} |F(x,t)|_{*} |G(x,t)|_{*} dx \, t \, dt \leq \frac{1+\gamma}{2\gamma} \left(\left(\frac{q}{p}\right)^{1/q} + \left(\frac{p}{q}\right)^{1/p} \right) \|f\|_{p} \|g\|_{q}$$

We need to show that $\frac{1+\gamma}{2\gamma} \left(\left(\frac{q}{p}\right)^{1/q} + \left(\frac{p}{q}\right)^{1/p} \right) \leq 6(p^* - 1)$. Recall that $p \geq 2$, so $p^* = p$ and $1 < q \leq 2$, hence

$$\frac{1+\gamma}{2\gamma} \left(\left(\frac{q}{p}\right)^{1/q} + \left(\frac{p}{q}\right)^{1/p} \right) = \frac{8+q(q-1)}{2}(q-1)^{\frac{1}{q}-1}(p-1)$$
$$\leqslant (q+3)(q-1)^{\frac{1}{q}-1}(p-1) \leqslant 6(p-1).$$

A proof of the last inequality can be found in [16, pp. 15–16]. If $p \leq 2$, we swap p with q and $P_t f$ with $Q_t g$ in the definition of b_{κ} , i.e., it becomes $b_{\kappa}(x,t) = B_{\kappa}(Q_t g(x), P_t f(x))$, and we proceed as before. Since $p^* = \max(p, q)$, the conclusion holds.

3.3. **Proof of Theorem 2.** Having proved the bilinear embedding theorem, we move on to the main result of this section.

Proof. If d = 1, then, by (2.1), L' = L+2 and equations (4.8) and (4.9) imply that \mathbf{R}' is the adjoint of \mathbf{R} from Section 5.4 of [16], so Theorem 10 (there) gives the desired result. Now assume that $d \ge 2$. By duality, it is sufficient to prove that

$$\left|\sum_{i=1}^{d} \langle R'_{i}f, g_{i} \rangle\right| \leq 48(p^{*}-1) \|f\|_{p} \left\| \left(\sum_{i=1}^{d} |g_{i}|^{2}\right)^{1/2} \right\|_{q}$$

for any $f, g_i \in \mathcal{D}$. Since \mathcal{D} is dense in L^p for $1 \leq p < \infty$, this will mean that \mathbf{R}' admits a bounded extension to the whole L^p space with the same norm. By Lemma 3, we have

$$\begin{split} \left| \sum_{i=1}^{d} \langle R'_{i}f, g_{i} \rangle \right| &\leqslant 4 \int_{0}^{\infty} \sum_{i=1}^{d} \left| \langle \delta_{i}^{*}P_{t}f, \partial_{t}Q_{t}^{i}g \rangle \right| t \, dt \\ &\leqslant 4 \int_{0}^{\infty} \int_{\mathbb{R}^{d}} \sum_{i=1}^{d} \left(|\partial_{x_{i}}P_{t}f(x)| + |x_{i}P_{t}f(x)| \right) \left| \partial_{t}Q_{t}^{i}g_{i}(x) \right| \, dx \, t \, dt \\ &\leqslant 4 \int_{0}^{\infty} \int_{\mathbb{R}^{d}} \left(\left(\sum_{i=1}^{d} |\partial_{x_{i}}P_{t}f(x)|^{2} \right)^{1/2} + \sqrt{r(x)} |P_{t}f(x)| \right) \left| G(x,t) \right|_{*} \, dx \, t \, dt \\ &\leqslant 8 \int_{0}^{\infty} \int_{\mathbb{R}^{d}} |F(x,t)|_{*} |G(x,t)|_{*} \, dx \, t \, dt \leqslant 48(p^{*}-1) ||f||_{p} \left\| \left(\sum_{i=1}^{d} |g_{i}|^{2} \right)^{1/2} \right\|_{q}. \end{split}$$

The last inequality follows from Theorem 4.

4. RIESZ TRANSFORMS OF THE SECOND KIND

This section is devoted to estimating the norm of the vector of the Riesz transforms

$$\tilde{R}_i f(x) = \delta_i^* L^{-1/2} f(x).$$

As noted earlier, we will give a result similar to Corollary 1 from [5] but with an explicit constant.

We want to estimate

$$\left\| \tilde{\mathbf{R}}f \right\|_p \coloneqq \left(\int_{\mathbb{R}^d} \left| \tilde{\mathbf{R}}f(x) \right|^p dx \right)^{1/p}.$$

Observe that for $f \in \mathcal{D}$ it holds

$$\tilde{R}_i f(x) = \delta_i^* L^{-1/2} f(x) = (-\partial_{x_i} + x_i) L^{-1/2} f(x)$$

= $-\delta_i L^{-1/2} f(x) + 2x_i L^{-1/2} f(x)$
= $R_i^1 f(x) + R_i^2 f(x).$

Then $\tilde{\mathbf{R}}f(x) = \mathbf{R}^{\mathbf{1}}f(x) + \mathbf{R}^{\mathbf{2}}f(x)$ (with $\tilde{\mathbf{R}}f(x) = \left(\tilde{R}_{1}f(x), \dots, \tilde{R}_{d}f(x)\right)$ and $\mathbf{R}^{\mathbf{1}}$ and $\mathbf{R}^{\mathbf{2}}$ defined analogously), hence

$$\left|\tilde{\mathbf{R}}f(x)\right| \leq \left|\mathbf{R}^{1}f(x)\right| + \left|\mathbf{R}^{2}f(x)\right|$$

and

$$\left\|\tilde{\mathbf{R}}f\right\|_{p} \leq \left\|\mathbf{R}^{1}f\right\|_{p} + \left\|\mathbf{R}^{2}f\right\|_{p}.$$
(4.1)

Theorem 10 from [16] gives the bound of $48(p^* - 1)$ for the L^p norm of \mathbf{R}^1 , so we will focus on \mathbf{R}^2 . Next, note that

$$\left|\mathbf{R}^{2}f(x)\right| = 2\left(\sum_{i=1}^{d} \left|x_{i}L^{-1/2}f(x)\right|^{2}\right)^{1/2} = 2|x|\left|L^{-1/2}f(x)\right|,$$

which means that it is sufficient to deal with the operator $|x|L^{-1/2}$, formally defined on \mathcal{D} as $Sf(x) = |x|L^{-1/2}f(x)$. This operator turns out to be bounded on all L^p spaces for $1 \leq p < \infty$.

Theorem 8. For $1 \leq p < \infty$ we have $||S||_{p \to p} \leq 3$.

In order to prove this theorem, we first derive an expression for the kernel of S, i.e., a function K(x, y) such that

$$Sf(x) = \int_{\mathbb{R}^d} K(x, y) f(y) \, dy \quad \text{for } f \in \mathcal{D}.$$

Lemma 9. For $x, y \in \mathbb{R}^d$ we have

$$K(x,y) = |x| \int_0^\infty \frac{1}{\sqrt{t}} K_t(x,y) \, dt,$$

where

$$K_t(x,y) = \frac{C_d}{(\sinh 2t)^{d/2}} \exp\left(-\frac{|x-y|^2}{4\tanh t} - \frac{\tanh t}{4}|x+y|^2\right), \quad C_d = \frac{1}{(2\pi)^{d/2}\sqrt{\pi}}.$$

Proof. Equation (16) in [6] states that

$$e^{-tL}f(x) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} K'_t(x,y)f(y) \, dy,$$

with

$$\begin{aligned} K'_t(x,y) &= \frac{1}{(\sinh 2t)^{d/2}} \exp\left(-\frac{|x|^2 + |y|^2}{2} \coth 2t + \frac{\langle x, y \rangle}{\sinh 2t}\right) \\ &= \frac{1}{(\sinh 2t)^{d/2}} \exp\left(-\frac{|x-y|^2}{4 \tanh t} - \frac{\tanh t}{4} |x+y|^2\right). \end{aligned}$$

Note also that

$$\lambda^{-1/2} = \frac{1}{\sqrt{\pi}} \int_0^\infty e^{-t\lambda} \frac{1}{\sqrt{t}} dt.$$

Since $\mathcal{D} = \lim\{h_n : n \in \mathbb{N}^d\}$, it is sufficient to prove the formula for $f = h_n$. We have

$$L^{-1/2}h_n(x) = \lambda_n^{-1/2}h_n(x) = \frac{1}{\sqrt{\pi}} \int_0^\infty e^{-t\lambda_n}h_n(x)\frac{1}{\sqrt{t}} dt$$

= $\frac{1}{\sqrt{\pi}} \int_0^\infty e^{-tL}h_n(x)\frac{1}{\sqrt{t}} dt$
= $\frac{1}{\sqrt{\pi}} \frac{1}{(2\pi)^{d/2}} \int_0^\infty \frac{1}{\sqrt{t}} \int_{\mathbb{R}^d} K'_t(x,y)h_n(y) \, dy \, dt$

This integral is absolutely convergent, so we may interchange the order of integration and the conclusion follows. $\hfill \Box$

Next we prove that the operator T defined on L^p , $1 \leq p \leq \infty$, as

$$Tf(x) = \int_{\mathbb{R}^d} K(x, y) f(y) \, dy$$

is bounded uniformly in d and p. This will mean that S is bounded on \mathcal{D} in L^p norm and, by density, that it has a unique bounded extension to L^p for $1 \leq p < \infty$ with the same norm. We want to use interpolation and our goal is to prove that

$$\int_{\mathbb{R}^d} K(x,z) \, dz \leqslant 2 \quad \text{and} \quad \int_{\mathbb{R}^d} K(z,y) \, dz \leqslant 3 \tag{4.2}$$

for all $x, y \in \mathbb{R}^d$. Clearly, we have

$$\int_{\mathbb{R}^d} K(z,y) dz = \int_{\mathbb{R}^d} |z| \int_0^\infty \frac{1}{\sqrt{t}} K_t(z,y) dt dz$$

$$\leqslant \int_{\mathbb{R}^d} |y| \int_0^\infty \frac{1}{\sqrt{t}} K_t(z,y) dt dz$$

$$+ \int_{\mathbb{R}^d} |y-z| \int_0^\infty \frac{1}{\sqrt{t}} K_t(z,y) dt dz,$$

(4.3)

so, by symmetry of K_t , it is sufficient to prove the first inequality of (4.2) and the following proposition.

Proposition 10. For $y \in \mathbb{R}^d$ it holds

$$\int_{\mathbb{R}^d} |y-z| \int_0^\infty \frac{1}{\sqrt{t}} K_t(z,y) \, dt \, dz \leqslant 1.$$
(4.4)

Proof. We begin with an auxiliary computation:

$$I(k) \coloneqq \int_{\mathbb{R}^d} |x| e^{-k|x|^2} \, dx = \frac{\Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \frac{\pi^{d/2}}{k^{(d+1)/2}} \quad \text{for } k \ge 0.$$
(4.5)

To prove (4.5), let $S_d = \frac{2\pi^{d/2}}{\Gamma(\frac{d}{2})}$ denote the surface area of the unit sphere in the *d*-dimensional Euclidean space. Then we can write

$$\begin{split} \int_{\mathbb{R}^d} |x| e^{-k|x|^2} \, dx &= \int_0^\infty r e^{-kr^2} r^{d-1} S_d \, dr = \frac{S_d}{2k^{(d+1)/2}} \int_0^\infty x^{(d-1)/2} e^{-x} \, dx \\ &= \frac{\Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \frac{\pi^{d/2}}{k^{(d+1)/2}}. \end{split}$$

Coming back to (4.4), in view of (4.5) we have, for $t \ge 0$,

$$\begin{split} \int_{\mathbb{R}^d} |x - y| K_t(x, y) \, dx &= \frac{C_d}{(\sinh 2t)^{d/2}} \int_{\mathbb{R}^d} |x - y| \exp\left(-\frac{|x - y|^2}{4 \tanh t} - \frac{\tanh t}{4} |x + y|^2\right) \, dx \\ &\leqslant \frac{C_d}{(\sinh 2t)^{d/2}} \int_{\mathbb{R}^d} |x - y| \exp\left(-\frac{|x - y|^2}{4 \tanh t}\right) \, dx \\ &= \frac{C_d}{(\sinh 2t)^{d/2}} \int_{\mathbb{R}^d} |x| \exp\left(-\frac{|x|^2}{4 \tanh t}\right) \, dx \\ &= \frac{C_d}{(\sinh 2t)^{d/2}} I\left(\frac{1}{4 \tanh t}\right) \\ &= \frac{\pi^{d/2}}{(2\pi)^{d/2} \sqrt{\pi}} \frac{\Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \frac{(4 \tanh t)^{(d+1)/2}}{(\sinh 2t)^{d/2}} \\ &= \frac{1}{2^{d/2} \sqrt{\pi}} \frac{\Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \frac{(4 \tanh t)^{(d+1)/2}}{(\sinh 2t)^{d/2}}. \end{split}$$

Plugging it into (4.4), we get

$$\int_{\mathbb{R}^d} |y-z| \int_0^\infty \frac{1}{\sqrt{t}} K_t(z,y) \, dt \, dz \leqslant \frac{1}{2^{d/2} \sqrt{\pi}} \frac{\Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \int_0^\infty \frac{(4\tanh t)^{(d+1)/2}}{(\sinh 2t)^{d/2}} \frac{dt}{\sqrt{t}}.$$

To estimate the last integral, we will use formula [12, 5.12.7]:

$$\int_0^\infty \frac{1}{(\cosh t)^{2a}} dt = 4^{a-1} \mathcal{B}(a, a),$$

where B denotes the beta function. We obtain

$$\int_0^\infty \frac{(4\tanh t)^{(d+1)/2}}{(\sinh 2t)^{d/2}} \frac{dt}{\sqrt{t}} = \frac{4^{(d+1)/2}}{2^{d/2}} \int_0^\infty \left(\frac{\tanh t}{t}\right)^{1/2} \frac{1}{(\cosh t)^d} dt$$
$$\leqslant 2^{\frac{d}{2}+1} \int_0^\infty \frac{1}{(\cosh t)^d} dt = 2^{\frac{d}{2}+1} \cdot 4^{\frac{d}{2}-1} \mathbf{B}\left(\frac{d}{2}, \frac{d}{2}\right)$$
$$= 2^{\frac{3d}{2}-1} \frac{\Gamma\left(\frac{d}{2}\right)^2}{\Gamma(d)}.$$

Finally, using the Legendre duplication formula $(\Gamma(z)\Gamma(z+\frac{1}{2})=2^{1-2z}\sqrt{\pi}\Gamma(2z))$, we get

$$\int_{\mathbb{R}^d} |y-z| \int_0^\infty \frac{1}{\sqrt{t}} K_t(z,y) \, dt \, dz$$

$$\leq 2^{\frac{3d}{2}-1} \frac{1}{2^{d/2}\sqrt{\pi}} \frac{\Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \frac{\Gamma\left(\frac{d}{2}\right)^2}{\Gamma(d)} = 2^{d-1} \frac{\Gamma\left(\frac{d+1}{2}\right)\Gamma\left(\frac{d}{2}\right)}{\sqrt{\pi}\Gamma(d)} = 1.$$

Now it remains to justify the first inequality of (4.2).

Proposition 11. For $x \in \mathbb{R}^d$ we have

$$\int_{\mathbb{R}^d} |x| \int_0^\infty \frac{1}{\sqrt{t}} K_t(x, y) \, dt \, dy \leqslant \frac{1}{\sqrt{\pi}} + \sqrt{2}.$$

Proof. The first step is to compute the integral $\int_{\mathbb{R}^d} K_t(x, y) \, dy$. Observe that

$$\begin{split} &\exp\left(-\frac{|x-y|^2}{4\tanh t} - \frac{\tanh t}{4}|x+y|^2\right) = \\ &\exp\left(-\frac{1}{4}\left|y\sqrt{\tanh t + \frac{1}{\tanh t}} + x\frac{\tanh t - \frac{1}{\tanh t}}{\sqrt{\tanh t + \frac{1}{\tanh t}}}\right|^2 - \frac{|x|^2}{\tanh t + \frac{1}{\tanh t}}\right) = \\ &\exp\left(-\frac{1}{4}\left|y\sqrt{2\coth(2t)} + x\frac{\tanh t - \frac{1}{\tanh t}}{\sqrt{\tanh t + \frac{1}{\tanh t}}}\right|^2 - \frac{|x|^2}{2\coth(2t)}\right), \end{split}$$

hence

$$\begin{split} &\int_{\mathbb{R}^d} \exp\left(-\frac{|x-y|^2}{4\tanh t} - \frac{\tanh t}{4}|x+y|^2\right) \, dy = \\ &\exp\left(-\frac{|x|^2}{2\coth(2t)}\right) \int_{\mathbb{R}^d} \exp\left(-\frac{1}{4}\left|y\sqrt{2\coth(2t)}\right|^2\right) \, dy = \\ &\exp\left(-\frac{|x|^2}{2\coth(2t)}\right) \left(\frac{4\pi}{2\coth(2t)}\right)^{d/2}, \end{split}$$

so that

$$\int_{\mathbb{R}^d} K_t(x,y) \, dy = \frac{C_d}{(\sinh 2t)^{d/2}} \exp\left(-\frac{|x|^2}{2\coth(2t)}\right) \left(\frac{4\pi}{2\coth(2t)}\right)^{d/2}$$

To estimate the integral with respect to t, we need to split it into two parts. Note that for $t \ge 0$, $\frac{1}{t} \le 2 \coth(2t)$. Let $\tau \in [0.95, 0.96]$ denote the unique positive solution of $2 \coth(2t) = \frac{2}{t}$. It follows that $2 \coth(2t) \le \frac{2}{t}$ for $0 \le t \le \tau$. Thus, we obtain

$$\begin{aligned} |x| \int_{0}^{\tau} \frac{1}{(\sinh 2t)^{d/2}} \frac{1}{\sqrt{t}} \exp\left(-\frac{|x|^{2}}{2\coth(2t)}\right) \left(\frac{4\pi}{2\coth(2t)}\right)^{d/2} dt \leqslant \\ |x| \int_{0}^{\tau} \frac{1}{(2t)^{d/2}} \exp\left(-\frac{t|x|^{2}}{2}\right) (4\pi)^{d/2} \frac{t^{d/2}}{\sqrt{t}} dt = \\ |x| (2\pi)^{d/2} \int_{0}^{\tau} \exp\left(-\frac{t|x|^{2}}{2}\right) \frac{1}{\sqrt{t}} dt \leqslant \\ |x| (2\pi)^{d/2} \int_{0}^{\infty} \exp\left(-\frac{t|x|^{2}}{2}\right) \frac{1}{\sqrt{t}} dt = |x| (2\pi)^{d/2} \sqrt{\frac{2\pi}{|x|^{2}}} = (2\pi)^{(d+1)/2}. \end{aligned}$$
(4.6)

For the second part, when $t \ge \tau$ and $2 \coth(2t) \le \frac{2}{\tau}$, calculations are as follows:

$$\begin{aligned} |x| \int_{\tau}^{\infty} \frac{1}{(\sinh 2t)^{d/2}} \frac{1}{\sqrt{t}} \exp\left(-\frac{|x|^{2}}{2\coth(2t)}\right) \left(\frac{4\pi}{2\coth(2t)}\right)^{d/2} dt \leqslant \\ |x| \exp\left(-\frac{\tau |x|^{2}}{2}\right) \int_{\tau}^{\infty} \frac{1}{(\sinh 2t)^{d/2}} \left(\frac{4\pi}{2}\right)^{d/2} \frac{1}{\sqrt{t}} dt \leqslant \\ |x| \exp\left(-\frac{\tau |x|^{2}}{2}\right) \frac{1}{\sqrt{\tau}} (2\pi)^{d/2} \int_{\tau}^{\infty} \left(\frac{4}{e^{2t}}\right)^{d/2} dt \leqslant \\ \frac{1}{\tau\sqrt{e}} (2\pi)^{d/2} 2^{d} \int_{\tau}^{\infty} e^{-td} dt \leqslant (2\pi)^{d/2} 2^{d} \frac{e^{-\tau d}}{d} \leqslant (2\pi)^{d/2} . \end{aligned}$$
(4.7)

In the second inequality we used the fact that $\sinh(2t) \ge \frac{e^{2t}}{4}$ for $t \ge \tau$. Combining (4.6) and (4.7) and recalling the definition of K_t completes the proof.

Now we are ready to prove the main theorem of this section.

Proof of Theorem 8. Proposition 10, Proposition 11 and (4.3) imply that

$$\int_{\mathbb{R}^d} K(x,z) \, dz \leqslant 3 \quad \text{and} \quad \int_{\mathbb{R}^d} K(z,y) \, dz \leqslant 3,$$

hence T is bounded on L^1 and L^{∞} with norm at most 3. Using the Riesz–Thorin interpolation theorem we obtain $||T||_{p \to p} \leq 3$ for $1 \leq p \leq \infty$ and since S = T on \mathcal{D} —a dense subspace of L^p for $1 \leq p < \infty$ —S has a unique bounded extension to L^p with norm at most 3.

Recollecting (4.1), we see that Theorem 8 and Theorem 10 from [16] imply an L^p norm estimate for $\tilde{\mathbf{R}}f = (\tilde{R}_1 f, \dots, \tilde{R}_d f)$.

Theorem 12. For $f \in L^p$ we have

$$\left\|\tilde{\mathbf{R}}f\right\|_{p} = \left(\int_{\mathbb{R}^{d}} \left|\tilde{\mathbf{R}}f(x)\right|^{p} dx\right)^{1/p} \leqslant 54(p^{*}-1)\|f\|_{p}$$

As a corollary of the above result we will prove one more theorem. Let

$$\mathbf{R}^*f = (R_1^*f, \dots, R_d^*f)$$

with

$$R_i^* f(x) = \delta_i^* (L+2)^{-1/2} f(x).$$

It is worth noting that each R_i^* is the adjoint of $R_i = \delta_i L^{-1/2}$ — the 'usual' Riesz– Hermite transform. To prove it, we check that $\langle h_n, R_i^* h_k \rangle = \langle R_i h_n, h_k \rangle$. For the left-hand side we use item 2. from Lemma 1.

$$\langle h_n, R_i^* h_k \rangle = \langle h_n, \delta_i^* (L+2)^{-1/2} h_k \rangle = (\lambda_k + 2)^{-1/2} \langle h_n, \delta^* h_k \rangle$$

$$= \sqrt{2(k_i + 1)} (\lambda_k + 2)^{-1/2} \langle h_n, h_{k+e_i} \rangle$$

$$= \begin{cases} \sqrt{\frac{2(k_i + 1)}{2|k|_1 + d + 2}} & \text{if } n = k + e_i \\ 0 & \text{otherwise} \end{cases} .$$

$$(4.8)$$

For the right-hand side we use item 1.

$$\langle R_i h_n, h_k \rangle = \left\langle \delta_i L^{-1/2} h_n, h_k \right\rangle = \lambda_n^{-1/2} \left\langle \delta_i h_n, h_k \right\rangle$$

$$= \sqrt{2n_i} \lambda_n^{-1/2} \left\langle h_{n-e_i}, h_k \right\rangle$$

$$= \begin{cases} \sqrt{\frac{2n_i}{2|n|_1 + d}} & \text{if } n - e_i = k \\ 0 & \text{otherwise} \end{cases} .$$

$$(4.9)$$

Now we are ready to state the last theorem of this paper.

Theorem 13. For $f \in L^p$ we have

$$\left\|\mathbf{R}^*f\right\|_p = \left(\int_{\mathbb{R}^d} \left|\mathbf{R}^*f(x)\right|^p dx\right)^{1/p} \le 108(p^*-1)\left\|f\right\|_p$$

To prove this theorem, we perform a slightly more general calculation. For a > 0 we define

$$U_a f(x) = \left(L(L+2a)^{-1} \right)^{1/2} f(x), \quad f \in \mathcal{D}.$$

Proposition 14. For $1 \leq p < \infty$ we have $||U_a||_{p \to p} \leq 2$.

Proof. We begin with a well-known fact: If A is a positive operator and $||A|| \leq 1$, then

$$(I-A)^{1/2} = I - \sum_{n=1}^{\infty} c_n A^n, \qquad (4.10)$$

where

$$c_n = \frac{(2n)!}{(n!)^2 (2n-1)4^n}$$
 and $\sum_{n=1}^{\infty} c_n = 1.$

Next, observe that

$$(L(L+2a)^{-1})^{1/2} = (I-2a(L+2a)^{-1})^{1/2},$$

so, taking $A = 2a (L + 2a)^{-1}$ in (4.10), we see that it is enough to prove that $||(L + 2a)^{-1}||_{p \to p} \leq \frac{1}{2a}$. We proceed as in the proof of Theorem 8. First, we find the kernel of $(L + 2a)^{-1}$, then prove its boundedness on L^1 and L^{∞} and finally use interpolation.

24

A computation similar to the proof of Lemma 9 shows that

$$(L+2a)^{-1} f(x) = \int_{\mathbb{R}^d} \tilde{K}(x,y) f(y) \, dy \quad \text{for } f \in D,$$

where

$$\tilde{K}(x,y) = \int_0^\infty e^{-2at} \tilde{K}_t(x,y) \, dt$$

and

$$\tilde{K}_t(x,y) = \frac{\tilde{C}_d}{(\sinh 2t)^{d/2}} \exp\left(-\frac{|x-y|^2}{4\tanh t} - \frac{\tanh t}{4}|x+y|^2\right), \quad \tilde{C}_d = \frac{1}{(2\pi)^{d/2}}.$$

Since this time the kernel is symmetric, we only prove that

$$\int_{\mathbb{R}^d} \tilde{K}(x,y) \, dy \leqslant \frac{1}{2a}.$$

Calculations are as follows:

$$\begin{split} \int_{\mathbb{R}^d} \tilde{K}(x,y) \, dy &= \tilde{C}_d \int_{\mathbb{R}^d} \int_0^\infty \frac{e^{-2at}}{(\sinh 2t)^{d/2}} \exp\left(-\frac{|x-y|^2}{4\tanh t} - \frac{\tanh t}{4}|x+y|^2\right) \, dt \, dy \\ &\leq \tilde{C}_d \int_0^\infty \frac{e^{-2at}}{(\sinh 2t)^{d/2}} \int_{\mathbb{R}^d} \exp\left(-\frac{|x-y|^2}{4\tanh t}\right) \, dy \, dt \\ &= \tilde{C}_d \int_0^\infty \frac{e^{-2at}}{(\sinh 2t)^{d/2}} \int_{\mathbb{R}^d} \exp\left(-\frac{|y|^2}{4\tanh t}\right) \, dy \, dt \\ &= \tilde{C}_d \int_0^\infty \frac{e^{-2at}}{(\sinh 2t)^{d/2}} \, (4\pi \tanh t)^{d/2} \, dt \\ &= \tilde{C}_d \int_0^\infty e^{-2at} \frac{(4\pi)^{d/2}}{2^{d/2}} \frac{1}{(\cosh t)^d} \, dt \\ &= \int_0^\infty \frac{e^{-2at}}{(\cosh t)^d} \, dt. \end{split}$$

We split the last integral into two parts — from 0 to 1 and from 1 to ∞ . The first part can be estimated by

$$\int_0^1 \frac{e^{-2at}}{(\cosh t)^d} \, dt \leqslant \int_0^1 e^{-2at} \, dt = \frac{1 - e^{-2a}}{2a}$$

and the second one by

$$\int_1^\infty \frac{e^{-2at}}{(\cosh t)^d} dt = 2^d \int_1^\infty \frac{e^{-2at}}{(e^t + e^{-t})^d} dt$$
$$\leqslant 2^d \int_1^\infty e^{-2at} e^{-td} dt$$
$$= 2^d \frac{e^{-2a-d}}{2a+d}.$$

Adding, we get

$$\int_0^\infty \frac{e^{-2at}}{(\cosh t)^d} dt \leqslant \frac{1 - e^{-2a}}{2a} + 2^d \frac{e^{-2a-d}}{2a+d}$$
$$\leqslant \frac{1 + 2^d e^{-d} e^{-2a} - e^{-2a}}{2a} < \frac{1}{2a}$$

This means that the operator V defined as

$$Vf(x) = \int_{\mathbb{R}^d} \tilde{K}(x, y) f(y) \, dy$$

is bounded on L^1 and L^{∞} with norm at most $\frac{1}{2a}$ and the Riesz-Thorin interpolation theorem gives its boundedness on L^p for $1 \leq p \leq \infty$ with the same upper bound for the norm. Density of \mathcal{D} implies that $(L+2a)^{-1}$ has a unique bounded extension to the whole L^p space, $1 \leq p < \infty$, with norm at most $\frac{1}{2a}$. Applying (4.10) with $A = 2a (L+2a)^{-1}$ completes the proof.

This leads us to the proof of Theorem 13.

Proof of Theorem 13. It is sufficient to note that for $f \in \mathcal{D}$

$$R_i^* f = \delta_i^* \left(L+2\right)^{-1/2} f = \delta_i^* L^{-1/2} \left(L(L+2)^{-1}\right)^{1/2} f = \tilde{R}_i U_1 f.$$

Now Theorem 12 and Proposition 14 complete the proof.

Finally, let us mention that in the light of (2.1), a very similar argument (with U_d instead of U_1) can be used to prove Theorem 2 with the constant equal to 108.

Acknowledgements

The author is very grateful to Błażej Wróbel for suggesting the topic, supervision and helpful discussions.

Research was supported by the National Science Centre, Poland, research project No. 2018/31/B/ST1/00204.

The paper will constitute author's master's thesis.

References

- A. Carbonaro, O. Dragičević, Bellman function and dimension-free estimates in a theorem of Bakry, J. Funct. Anal. 265 (2013), pp. 1085–1104.
- [2] A. Carbonaro, O. Dragičević, Functional calculus for generators of symmetric contraction semigroups, Duke Math. J. (5) 166 (2017), pp. 937–974.
- [3] O. Dragičević, A. Volberg, Bellman functions and dimensionless estimates of Littlewood-Paley type, J. Oper. Theory (1) 56 (2006), pp. 167–198.
- [4] O. Dragičević, A. Volberg, Bilinear embedding for real elliptic differential operators in divergence form with potentials, J. Funct. Anal. 261 (2011), pp. 2816–2828.
- [5] O. Dragičević, A. Volberg, Linear dimension-free estimates in the embedding theorem for Schrödinger operators, J. London Math. Soc. (2) 85 (2012), pp. 191–222.
- [6] O. Dragičević, A. Volberg, Linear dimension-free estimates for the Hermite-Riesz transforms, https://arxiv.org/abs/0711.2460.
- [7] E. Harboure, L. de Rosa, C. Segovia and J. L. Torrea, L^p-dimension free boundedness for Riesz transforms associated to Hermite functions, Math. Ann. 328 (2004) pp. 653–682.
- [8] F. Lust-Piquard, Dimension free estimates for Riesz transforms associated to the harmonic oscillator on \mathbb{R}^n , Potential Anal. 24 (2006) pp. 47–62.
- G. Mauceri, M. Spinelli, Riesz transforms and spectral multipliers of the Hodge-Laguerre Operator, J. Funct. Anal. 269 (2015), pp. 3402–3457.
- [10] G. Mauceri, M. Spinelli, Riesz transforms and spectral multipliers of the Hodge-Laguerre Operator, https://arxiv.org/abs/1407.2838.
- [11] F. L. Nazarov, S. R. Treil, The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis, St. Petersburg Math. J. 8 (1997), pp. 721–824.
- [12] F. Olver, D. Lozier, R. Boisvert, C. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, 2010.
- [13] A. Nowak, K. Stempak, L²-theory of Riesz transforms for orthogonal expansions, J. Fourier Anal. Appl. (6) 12 (2006), pp. 675–711.
- [14] E. M. Stein, Some results in harmonic analysis in \mathbb{R}^n , for $n \to \infty$, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 1, pp. 71–73.
- [15] S. Thangavelu, Lectures on Hermite and Laguerre expansions, Mathematical Notes 42, Princeton University Press, Princeton, NJ, 1993.
- [16] B. Wróbel, Dimension-free L^p estimates for vectors of Riesz transforms associated with orthogonal expansions, Anal. PDE 11 (2018), no. 3, pp. 745–773.

Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland