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Abstract

There is a large family of graph and geometric problems for which the best known algorithms use
fast matrix multiplication and their complexity is between nω and n3. We call them intermediate
complexity problems. One of these problems is All-Pairs LCA in DAGs. The fastest known
algorithms for this problem have running times ranging from O(n2.687) [Bender et al. SODA’01]
down to O(n2.615) [Kowaluk and Lingas ICALP’05] and O(n2.569) [Czumaj et al. TCS’07].
Somewhat surprisingly, all those bounds would still be Ω(n2.5) even if matrix multiplication
could be solved optimally (i.e., ω = 2). This appears to be an inherent barrier for all the
currently known approaches, which raises the natural question on whether one could break
through the O(n2.5) barrier for this problem.

In this work, we answer this question affirmatively: in particular, we present an Õ(n2.447)
(Õ(n7/3) for ω = 2) algorithm for finding an LCA for all pairs of vertices in a DAG, which
represents the first improvement on the running times for this problem in the last 13 years.

Moreover, we show that any improvement in the complexity of the computation of the
rectangular max-min matrix product (for specific matrix dimensions) implies an improvement in
the complexity of the All-Pairs LCA problem.

Istnieje duża klasa problemów grafowych i geometrycznych, dla których najlepsze znane
algorytmy używają szybkiego mnożenia macierzy oraz złożoność tych algorytmów znajduje
się pomiędzy nω i n3. Nazywamy je problemami o złożoności pośredniej. Jednym z takich
problemów jest Najniższy Wspólny Przodek Dla Wszystkich Par Wierzchołków w Acyklicznym
Grafie Skierowanym. Najszybsze znane algorytmy dla tego problemu mają złożoności od O(n2.687)
[Bender et al. SODA’01], poprzez O(n2.615) [Kowaluk, Lingas ICALP’05], aż do O(n2.569) [Czumaj
et al. TCS’07]. Co zaskakujące, wszystkie te algorytmy działałyby w czasie Ω(n2.5), nawet gdyby
mnożenie macierzy można byłoby wykonywać optymalnie, tzn. gdyby ω = 2. Wydaje się to być
immanentną barierą wszystkich obecnie znanych podejść do tego problemu, co prowadzi do
naturalnego pytania, czy jej złamanie jest możliwe.

W niniejszej pracy odpowiadamy na to pytanie twierdząco - w szczególności pokazujemy
algorytm w czasie Õ(n2.447) (Õ(n7/3) dla ω = 2) znajdujący najniższego wspólnego przodka
dla wszystkich par wierzchołków w acyklicznych grafie skierowanym. Stanowi to pierwsze w
ciągu 13 lat polepszenie złożoności dla tego problemu. Co więcej, pokazujemy również, że
jakiekolwiek polepszenie złożoności liczenia max-min mnożenia prostokątnych macierzy (dla
pewnych wymiarów macierzy) implikuje polepszenie złożoności problemu Najniższego Wspólnego
Przodka Dla Wszystkich Par Wierzchołków w Acyklicznym Grafie Skierowanym.
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Chapter 1

Introduction

1.1 Overview

Matrix multiplication is one of the most fundamental and most thoroughly studied algebraic
operations. It admits an O(nω) algorithm (with the current bound on ω being ω < 2.3728639
[32]), much faster than the brute-force O(n3) solution. This O(nω) multiplication serves as a
building block for many algorithms. In particular, there is a large family of graph and geometric
problems for which the best known algorithms use fast matrix multiplication and their complexity
is between nω and n3. We call them intermediate complexity problems. One of these problems is
All-Pairs LCA in DAGs, which is the main topic of interest in this thesis.

Let G = (V,E) be a directed acyclic graph (DAG), with m edges and n vertices. Let u and
v be any two vertices in G: if there is a path from u to v, we say that u is an ancestor of v and
that v is a descendant of u. If u is an ancestor of v and u 6= v, we say that u is a proper ancestor
of v (and v is a proper descendant of u). A lowest common ancestor (LCA) of u and v is the
lowest (i.e., deepest) vertex w that is an ancestor of both u and v, i.e., no proper descendant of
w is an ancestor of both u and v. In the special case of a tree, the lowest common ancestor of
two vertices is always defined and is unique. In a DAG G, the existence of an LCA for a pair of
vertices is not even guaranteed, and a pair of vertices can have as many as (n− 2) LCAs, where
n is the total number of vertices in G.

In this thesis, we consider the problem of computing an LCA for all pairs of vertices in a
DAG, which we refer to as the All-Pairs LCA problem. This is a fundamental problem and has
many important applications, including inheritance in object-oriented programming languages,
analysis of genealogical data and modeling the behavior of complex systems in distributed
computing (see, e.g., [8, 14, 38] for a list of applications and especially [8] for further references).

The All-Pairs LCA problem for DAGs has been investigated in the last two decades, and
many algorithms have been presented in the literature (see, e.g., [8, 9, 15, 27, 28, 30]). The
problem was first considered by Bender et al. [8, 9], who proved an Ω(nω) lower bound, by
giving a reduction from the transitive closure problem, and presented an algorithm that runs in

7



O(n(ω+3)/2) time, where ω is the exponent of the fastest known matrix multiplication algorithm.
Later on, Kowaluk and Lingas [27] improved this bound to O(n2+1/(4−ω)) by showing that
the All-Pairs LCA problem can be reduced to finding maximum witnesses for Boolean matrix
multiplication and by providing an efficient solution to the latter problem. The current best
bound for the All-Pairs LCA problem is O(n2.569) by Czumaj et al. [15]. To achieve this bound,
they solved the problem of finding maximum witnesses for Boolean matrix multiplication in
time O(n2+λ), where λ satisfies the equation ω(1, λ, 1) = 1 + 2λ. Here ω(1, x, 1) is the exponent
of the (rectangular) multiplication of an n× nx matrix by an nx × n matrix. The currently best
known bound on ω(1, x, 1) implies a bound of O(n2.569) for the All-Pairs LCA problem.

Somewhat surprisingly, all the currently known bounds for the All-Pairs LCA problem [8, 9,
15, 27] would still be Ω(n2.5) even if matrix multiplication could be solved optimally (i.e., ω = 2).
This appears to be an inherent barrier for all the currently known approaches, which raises the
natural question on whether one could break through the O(n2.5) barrier for this problem.

1.2 Our result

In this work we answer this question affirmatively by presenting a new algorithm which runs in
time Õ(n2.447). This is the first improvement on the running time for this problem in the last 13
years. To this end we introduce some novel techniques, which differ substantially from previous
approaches for the same problem. In particular, we develop a new technique for covering a DAG
G with a small number of chains and antichains, which might also be of independent interest.
Here, a chain is just a path in G, while an antichain is an independent set (i.e., a subset of
vertices such that there is no edge between any two of them). In more detail, given a parameter
` ≤ n, we show how to partition the vertices of G into at most ` chains and 2n

` antichains in
time O(n`2). We refer to this as an (`, 2n

` )-decomposition of G.

Moreover, we further speed up the time needed for computing (`, 2n
` )-decomposition down

to O(n2). This enables us to show that computation of the max-min matrix product appears
to be a barrier for faster solution to the All-Pairs LCA problem, i.e we show that any time
improvement to the former problem implies an improvement to the latter.

We remark that if matrix multiplication could be solved optimally (i.e., ω = 2), several graph
algorithms based on fast matrix multiplication would take either time Õ(n2) or time Õ(n2.5).
As it was already mentioned, the previous algorithms by Bender et al. [8, 9], by Kowaluk and
Lingas [27] and by Czumaj et al. [15] would all take time Õ(n2.5). On the other side, under the
same assumption, the running time of our algorithm would be Õ(n2+ 1

3 ). Thus, our improvement
suggests a possible separation between the All-Pairs LCA and the minimum / maximum witness
for Boolean matrix multiplication (used by Czumaj et al. [15] as a reduction in their algorithm
for All-Pairs LCA).
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1.3 Structure of the thesis

In Chapter 2. we introduce necessary definitions and recall useful facts about fast matrix
multiplication and max-min matrix product.

In Chapter 3. we define the notion of (a, b) decomposition of the DAG, discuss a greedy
algorithm for computing (`, n` ) decomposition and construct faster algorithm that computes
(`, 2n

` ) decomposition in O(n`2) time.

In Chapter 4. we show how to use fast algorithm from the previous chapter in order to solve
All-Pairs LCA problem in O(n2.447) time. After finding the (`, 2n

` ) decomposition, for each pair
of vertices, we compute a candidate LCA among the chain and antichain vertices, separately. We
show that the former case can be solved via a reduction to max-min matrix product, similarly
to Bender et al. [8, 9] and to Czumaj et al. [15]. Then, we explain that the computation in the
latter case can be reduced to several Boolean matrix multiplications. Finally, we discuss how to
combine the two solutions, which is non-trivial and requires some extra care.

In Chapter 5. we show how to speed up (`, 2n
` ) decomposition down to O(n2).

In Chapter 6. we provide applications of the O(n2) decomposition from the previous chapter.
We define S-pairs LCA problem and construct a fast algorithm that solves it. Next, we show
that an improvement of the time complexity of computing max-min matrix product implies an
improvement to the solution of the All-Pairs LCA problem.

1.4 Related work

The problem of finding LCAs in trees was first introduced by Aho et al. [1]. The first optimal
(linear preprocessing and O(1) time per query) solution to this problem was presented by Harel
and Tarjan [24], altough with a sophisticated data structure which is not practical. The first
simple, near-optimal algorithm for LCAs in trees was introduced by Bender and Farach-Colton
[7]. We remark that LCA problem in trees exemplifies a rather different structure than in DAGs.

Matrix multiplication is a fundamental problem, with a long line of algebraic approaches,
with recent results by Stothers [40], Vassilevska-Williams [43] and finally Le Gall [32], which
yielded ω < 2.3728639. There are known faster (under the assumption that ω > 2) algorithms for
rectangular matrix multiplication, with current best bounds by Le Gall and Urrutia [33]. There
is a long list of problems which are equivalent to matrix multiplication e.g., Boolean matrix
multiplication witnesses with Õ(nω) [3] and All-Pairs Shortest Paths (APSP) in undirected
unweighted graphs [2].

Examples of intermediate complexity problems other than All-Pairs LCA include All-Pair
Bottleneck Paths (APBP): [19, 41], vertex APBP [39], unweighted directed APSP [49], All-
Pair Nondecreasing Paths [17, 18, 44], and Dominance-, Hamming- and L1- matrix products:
[25, 36, 47]. Interestingly, for all the aforementioned problems, the best known algorithms would
be of complexity Õ(n2.5) if ω = 2. For fine-grained complexity of intermediate complexity
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problems and the relations between them, see recent results [6, 11, 20, 35].

For other results on All-Pairs LCA, see [28] on finding unique LCA. Other work in the area
include [16].

For related problem of minimal witnesses of Boolean matrix multiplication, we refer to an
algorithm for sparse matrices [13], and to a recent quantum algorithm [29]. We also refer to [30]
which introduced path covering technique in the All-Pairs LCA problem. The authors observe
that covering a DAG with a small number of paths might lead to faster algorithms, which is one
of the key observations used in our algorithm. However, this observation alone does not lead to
a faster algorithm.

The decomposition of a partially ordered set into disjoint chains and antichains can be seen
as a special case of finding a cocoloring of a graph. A cocoloring of a graph is a partition of its
vertices into cliques and independent sets. The cochromatic number of a graph is the cardinality
of the smallest cocoloring. This problem has been originally studied by Lesniak and Straight [34].
The special case of partitioning sequence into monotonic subsequences has received considerable
attention [5, 10, 21, 22, 42, 46], since it has many applications, including book embeddings [5],
and geometric algorithms [4, 5, 12].

1.5 Contributions of the author and acknowledgments

This thesis is largely based on the paper [23] by Fabrizio Grandoni, Giuseppe F. Italiano,
Aleksander Łukasiewicz, Nikos Parotsidis and Przemysław Uznański. This paper has been
recently submitted to a conference.

The main conceptual contribution of the author of this thesis was construction of the
Algorithm 2, thus improving the time needed for computing (`, 2n

` ) decomposition from the naive
O(n2`) to O(n`2 logn+ n2 logn). This was the key missing ingredient required to improve upon
the previously know algorithms for All-Pairs LCA problem (as described in Figure 9). Later
on, the author derived a series of refinements to the Algorithm 2, improving the time down to
O(n`2 + n2), then O(n2+ 1

3 logn) and finally to O(n2). Further simplifications and refinements
made with the other co-authors led to the current presentation of the O(n2) algorithm (Algorithm
6 described in Chapter 5). We remark that this further improvement of the decomposition
enabled us to show that max-min product exemplifies the source of hardness in the All-Pairs LCA
problem (which was non-obvious while we had decomposition in time O(n`2 logn+ n2 logn)).
We discuss this matter in the Section 6.2.

Contents of the Section 6.2 is a result of an ongoing research, made by the author and the
advisor in collaboration with Adam Polak.
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Chapter 2

Preliminaries

2.1 All-Pairs LCA

Let G = (V,E) be a DAG, with m edges and n vertices. Without loss of generality we assume
that G is weakly connected (hence, m ≥ n− 1). If (u, v) ∈ E(G) we say that u is a parent of v
and v is a child of u. If there is a path from u to v in G we say that u is an ancestor of v and
that v is a descendant of u. If u is an ancestor of v and u 6= v, we say that u is a proper ancestor
of v (and v is a proper descendant of u). A lowest common ancestor (LCA) of u and v is the
lowest (i.e., deepest) vertex w that is an ancestor of both u and v, i.e., no proper descendant of
w is an ancestor of both u and v. We use LCA(u, v) to denote the set of LCAs of u and v. In
case there is no common ancestor of u and v, LCA(u, v) = ∅. In this thesis, we consider the
following problem.

Problem 2.1.1 (All-Pairs LCA). Let G = (V,E) be a DAG. Compute a lowest common ancestor
for all pairs of vertices u, v ∈ V .

a

b

c d

u v

Figure 2.1: An ilustration of the definition of LCAs in DAGs - c and d are both valid LCAs for
the pair u, v, while vertices a and b are not.
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Figure 2.2: Bounds on ω(1, x, 1). We drew the whole curve of the bound 2.3 from [33].

2.2 Matrix multiplication

We use MM(X,Y, Z) to denote the time complexity of multiplying two matrices of dimensions X×
Y and Y ×Z respectively. We denote by ω the exponent of the fastest known matrix multiplication
algorithm, i.e., MM(n, n, n) = O(nω). The current best bound for ω is ω < 2.3728639 [32].
We denote by ω(a, b, c) the rectangular matrix multiplication exponent, i.e., MM(na, nb, nc) =
O(nω(a,b,c)). The following is a standard bound derived from reducing rectangular matrix
multiplication to square matrix multiplication:

ω(1, x, 1) ≤ 2 + x(ω − 2) for 0 ≤ x ≤ 1. (2.1)

We introduce the following definition:

Definition 2.2.1. Let α > 0.31389 be the maximum value satisfying ω(1, α, 1) = 2, and let
β = ω−2

1−α .

The following bound holds:

ω(1, x, 1) ≤

2 + β(x− α) when α ≤ x ≤ 1,
2 when 0 ≤ x ≤ α.

(2.2)

We remark that there are even better bounds on ω(1, x, 1) (see, e.g., [33]). In particular,
the following bound is known:

ω(1, x, 1) ≤ 1.690383 + 0.66288 · x for 0.7 ≤ x ≤ 0.75 (2.3)

For the plot of aforementioned bounds see Figure 2.2.

We will also make use of the following simple lemmas.

Lemma 2.2.2. ω(1, x+ c, 1) ≤ ω(1, x, 1) + c

12



Proof. Let A be an n×nx+c matrix and B be an nx+c×n matrix. Let A′i denote the submatrix of
A consisting of the columns of numbers (i−1)nx+1, (i−1)nx+2, . . . , inx (so we have partitioned
A into A′1, A′2, . . . , A′nc). Analogously, let B′i denote the submatrix of B consisting of the rows of
numbers (i−1)nx+1, (i−1)nx+2, . . . , inx. It is now easy to see that A ·B =

∑nc

i=1A
′
i ·B′i. Each

product A′i · B′i can be computed in O(nω(1,x,1)), so all the multiplications take O(nω(1,x,1)+c)
time. Each product A′i ·B′i is an n× n matrix, so the cost of summation is O(n2+c). Therefore,
we have shown how to compute A ·B in O(nω(1,x,1)+c + n2+c)) = O(nω(1,x,1)+c) time.

Lemma 2.2.3. ω(at, bt, ct) = t · ω(a, b, c) for all a, b, c, t > 0

Proof. Let A,B be nat × nbt and nbt × nct matrices, respectively. Let m = nt. Then A is
obviously ma × mb matrix and B is mb × mc matrix. Therefore we can compute A · B in
O(mω(a,b,c)) = O(ntω(a,b,c)) time.

2.3 Max-min matrix product

Definition 2.3.1. Let A and B be matrices (of dimensions n× p and p× n respectively) with
values from Z ∪ {−∞}. The products < (dominance product) and > (max-min product) are
defined as

(A<B)[i, j] = |{k : A[i, k] < B[k, j]}|
(A>B)[i, j] = max

k
min(A[i, k], B[k, j])

We use rectangular max-min product as one of the ingredients of our solution for All-Pairs
LCA problem. Previously, Duan and Pettie have shown fast algorithms for square sparse
dominance product and for square max-min product [19]. More specifically, given n × n

matrices A,B with m1 and m2 non (−∞) values respectively, they compute A<B product in
O(m1m2/n+nω) time. They later use this algorithm in order to construct an O(n

ω+3
2 ) algorithm

for A>B product (where A,B are n× n matrices of arbitrary density). Below, we use simple
modification of algorithms and analysis from [19], in order to obtain necessary generalizations
for rectangular products. Note that we provide version with extra log factor, for the sake of
simplifying and shortening the proof.

Lemma 2.3.2 (Sparse rectangular dominance product, c.f. Theorem 3.1 in [19]). If A and B
are respectively n× p and p× n matrices with m1 and m2 non (−∞) elements, then A<B can
be computed in time Õ(MM(n, p, n) +m1m2/p).

Proof. By reductions presented in [45] (see [31] for alternative exposition), dominance product
reduces to O(logn) Hamming products with a reduction preserving dimensions and sparsity. We
thus have to compute O(logn) sparse Hamming products, with dimensions n× p and p× n, and
sparsity m1 and m2 respectively. By folklore reduction (see full version of [31] for exposition),
each such product reduces to n × (np) vs (np) × n matrix product with sparsity m1 and m2

respectively. By techniques of [48], such product can be computed by decomposing into “dense”
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matrix product with cost MM(n, p, n) (packing p densest columns of first matrix, and p densest
rows of second matrix), and “sparse” matrix product with total cost m1m2/p.

Theorem 2.3.3 (Rectangular max-min product, c.f. Theorem 3.3 in [19]). If A and B are
respectively n × p and p × n matrices, then the A > B product can be computed in time
Õ(
√

MM(n, p, n) · n2p ).

Proof. Let L denote set of all the values in A and B of size 2np (w.l.o.g. all the values are distinct).
We then partition L into L1, . . . , Lt, where each Lr contains at most d2np/te consecutive values
from L. We then construct sparse matrices A1, . . . , At and B1, . . . , Bt of dimensions n× p and
p× n, such that:

Ar[i, j] =

A[i, j] if A[i, j] ∈ Lr
∞ otherwise

Br[i, j] =

B[i, j] if B[i, j] ∈ Lr
−∞ otherwise

For each Ar, a row-balancing operation is applied (see Definition 2.1, [19]), producing A′r and
A′′r , each of dimension n× p with O(p/t) elements in each row that are not ∞.

By construction from Theorem 3.3 in [19], we need to compute, for each r: Ar <B, A′r <B

and A′′r < B. Each such product reduces to: multiplication of Boolean matrices of dimension
n × p with p × n, and sparse dominance product of dimension n × p with p × n and density
m1 = m2 = O(np/t). By Lemma 2.3.2, this takes Õ(MM(n, p, n) + n2p/t2) for each product.
The postprocessing phase takes O(p/t) time for each n2 elements of the output. The resulting
time is then Õ(MM(n, p, n)t+ n2p/t), so by setting t =

√
n2p/MM(n, p, n) the runtime bound

is satisfied.

Let also ω>(a, b, c) denote the rectangular max-min product exponent, i.e., max-min product
of matrices of dimensions a× b and b× c can be computed in time Õ(nω>(a,b,c)). Observe, that
Theorem 2.3.3 yields immediately the following corollary.

Corollary 2.3.4. ω>(1, x, 1) ≤ ω(1,x,1)+2+x
2
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Chapter 3

Fast Chain-Antichain Decomposition

3.1 Definition

Let G = (V,E) be a DAG, with n vertices and m edges. A chain (of size k) of G is a subset of
vertices {c1, . . . , ck} such that c1, . . . , ck is a directed path in G. An antichain (of size k) of G is
a subset of vertices {a1, . . . , ak} such that there is no edge between them. Observe that if G is
the graph induced by a partial order, then our definitions coincide with the usual definitions of
chain and antichain in a partially ordered set.

Definition 3.1.1. An (a, b)-decomposition of a DAG G consists of a collection P of chains of
G, |P| ≤ a, and a collection Q of antichains of G, |Q| ≤ b, that together span all the vertices of
G.

3.2 Greedy algorithm

One could find an (`, n/`)-decomposition with a “simple minded” greedy method, as follows:
find and remove the longest chain in G, for ` times in total. Next, cover whatever remains with
at most n/` antichains. We formalize this approach using the pseudocode below.

Lemma 3.2.1. The Algorithm 1 computes an (`, n` )-decomposition.

Proof. Let G′ denote the graph that remains after execution of the loop that removes longest
path ` times. Firstly, observe that, for all i, Qi forms an antichain. Indeed, if u ∈ Qi and
(u, v) ∈ E(G′), then the length of the longest path ending at v is at least i+ 1, hence v /∈ Qi.
Now observe that by construction P contains ` chains and Q contains bn` c antichains, so it
remains to show that every vertex of G has been covered by some chain from P or antichain
from Q. Observe that the longest path in G′ has to be shorter than n

` (otherwise we would
have already removed at least `n` = n vertices, and G′ would be empty). Therefore, antichains
{Q1, . . . , Qbn

`
c} indeed cover all the vertices of G′. But vertices from G \G′ has been already

covered by chains, hence (P,Q) indeed form a decomposition.

15



Algorithm 1: Naive (`, n` )-decomposition
Data: DAG G

Result: (`, n` )-decomposition of G.
1 G′ ← G,P ← ∅,Q ← ∅
2 for i = 1, . . . , ` do
3 Find longest path P in G′

4 Add P to P
5 Remove vertices of P from G′

6 end
7 Compute Qi = {v ∈ G′ : the longest path in G′ ending at v has length i} for all

i ∈ {1, . . . , bn` c}.
8 Q ← {Q1, . . . , Qbn

`
c}

9 return (P,Q)

Lemma 3.2.2. The Algorithm 1 runs in time O(m`) in total.

Proof. Computing the longest path in DAG can be done by a standard dynamic programming
algorithm that goes through all vertices of the graph in topological order. While visiting vertex
v, this algorithm computes the length of the longest path ending at v using already computed
values for all parents of v. It is clear that this algorithm runs in time O(m). It is easy to see that
it can be also used to compute sets Q1, . . . , Qbn

`
c. Therefore the total running time of Algorithm

1 is O((`+ 1)m) = O(m`).

For dense graphs, Algorithm 1 runs in time O(n2`), which would be too slow for our
algorithm for All-Pairs LCA problem, that we will develop in section 4.

3.3 Faster algorithm for transitively-closed DAGs

We say that G is transitively-closed if for every u, v ∈ G the fact that there is a path from u

to v implies that there is an edge from u to v. Obviously, a transitive closure of a graph is
transitively-closed. We also note that if G is a transitively closed DAG, then it is in fact a graph
of some partial order.

In this section we use fairly simple techniques to develop an algorithm for chain-antichain
decomposition in transitively-closed DAGs that runs faster than greedy Algorithm 1 (in a dense
case). Since in chapter 4 we operate on transitive closure of a graphs, our algorithm will prove
to be fast enough to develop faster solution for All-Pairs LCA problem.

Theorem 3.3.1. Given transitively-closed DAG G and any 1 ≤ ` ≤ n, we can find a
(
`, 2n

`

)
-

decomposition of G in time O(n`2 logn+ n2 logn).

Proof. We start by computing a topological ordering of G which can be done in O(n2) time.
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Our algorithm will run in phases. In each phase we operate on the graph G′ which is induced on
the vertices of G that we didn’t remove in the previous phases (so naturally in the first phase
we let G′ = G). At the end of each phase (except possibly the last one) we will remove some
chain or antichain from the graph (and add it to our decomposition).

Let hv denote the size of the longest chain in G′ where v is the maximum element (the
height of v). Let v1, v2, . . . , vn be the topological ordering of the vertices of G. We denote
Lik = {v ∈ {v1, . . . , vi} ∩G′ : hv = k} (we call these sets layers). Observe that each Lik forms an
anti-chain - indeed, by definition if u is a parent of v, then hu + 1 ≤ hv. Let us also denote pv
to be an arbitrary vertex u being a parent of v and satisfying hu = hv − 1 (if there is no such
vertex we set pv = v).

During each phase we iteratively compute values hvi , pvi and layers L′k for i = 1, 2, . . . until
we either run out of vertices or we decide to remove some chain or anti-chain from the graph,
add it to the decomposition and start a new phase on the graph with the reduced number of
vertices.

Namely, we continue computations in the phase until we meet one of the following conditions:

1. Lin
`
6= ∅, i.e we have found a chain of length n

`

2. there is k such that |Lik| ≥ `, i.e we have found an anti-chain of length `.

3. i > n, i.e we run out of vertices.

Assume we didn’t run out of vertices but our computation of heights has stopped. This
means that we have either found a chain of size n

` or an anti-chain of size `. In either case we
take the corresponding chain or anti-chain to our decomposition and we remove its vertices from
the graph. Removal of the vertices from the anti-chain is immediate and removal of the chain
can be easily performed using pv values (both taking constant time per vertex). We conclude
the phase and proceed by running a new phase on the remaining graph.

We continue repeating the phases until one of them stops because of the condition (3).
Observe that during preceding phases we could not have added more than ` chains and n

`

anti-chains to the decomposition (otherwise we would have already run out of the vertices).
The vertices we have just processed in the last phase are not included in the decomposition yet.
However, we can use non-empty anti-chains Lji from the last phase to cover them - the algorithm
guarantees that there are at most n

` many of them. This gives a desired
(
`, 2n

`

)
-decomposition.

We give a formalized version of the algorithm we have just described in the pseudo-code of
Algorithm 2.

We now analyze the computational cost of the algorithm. It is dominated by repeated
computation of values hvi , pvi and construction of the layers Lik.

Observe that naive computation of hvi and pvi for a fixed vi would take O(n) time. To
speed it up, let u1, u2, . . . , uhvi = vi be any longest chain in G′ ending at vi. By definition all
uj ’s precede vi in the topological ordering, therefore we already know their heights by the time
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we want to compute hv. It is also easy to see that huj = j, hence uj ∈ Li−1
j . Also, because G is

transitively-closed, u1, u2, . . . , uhvi−1 are all parents of vi. So we can determine if hvi > j for
any j just by scanning through Li−1

j and determining wherever there is some u ∈ Li−1
j that

is a parent of vi. If not, then surely hvi ≤ j. This means that we can use binary search for
computing hvi (and consequently pvi). Since we maintain ∀i,k|Lik| < ` invariant throughout the
phase, the complexity of one query in binary search is O(`). This yields O(` logn) for computing
hvi and pvi for a fixed vi.

We have Lihvi = Li−1
hvi
∪ {vi} and Lij = Li−1

j for j 6= hvi , hence updating Lij ’s takes constant
time per vertex.

Finally, since at each phase except possibly the last one we remove either l or n
l vertices

from the graph, we can’t run more than max(n` , `) + 1 ≤ n
` + `+ 1 phases. Each phase takes

O(n` log(n)) time. This yields O(n2 logn+ n`2 logn+ n2) = O(n`2 logn+ n2 logn) total time
cost.
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Algorithm 2: Faster (`, 2n
` )-decomposition for transitively-closed DAGs

Data: Transitively-closed DAG G

Result: (`, 2n
` )-decomposition of G.

1 G′ ← G,P ← ∅,Q ← ∅
2 while True do
3 Li ← ∅ for 1 ≤ i ≤ h
4 for i = 1, . . . , n do
5 if vi ∈ G′ then
6 j ← max{k : ∃u∈Lk(u, vi) ∈ E(G′)} or 0 if this maximum does not exist
7 hvi ← j + 1
8 Add vi to Lj+1

9 if hvi = h then
10 u← vi

11 C ← ∅
12 while pu 6= u do
13 Add u to C
14 u← pu

15 end
16 Add u to C
17 Add chain C to P and remove all vertices of C from G′

18 break
19 end
20 else if |Lhvi | = ` then
21 Add antichain Lhvi to Q and remove all vertices of Lhvi from G′

22 break
23 end
24 end
25 end
26 if In the for loop didn’t add a new chain or antichain to the decomposition then
27 break
28 end
29 end
30 Compute Qi = {v ∈ G′ : the longest path in G′ ending at v has length i} for all

i ∈ {1, . . . , bn` c}.
31 Q ← {Q1, . . . , Qbn

`
c}

32 return (P,Q)
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Chapter 4

Application: All-Pairs LCA in DAGs

4.1 Overview

In this chapter we present our improved algorithm for All-Pairs LCA in DAGs.

We start by sketching the high level ideas behind the algorithm. Let Ginput be the input
DAG and let G be the transitive closure of Ginput. We compute G in O(nω) time and solve the
All-Pairs LCA problem on G (obviously the solution in the two cases is identical).

To do this, we first compute an (nx, 2n1−x)-decomposition (P,Q) of G in O(n1+2x logn+
n2 logn) time with the algorithm from Theorem 3.3.1. Recall that P = {P1, . . . , Pp} is a set
of p ≤ nx chains and Q = {Q1, . . . , Qq} a set of q ≤ 2n1−x antichains. Here x ∈ [0, 1] is a
parameter to be optimized later in order to minimize the overall running time.

We now define the notion of LCA restricted to a subset W of vertices as follows.

Definition 4.1.1. Given a DAG G = (V,E), a subset of vertices W ⊆ V , and a pair of
vertices u, v ∈ V , LCAW (u, v) is the set of vertices w ∈ W which are ancestors of both
u and v and such that there is no descendent w′ ∈ W of w with the same property. Any
w ∈ LCAW (u, v) is a W -restricted LCA of {u, v}. The W -restricted All-Pairs LCA problem
is to compute lcaW (u, v) ∈ LCAW (u, v) for all pairs of vertices u, v ∈ V (lcaW (u, v) = −∞ if
LCAW (u, v) = ∅).

We use P-restricted and Q-restricted as shortcuts for (∪P∈PP )-restricted and (∪Q∈QQ)-
restricted respectively, and also define analogously LCAP(·, ·), lcaP(·, ·), etc. The next step is
to solve the P-restricted and Q-restricted All-Pairs LCA problems. In particular, we plan to
compute the values lcaP(u, v) and lcaQ(u, v) for all pairs of vertices u, v ∈ V . This is explained in
sections 4.2 and 4.3 respectively. In more detail, the first problem is solved in time Õ(n

ω(1,x,1)+2+x
2 )

using a reduction to one max-min product. The second problem is solved in time Õ(n1−x+ω(1,x,1))
by performing one Boolean matrix product of cost Õ(nω(1,x,1)) for each Q ∈ Q.

At this point for every pair or vertices {u, v} we have two candidates for lca(u, v), so we need
to combine the two solutions together. A naive approach might be as follows. Let us label the
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vertices from 1 to n according to some arbitrary topological order. Then, for any pair of vertices
u, v, we simply set lca(u, v) = max{lcaP(u, v), lcaQ(u, v)} (in total time O(n2)). Unfortunately,
as discussed in Section 4.4, there exist topological orderings for which this approach fails. In the
same section we show how to compute a specific topological ordering in O(n2) time such that
the above combination indeed works. Then, it will be sufficient to optimize over the parameter
x.

Throughout this chapter we assume that vertices are labeled with integers between 1 and n
(according to some given order to be specified later).

4.2 Computing P-Restricted LCAs

In this section we present our algorithm for the P-restricted All-Pairs LCA problem. It works as
follows (see also the pseudo-code of Algorithm 3). For each vertex v and each chain Pi, we compute
the parent wi(v) of v in Pi with largest index (wi(v) = −∞ if there is no such ancestor). Observe,
that all vertices of Pi with indices smaller than wi(v) are ancestors of wi(v) because Pi is a chain,
and therefore they are also parents of v (because G is transitively-closed). Next, for each pair of
vertices u, v and each Pi, we compute wi(u, v) = min{wi(u), wi(v)}. Therefore if wi(u, v) 6= −∞,
then it is a common ancestor of u and v. Finally we set lcaP(u, v) = max1≤i≤p{wi(u, v)}.

Recall that, given two matrices A and B, their max-min product C = A>B is specified by
C[i, j] = maxk min{A[i, k], B[k, j]}.

In order to implement the above algorithm, it is sufficient to construct an n× nx matrix
A whose rows are indexed by vertices in V and whose columns are indexes by chains Pi. The
entry A[v, Pi] corresponds to the value wi(v) defined above. Then it is sufficient to compute
C = A>AT and set lcaP(u, v) = C[u, v] for all pairs u, v ∈ V .

Lemma 4.2.1. The P-restricted All-Pairs LCA problem can be solved in time Õ(n
ω(1,x,1)+2+x

2 ).

Proof. Consider the above algorithm (pseudo-code in Algorithm 3). To analyze its running time,
we observe that the matrix A can be built in time O(n2) by scanning the vertices v ∈ V and the
vertices w in P. The rest of the computation takes time O(n

ω(1,x,1)+2+x
2 ) by Corollary 2.3.4.

For the correctness observe that, if Pi contains a vertex in LCAP(u, v), then this vertex
has to be w = wi(u, v). Indeed, by construction w is an ancestor of both u and v. Since
wi(u, v) = min{wi(u), wi(v)}, any successor w′ of w along Pi is not an ancestor of u or of v.
Vice versa, any ancestor w′ of w along Pi cannot be in LCAP(u, v) due to the existence of w.
Therefore the set W := {wi(u, v)}i contains LCAP(u, v). Notice also that W = {−∞} iff u and
v do not have a common ancestor in P , in which case LCAP(u, v) = ∅. Therefore we can w.l.o.g.
assume that the algorithm returns some w ∈W , w 6= −∞. In particular, w is a vertex with the
largest index in W according to the considered topological order. Assume by contradiction that
w /∈ LCAP(u, v). This implies that there exists some other vertex w′ ∈ LCAP(u, v) which is a
descendant of w. But vertex w′ must be contained in W , which implies w′ < w (otherwise the
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algorithm would not return w). This is a contradiction since w′ is a descendant of w and at the
same time has a smaller index in some topological order.

Algorithm 3: Compute lcaP(u, v) for all pairs of vertices u, v ∈ V .
Data: Transitive closure graph G = (V,E), and a family of chains P = {P1, . . . , Pp} of

G where p ≤ nx.
Result: P-restricted LCA lcaP(u, v) for each pair of vertices u, v ∈ V .

1 Initialize lcaP(·, ·) with −∞
2 Let A be an n× p matrix initialized with −∞’s
3 for (u, v) ∈ V × V do
4 if (u, v) ∈ E and u ∈

⋃
P∈P P then

5 i← index of chain Pi such that u ∈ Pi
6 Update A[v, i]← max(A[v, i], u)
7 end
8 end
9 Compute the (max,min)-product A>AT

10 for all u, v ∈ V do
11 lcaP(u, v)← (A>AT )[u, v]
12 end

4.3 Computing Q-Restricted LCAs

In this section we present our algorithm for the Q-restricted All-Pairs LCA problem. For
notational convenience let us rename Q as Q′ = {Q′1, . . . , Q′q′}. Recall that q′ ≤ 2n1−x. The
first step in our construction is to transform Q′ into a more convenient family of antichains Q as
follows.

Definition 4.3.1. Let Q = {Q1, . . . , Qq} be a collection of disjoint antichains of a transitive
closure graph G = (V,E). Q is path-respecting if for any two vertices x ∈ Qi, y ∈ Qj such that
(x, y) ∈ E it holds that i < j.

Lemma 4.3.2 (Folklore). Given a transitive closure graph G = (V,E) and a collection of q′

disjoint antichains Q′ = {Q′1, . . . , Q′q′} over the vertex set W ⊆ V , there exists a greedy algorithm
that computes a partition of W into a collection of q ≤ q′ disjoint antichains Q = {Q1, . . . , Qq}
in time O(n2).

Proof. Let us initialize W ′ to W . The greedy algorithm proceeds in rounds. In round i we
set Qi = {all vertices with indegree 0 in G[W ′]}. Then Qi is added to Q, and its vertices are
removed from W ′. We halt when W ′ = ∅. It is easy to see that each Qi is indeed an antichain.
Let q be the number of antichains produced by the algorithm and let h be the height of G[W ],
that is the size of its longest chain. We have that h ≤ q′, since by Mirsky’s theorem (c.f. [37])
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size of any antichain cover of G[W ] is at least h. We also have h = q, since greedy algorithm
reduces the length of longest chain in G[W ′] by exactly one at each iteration.

The above algorithm can be easily implemented in time O(n2). Indeed, it is sufficient to
maintain the in-degree of the vertices and update them each time a vertex is removed. Whenever
during an iteration the in-degree of some vertex v becomes 0 because of the removal of other
vertices, we add v to a list of vertices to be used in the next round.

We use Lemma 4.3.2 to transform Q′ into a path-respecting family of q ≤ q′ ≤ 2n1−x

antichains Q = {Q1, . . . , Qq}. It remains to solve the Q-restricted All-Pairs LCA problem.
To this end, we use a relatively simple reduction to Fast Boolean Matrix Multiplication. Let
C = A ·B be the product of an n× p Boolean (i.e., 0-1) matrix A and a p×n Boolean matrix B.
The witness matrix W of this product is an n× n matrix where W [i, j] is any index k such that
A[i, k] = B[k, j] = 1. We conventionally set W [i, j] = −∞ if no such index exists. Recall that
the time needed to compute C is denoted by MM(n, p, n). A mild adaptation of the algorithm
and analysis in [3] shows that we can compute W in roughly the same time.

Theorem 4.3.3 (Folklore, corollary of [3]). The witness matrix W of the product C = A ·B of
an n×p Boolean matrix A and a p×n Boolean matrix B can be computed in time Õ(MM(n, p, n))
by a deterministic algorithm.

Our algorithm works as follows (see also the pseudo-code of Algorithm 4). We initialize
lcaQ(·, ·) with −∞. Then we consider the antichains Qq, . . . , Q1 in this order. For each Qi and
each pair of vertices u, v with lcaQ(u, v) = −∞, we check if Qi contains a common ancestor w of
v and u, in which case we set lcaQ(u, v) = w. In order to perform efficiently this step we build
a n× |Qi| matrix A whose rows are indexed by vertices in V and whose columns are indexed
by vertices in Qi. We set entry A[v, w] to 1 if w is an ancestor of v and to 0 otherwise1. We
compute the product A ·AT and its witness matrix W . Notice that the pair u, v has a common
ancestor w in Qi iff A ·AT [u, v] 6= 0, in which case W [u, v] contains one such vertex. Thus it is
sufficient to set lcaQ(u, v) = W [u, v].

Lemma 4.3.4. The Q-restricted All-Pairs LCA problem can be solved in time Õ(n1−x+ω(1,x,1)).

Proof. Consider the above algorithm (pseudo-code in Algorithm 4). Its running time is upper
bounded by Õ(

∑q
i=1 MM(n, |Qi|, n)). Assume w.l.o.g. that |Qi| is non-increasing, then |Qi| ≤ n/i,

and by monotonicity of MM(n, ·, n)
q∑
i=1

MM(n, |Qi|, n) ≤
q∑
i=1

MM(n, n/i, n)

≤
log q∑
j=0

2jMM(n, n/2j , n)

≤ (1 + log q) · q ·MM(n, n/q, n)
∈ Õ(n1−x+ω(1,x,1)).

1Padding with zeros the columns not corresponding to vertices in Qi.
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Algorithm 4: Compute lcaQ(u, v) for all pairs of vertices u, v ∈ V .
Data: Transitive closure graph G = (V,E), and a family of antichains

Q = {Q1, . . . , Qq} of G that is path-respecting such that q ≤ 2n1−x.
Result: Q-restricted LCA lcaQ(u, v) for each pair of vertices u, v ∈ V .

1 Initialize lcaQ(·, ·) with −∞.
2 for i = q, . . . , 1 do
3 Initialize a n× |Qi| matrix A with zeros.
4 Let φi : Qi

1:1−−→ {1, . . . , |Qi|} be an arbitrary bijection and φ−1
i (·) be its inverse

function.
5 for all x ∈ V, y ∈ Qi such that (y, x) ∈ E do
6 A[x, φi(y)]← 1
7 end
8 Compute A ·AT , and its witness matrix W
9 for all u, v ∈ V do

10 if lcaQ(u, v) = −∞ and A ·AT [u, v] 6= 0 then
11 lcaQ(u, v)← φ−1

i (W [u, v]).
12 end
13 end
14 end

For the correctness, assume by contradiction that for some pair of vertices u, v the computed
value lcaQ(u, v) is not correct. Notice that lcaQ(u, v) = −∞ iff u and v have no common ancestor
in Q, hence we can assume w.l.o.g. lcaQ(u, v) = w for some w in some Qi. The contradiction
implies that there exists a common ancestor w′ ∈ Qj of u and v which is a descendant of w
(in particular, (w,w′) ∈ E since G is a transitively-closed). Notice that j 6= i since Qi is an
anti-chain. By construction u and v do not have any common ancestor in Qi+1, . . . , Qq since
otherwise at the time when Qi is considered we would have lcaQ(u, v) 6= −∞. Hence it must be
the case that j < i. This is a contradiction since the existence of the pair w,w′ shows that Q is
not path-respecting.

4.4 Patching the LCAs Together

Suppose we are given values lcaP(·, ·) and lcaQ(·, ·) as computed in previous sections. Let us
also assume that vertices are labeled from 1 to n according to an arbitrary topological ordering.
The following approach to solve All-Pairs LCA might be tempting: for each pair u, v ∈ V ,
we simply set lca(u, v) = max{lcaP(u, v), lcaQ(u, v)}. Unfortunately this approach does not
work, as illustrated in Figure 4.1. Intuitively, the issue is that in the computation of lcaQ(u, v)
the algorithm can return any vertex w in some Qi which is a common ancestor of u and v,
not necessarily the one with largest index in Qi. This flexibility is essential to achieve the
claimed running time: computing w with the largest index in Qi would require a max-witness

25



[6]

[4]

[3]

[2]
a

b

c d

u v

[1]

[5]

Figure 4.1: An example of a topological order in a transitive closure graph G that is not
suitable for combining the Q-restricted LCA and the P-restricted LCA for the pair of vertices
u, v. The family of chains in G is P = {{a, b}} and the path-respecting family of antichains is
Q = {{c, d}, {u, v}}. The index of each vertex in the topological order is in brackets next to
each vertex. It might happen that lcaP(u, v) = b and lcaQ(u, v) = c, in which case the algorithm
would return the incorrect answer lca(u, v) = b.

computation, and the best-known algorithms for the latter problem are substantially slower than
Boolean matrix multiplication.

In order to circumvent this problem, we will compute (in O(n2) time) a more structured
topological order. Using this particular order rather than an arbitrary topological order, will
guarantee that the above approach works. In particular, our goal is to define a topological order
such that, if lcaP(u, v) appears later than lcaQ(u, v) in this order, then there is no path from
lcaP(u, v) to any Q-restricted LCA for u, v, and vice versa.

Definition 4.4.1. Let G = (V,E) be a transitive closure graph and Q = {Q1, . . . , Qq} a path-
respecting family of antichains of G. A Q-compact topological order of the vertices in V is a
topological order such that all vertices in an antichain Qi ∈ Q appear consecutively and a vertex
in Qi appears earlier than a vertex in Qj, for i < j.

Lemma 4.4.2. Given a transitive closure graph G = (V,E) and a path-respecting family of
antichains Q, we can compute a Q-compact topological order of G in time O(n2).

Proof. For notational convenience, let us define a dummy set Q0 = ∅. The algorithm proceeds in
rounds. At the beginning of round i ≥ 0 we are given a current subset of vertices W and a partial
topological ordering R (implemented as list) of the remaining vertices V \W . Initially W = V

and R is empty. During round i we append the vertices of Qi to R in any order and remove
them from W . Then we iteratively identify the sources Si in G[W \

(⋃
i<j≤q Qj

)
], append the

vertices Si to R in any order, and finally remove them from W .

In order to implement the above algorithm in O(n2) time, we can use an approach similar
to the proof of Lemma 4.3.2, where we keep track of vertices whose in-degree becomes zero
because of the removal of other vertices.
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For the correctness, trivially by construction the indexes of the vertices in the same anti-
chain Qi are consecutive, and the indexes in Qi are smaller than the indexes in Qj for j > i.
Hence it remains to show that R defines a topological order at the end of the algorithm. Suppose
by contradiction that there exists an edge (x, y) ∈ E such that x is placed after y in R. Let
y ∈ Si ∪ Qi for some i. Assume by contradiction that y ∈ Si. Then it must be the case that
x ∈ Qi or x was removed in some earlier iteration. Indeed otherwise y would not be a source. In
both cases x would appear earlier than y in R. It therefore remains to consider the case y ∈ Qi,
i ≥ 1. Assume that x ∈ Qj for some j. The fact that Q is path-respecting implies that j < i.
This means that x is added to R in some earlier iteration, a contradiction. So the remaining
case is that x ∈ Sj for some j ≥ i. Notice that vertices in Sj become sources right after the
removal of vertices in Qj (otherwise they would be sources at some earlier round). In particular,
there must exist some parent w of y in Qj . Notice that w ∈ Qj is an ancestor of y ∈ Qi (hence
(w, y) ∈ E), and j ≥ i. This contradicts the fact that Q is path-respecting.

This concludes the description of our algorithm for the All-Pairs LCA problem in DAGs
(see also the pseudo-code of Algorithm 5).

Algorithm 5: Compute lcaV(u, v) for all pairs of vertices u, v ∈ V .
Data: DAG Ginput = (V,Einput)
Result: lca(u, v) for each pair of vertices u, v ∈ V

1 Compute the transitive closure graph G = (V,E) of Ginput
2 Use Algorithm 2 to compute a (nx, 2n1−x)-decomposition into a family of chains
P = {P1, . . . , Pp} with p ≤ nx and a family of antichains Q′ = {Q′1, . . . , Q′q′} with
q′ ≤ 2n1−x.

3 Use Lemma 4.3.2 with input Q′ to compute a path-respecting family of antichains
Q = {Q1, . . . , Qq} of G where q ≤ 2n1−x.

4 Compute a Q-compact topological order of G using Lemma 4.4.2 and rename vertices
so that they are 1, . . . , n according to this order

5 Use Algorithm 3 to compute P-restricted LCA lcaP(u, v) for each pair of vertices
u, v ∈ V .

6 Use Algorithm 4 to compute Q-restricted LCA lcaQ(u, v) for each pair of vertices
u, v ∈ V

7 for all u, v ∈ V, u 6= v do
8 lca(u, v)← max{lcaQ(u, v), lcaP(u, v)}
9 end

Theorem 4.4.3 (Main Theorem). All-Pairs LCA in DAGs can be solved in time Õ(nγ), where
γ = 1 + 2x and x is the solution of the equation 3x = ω(1, x, 1).

Proof. Consider the above All-Pairs LCA algorithm (for pseudo-code see Algorithm 5). We
begin with time complexity analysis. The running time of the algorithm is Õ(nω + n2 + n1+2x +
n
ω(1,x,1)+2+x

2 + n1−x+ω(1,x,1)) for a fixed x ∈ [0, 1]. Firstly, observe that we can drop n2, since it
is dominated by nω. In fact we can also drop nω. Indeed, Lemma 2.2.2 implies ω = ω(1, 1, 1) ≤
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Figure 4.2: Naive decomposition (Algorithm 1) runs in time O(n2+x) and is not fast enough to
make an improvement over O(n2.569) time of [15], as shown on the left. We speed up the solution
to All-Pairs LCA problem only after applying better decomposition in time O(n1+2x) (Algorithm
2). For clarity of the pictures we used simple bound 2.2 when approximating ω(1, x, 1).

ω(1, x, 1) + 1 − x for x ∈ [0, 1], hence nω ≤ n1−x+ω(1,x,1). Now observe that n
ω(1,x,1)+2+x

2 is a
geometric mean of n1+2x and n1−x+ω(1,x,1), so in particular n

ω(1,x,1)+2+x
2 ≤ n1+2x + n1−x+ω(1,x,1).

Therefore, the running time of our algorithm becomes Õ(n1+2x + n1−x+ω(1,x,1)). Finally, the
claimed running time is obtained by imposing 1 + 2x = 1− x+ ω(1, x, 1).

For the correctness assume by contradiction that w = lca(u, v) is not a correct answer.
Notice that if u and v have no common ancestor, by construction w = −∞ and the answer is
correct. So we can assume that w is an index of some vertex. Assume first w = lcaP(u, v). By
contradiction assume that w′ is some descendant of w which is also a common ancestor of u and
v. Notice that w′ > w since we consider a topological order. The correctness of the P-restricted
All-Pairs LCA algorithm implies that w′ is contained in Q. In particular w′ ∈ Qi for some i.
Since the considered topological order is Q-compact, all vertices in Qi appear after w in the
topological order (in particular, they have larger indices than w). Since Qi contains at least one
common ancestor of u and v (namely, w′), by construction lcaQ(u, v) is contained in Qj for some
j ≥ i. Since the topological order is Q-compact, this implies lcaQ(u, v) > w. Hence we get a
contradiction w = lcaP(u, v) ≥ lcaQ(u, v) > w.

The case that w = lcaQ(u, v) is symmetric. In particular, any descendant w′ of w which
is a common ancestor of u and v must be contained in P, and w′ > w. But by construction
lcaP(u, v) ≥ w′. Hence we get a contradiction w = lcaQ(u, v) ≥ lcaP(u, v) ≥ w′ > w.

We now use bounds on ω(1, x, 1) from Section 2.2 to derive numerical bounds on γ. If
we simply use square matrix multiplication as a subroutine to implement rectangular matrix
multiplication (i.e., the bound (2.1)), combining this with equation 3x = ω(1, x, 1), we obtain
x ≤ 2

5−ω and γ ≤ 9−ω
5−ω . In this case, the running time of our algorithm would be Õ(n

9−ω
5−ω ) ∈

O(n2.522571), which is already an improvement over the algorithm by Czumaj et al. [15].
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This bound can be further improved by using more sophisticated rectangular matrix
multiplication algorithms. In particular, using the bound in (2.2), we get x ≤ 2−ωα

5−ω−3α and
γ = 2(2−ωα)

5−3α−ω + 1, so the running time of our algorithm becomes O(n2.489418), which means
breaking through the O(n2.5) barrier. By applying the bound (2.3), we finally get x ≤ 0.7232761,
and γ ≤ 2.4465522, which yields our claimed running time of O(n2.4465522).
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Chapter 5

Faster Chain-Antichain
Decomposition

5.1 Improved algorithm

In this chapter we improve upon Algorithm 2 and present a faster algorithm for computing an
(`, 2n

` )-decomposition of a DAG G, as stated in the following theorem.

Theorem 5.1.1. Let G = (V,E) be a DAG with n vertices, and let ` ∈ [1, n] be an integer pa-
rameter. There exists an O(n2) time deterministic algorithm to compute an (`, 2n

` )-decomposition
of G.

In the case of dense graphs we clearly cannot go below O(n2), as this is the time required
to read the input. We discuss the case of sparse graphs later in Section 5.2.

We assume that G is represented via an adjacency matrix (otherwise, we can construct it in
O(n2) time). The high level idea is as follows. Let v1, . . . , vn be a topological ordering of the
vertices of G (which can be computed in O(n2) time). Let Vi = {v1, . . . , vi}, 1 ≤ i ≤ n, denote
the first i vertices in the topological order. The algorithm consists of (n+ 1) iterations. At the
beginning of iteration t ≥ 1 we are given an input graph Gt−1 = G[Wt−1] induced in G by a set
of vertices Wt−1 ⊆ Vt−1. Initially G0 is the empty graph (and W0 = ∅). For 1 ≤ t ≤ n, graph
Gt is obtained from Gt−1 as follows. We first add vertex vt. Then we remove (and add to our
decomposition) possibly one chain of size at least n/` and possibly some antichains of size `
each. After iteration n, there is a final special iteration n+ 1 where Gn is decomposed into at
most n/` antichains which are added to our decomposition. Clearly, this process produces at
most ` chains and at most 2n/` antichains, as required.

As mentioned earlier, during a given iteration we insert and remove sets of vertices in a
form of chains and antichains. We let G′ = G[W ′] denote the current graph. The set of vertices
that are present in G′ is implicitly maintained by using a Boolean vector that indicates the
existence of a vertex in W ′. Since each vertex is added and removed from G′ at most once, the
maintenance of this vector takes total time O(n).
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Furthermore, we let L′1, . . . , L′h, h := dn/`e, be disjoint (initially empty) sets of vertices
that we will call layers. We say that a vertex v ∈ L′i is at level i. Intuitively, the level of vertex
v ∈ G′ will be the length of the longest chain ending at v. This will immediately imply that
all layers will form antichains. During the execution of our algorithm it holds that |L′i| ≤ `,
1 ≤ i ≤ h, at all times: as a consequence, whenever at any point during the execution of the
algorithm, we identify |L′i| = ` for some set L′i, we can remove from W ′ the vertices in L′i since
they form an antichain of size `. We say that the algorithm is in a stable state when the set
W ′ is partitioned into the sets L′i, 1 ≤ i ≤ h, such that each vertex v ∈ L′i, for i ≥ 2, has a
parent u ∈ L′i−1. Therefore, once we have that L′h 6= ∅ during a stable state of the algorithm, it
can be seen (as we will show later) that starting from a vertex v ∈ L′h and following any path
by traversing a parent of each visited vertex produces (the reverse of) a chain of G′ of length
exactly h. After the removal of some set of vertices (either a chain or antichain) from G′, the
algorithm might enter into an unstable state (i.e., not a stable state), and hence our algorithm
will work to restore a stable state by suitably modifying the partitioning of W ′ into the sets
L′1, . . . , L

′
h. We next give the low level details of our algorithm.

We maintain all sets L′i in an array of size h of doubly-linked lists. We will guarantee
that each v ∈ G′ is contained in precisely one such set L′i, and maintain bi-directional pointers
between the corresponding two copies of v. We also maintain the sizes |L′i|, and maintain the
following quantities for each vertex v ∈ G′:

• the level h(v) of v;

• a list Lnext(v) of pointers to parents of v in Lh(v)−1 (Lnext(v) = ∅ for h(v) = 1).

• a list Lprev(v) of pointers to children of v in Lh(v)+1.

The lists Lnext and Lprev are used to assist fast insertions (resp., deletions) of vertices to
(resp., from) a list L′i. We note that the lists Lprev are not required for the correctness of the
algorithm, but only for efficiency reasons. In order to be able to quickly update lists Lprev(v)
and Lnext(v) after we delete or move a vertex we store together with each entry of w ∈ Lprev(v) a
pointer to the occurrence of v in the list Lnext(w). We also store with each entry of v ∈ Lnext(w)
a pointer to the occurrence of w in the list Lnext(v). This way, for some vertex w ∈ Lprev(v)
we can remove v from Lnext(w) in constant time, and vice versa. For the sake of simplifying
the presentation, these pointers are updated implicitly and we assume that we can execute the
relevant insertions and removals in constant time.

During each iteration t ≤ n we perform three main operations:

• insert(v): adds vertex v to G′. This is applied once to vt at the beginning of iteration t.

• delete(v): deletes vertex v from G′. This is used to remove chains and antichains from G′.

• move(v): moves v from some L′i to some L′j , j < i. This is used to modify the assignment of
the vertices of G′ to the layers L′1, . . . , L′h in order to restore a stable state of the algorithm.

The latter two operations can be performed multiple times in each iteration. Throughout,
we will maintain the following invariant (we prove it in Lemma 5.1.3):
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Invariant 5.1.2. After each execution of insert(), delete() or move(), the following holds:

1. Each vertex v ∈ G′ belongs to one L′i and, right before an insert() (or after the last
iteration), L′h = ∅;

2. Each L′i has size at most `, and size at most `− 1 right before an insert() or move().

3. For each v ∈ G′, each parent w ∈ G′ of v belongs to some lower layer L′j, j < h(v).

4. There is no edge (u, v) for u and v belonging to the same layer L′i.

5. Right before an insert() each vertex v ∈ L′i, for i ≥ 2, has a parent u ∈ L′i−1 (i.e., the
algorithm is at a stable state).

We next describe in more detail a given iteration t ≤ n, modulo a detailed description of
the operations insert(), delete() and move() which will be given later. We create two empty lists
DEL and MOVE. Intuitively, DEL contains vertices that have to be deleted from G′, while MOVE
contains vertices that need to be moved to a lower layer (unless they are deleted earlier) in order
to restore a stable state of the algorithm. Initially we execute insert(vt). This way we add vt to
G′ to some L′i. Then we add some vertices to DEL if one of the following two cases happens:
(a) vt ∈ L′h or (b) vt ∈ L′i and |L′i| = `. In case (a) we compute a set Ct iteratively as follows.
Initially u = vt. We add u to Ct, then update u to any vertex in Lnext(u) and iterate. We halt
when Lnext(u) = ∅. Ct is added to the set P of chains in the decomposition under construction
and its vertices are added to DEL. Notice that by Invariant 5.1.2 the algorithm is at a stable
state right before the insert() operations is executed. We will later show that, indeed, Ct is a
chain in G′ of size precisely h. In case (b) we add L′i (interpreted as a set of vertices) to the set
of antichains Q in the decomposition and its vertices to DEL. By Invariant 5.1.2, there is no
edge between any two vertices in L′i, and thus, is an antichain in G′ of size precisely `.

Now we perform the following steps while DEL∪MOVE 6= ∅1. If DEL 6= ∅, we extract v from
DEL and call delete(v). This procedure removes v from G′ and from the corresponding layer L′i,
and it might add some vertices to MOVE. In particular, if v used to be the only parent of w,
then w is added to MOVE. Notice that at that point the algorithm is in an unstable state and
cannot return to a stable state before all vertices in MOVE are re-assigned to appropriate layers.

Otherwise (i.e. DEL = ∅), we extract v from MOVE and, if v ∈ G′ (i.e., v was not deleted
in some previous step), we call move(v). This procedure will move v from its current layer L′i to
some lower layer L′j , j < i. If after this step it happens that |L′j | = `, then L′j is added to Q
and its vertices are added to DEL. Again, by Invariant 5.1.2, there is no edge between any two
vertices in L′j , and thus, it is an antichain in G′ of size `.

Procedure insert(v) works as follows. We consider the layers j = h− 1, . . . , 1 in this order,
and check whether v has some parent in L′j . Notice that all parents of v must have been inserted
at some previous iteration, however they might not belong to G′ any longer due to deletions. As
soon as one such parent is found, v is added to L′j+1 (and |L′j+1| is incremented). We initialize
Lnext(v) with the parents of v in L′j and add v to Lprev(u) for each u ∈ Lnext(v). We also set

1Notice that if cases (a) and (b) above do not happen, we stop at this point.
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Lprev(v) = ∅ (the children of v still need to be inserted). If no parent is found, v is inserted in
L′1 (and |L′1| is incremented) and we set Lnext(v) = Lprev(v) = ∅. In any case v is added to G′.

Procedure delete(v) works as follows. Assume v ∈ L′i. The first step is to remove v from G′

and L′i (decrementing |L′i|). Then, for each vertex u ∈ Lnext(v) (i.e. a parent of v) that is still in
G′, we remove v from Lprev(u). Next we scan the list Lprev(v) and for each vertex w ∈ G′ in
such list we remove v from Lnext(w) and w from Lprev(v). If Lnext(w) = ∅ after the removal of
v, we add w to MOVE.

It remains to describe move(v). Again assume v ∈ L′i. Notice that by construction i ≥ 2
since we never add to MOVE vertices in L′1. We initially consider the vertices w ∈ Lprev(v),
and remove v from Lnext(w) and w from Lprev(v). Notice that, similarly to the delete(v) case,
if Lnext(w) = ∅, we need to add w to MOVE. Then we consider the layers j = i− 2, . . . , 1 one
by one, and check whether L′j contains at least one parent of v. If such a parent is found, v
is moved from L′i to L′j+1 (updating |L′i| and |L′j+1|, and setting h(v)← j + 1, consequently).
All the parents of v in L′j are added to Lnext(v). If no parent is found, v is moved to L′1 and
the procedure sets Lnext(v) = ∅, and h(v) ← 1. In either case (that is, either Lnext(v) = ∅ or
Lnext(v) 6= ∅), we scan all vertices of L′h(v)+1 for children of v and for each such child u we add u
to Lprev(v) and v to Lnext(u). Notice that the above procedure moves a vertex only to a strictly
lower level.

For the pseudo-code of operations insert(v), delete(v),move(v) see Algorithms 8, 9, and 7,
respectively.

Observe that, by giving priority to the delete() operations over the move() operations, we
avoid increasing the size of any layer above ` (that is, we preserve case 4 of Invariant 5.1.2).
This not only allows us to identify antichains of length ` during an unstable state but also, most
importantly, limits the size of the vertices to test for identifying parents and children during the
subsequent insert() and move() operations.

At the end of the last iteration by Invariant 5.1.2 all vertices still in G′ are contained in
some L′i, i = 1, . . . , h− 1. We execute a special final iteration n+ 1 where we add each such set
L′i as an antichain to our decomposition. This concludes the algorithm.

Lemma 5.1.3. After each execution of insert(), delete() or move(), Invariant 5.1.2 is satisfied.

Proof. We prove the claim by induction on the number of operations. In particular we will
assume that the considered operation is the k-th one, and the invariant holds before its execution.
Notice that the invariant is trivially satisfied before the first execution of any such operation
(when G′ and the layers L′i are empty).

(1) Consider the first part of the claim. Clearly if the k-th operation is delete(v) or move(v), the
claim holds. In case of insert(v), the inductive hypothesis guarantees that all parents of v in G′

are in level h− 1 or lower. Hence v is inserted in layer h or lower. For the second part of the
claim, assume inductively that L′h is empty before the execution of some insert() (this is true at
the beginning). Observe that the only operation that can add some vertex w to L′h is insert(w).
Vertex w is deleted right after the insert(w) operation, since we always test whether L′h 6= ∅
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Algorithm 6: Compute chain/antichain decomposition
Data: DAG G with the topological ordering v1, . . . , vn of its vertices and parameter `,

with h = dn/`e.
Result: (`, 2n

` )-decomposition of G.
1 Initialize G′ ← ∅, P ← ∅, Q ← ∅, L′i ← ∅ for 1 ≤ i ≤ h
2 for t = 1, . . . , n do
3 MOVE← ∅, DEL← ∅
4 insert(vt)
5 if |L′h(vt)| ≥ ` then
6 Add antichain L′h(vt) to Q and all its vertices to DEL

7 else if h(vt) = h then
8 u← vt

9 Ct ← {u}
10 while Lnext(u) 6= ∅ do
11 u← any element of Lnext(u)
12 Add u to Ct
13 Add chain Ct to P and all its vertices to DEL

14

15 while DEL ∪MOVE 6= ∅ do
16 if DEL 6= ∅ then
17 Extract w from DEL and execute delete(w)

18 else
19 Extract w from MOVE and execute move(w)
20 if |L′h(w)| ≥ ` then
21 Add antichain L′h(w) to Q and all its vertices to DEL

22 return (P,Q)

and, if so, the algorithm retrieves and removes (the reverse of) a path that is traversed starting
from w and following a parent of each visited vertex (this path always includes w). Furthermore
delete() and move() never add vertices to L′h. Hence before the execution of the next insert()
the set L′h is empty as required.

(2) Clearly if the k-th operation is delete(v) the claim holds. If the k-th operation is move(v) or
insert(v) by inductive hypothesis at most one layer L′i can reach size `, while all other layers
have the same or smaller size after the operation. Notice that we give priority to the delete()
operations over the move() operations, and hence once |L′i| = ` and all vertices of L′i are inserted
into DEL, no further points are inserted into L′i until it is fully empty. Thus, all vertices of L′i
are deleted before the next execution of a move() or insert(). The claim then holds.

(3) This is the most delicate claim. The claim trivially holds if the k-th operation is delete(v),
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and it holds by construction if it is insert(v). Next assume that the k-th operation is move(v),
and let v ∈ L′i at the time of its execution. By inductive hypothesis all parents of v are of level
at most i− 1 at that time, and the procedure considers all the parents of v in G′ of level at most
i− 2. Hence assume by contradiction that v has some parent in G′ of level i− 1 when move(v)
is executed (in which case the invariant is violated). Suppose that the operation that added v to
MOVE is the k′-th one, k′ < k. Observe that this operation is either a move(w) or a delete(w) for
some w ∈ L′i−1. Since by assumption v ∈ G′ at the time of execution of move(v), by construction
the level of v remains i during all the intermediate operations k′+1, . . . , k−1. Furthermore, L′i−1
does not contain any parent of v before the execution of the first such intermediate operation,
hence at that time the parents of v are in level i − 2 or lower. Therefore, any intermediate
operation which is a move() or delete() keeps the invariant that the parents of v are in level i− 2
or lower as every move() operation can only decrease the level of a vertex. Any intermediate
operation which is an insert() cannot add a parent of v at all, since vertices are inserted in
topological order. Hence L′i−1 does not contain parents of v at the time of the execution of
move(v), a contradiction.

(4) This case trivially follows by case (3) of the invariant.

(5) By induction, the invariant was satisfied right before the last execution of insert(v). We
claim that after any operation the list MOVE contains all vertices for which this invariant is not
satisfied. Right before the last insert(v) operation, MOVE = ∅. The insert(v) operation simply
adds v either to layer L′1 if there is no parent of v in G′, or to layer Lh(v) such that Lh(v)−1
contains a parent of v. Clearly, the claim holds as MOVE = ∅ and the invariant is satisfied
for v. Consider now a delete(v) operation on a vertex v ∈ L′i. The additional vertices that
violate the invariant after this operation are the vertices u ∈ L′i+1 whose only parent in L′i is
v. Recall, we keep track of the parent of u in L′i in the list Lnext(w). Since delete(v) tests
whether Lnext(u) = ∅ after removing v from L′i for all children u of v in L′i+1, all these vertices
are correctly inserted to MOVE. Thus, the claim holds also after a delete(v) operation. Finally,
we consider the case of a move(v) operation. The move(v) first removes a vertex v from a list
Li. At the first stage of move(v), similarly to the delete(v) operation, the additional vertices
that violate the invariant are the vertices u ∈ L′i+1 whose only parent in L′i is v. Arguing in the
exact same way as the delete(v) operation, all the additional vertices that violate the invariant
(i.e., the ones that are not already in MOVE) are correctly added to MOVE. To complete our
claim, notice that (similarly to insert()) move(v) adds v to either adds v to layer L′1 if there is
no parent of v in G′, or to L′h(v) such that L′h(v)−1 contains a parent of v. Hence, the invariant
is satisfied for v after move(v), and therefore our claim holds. The proof of the invariant follows
by the fact that MOVE = ∅ right before an insert(v) operation.

Lemma 5.1.4. The algorithm described above (pseudo-code in Algorithm 6) computes an (`, 2n
` )-

decomposition.

Proof. By construction each vertex which is included in a chain or antichain in the first n
iterations is deleted from G′, hence it is not included in any following chain or antichain. The
antichains added to Q in iteration n+ 1 are disjoint by Invariant 5.1.2. Furthermore, all vertices
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are added at some point to G′, hence they are included by construction in some chain or antichain
at some later point. Thus the chains and antichains induce a partition of the vertex set V .

Each list Lnext(v) by construction contains parents of v only. Furthermore, right before the
insert(vt) operation that leads to the construction of some set Ct, each vertex w ∈ L′i, i ≥ 2,
must have at least one parent in L′i−1 by construction (by Invariant 5.1.2), hence Lnext(w) is not
empty and contains vertices in G′. Consequently Ct is a chain in G′ of size precisely h.

Similarly, by Invariant 5.1.2, vertices in each set L′i that are added to the set Q of antichains
are not parents of each other, hence they form a correct antichain. Notice also that all the sets
L′i that are added to Q in the first n iterations have size precisely ` and consist of vertices in G′

only. Indeed, the condition |L′i| = ` happens after an insert() or move() operation. In both cases
there are no vertices in DEL, hence any vertex in L′i is also present in G′.

It remains to bound the number of chains and antichains. As argued before, each chain
Ct has size precisely h ≥ n/`. Hence disjointness implies that there are at most ` such chains.
Similarly, each antichain that we add in the first n iterations has size precisely `, hence disjointness
implies that there are at most n/` such antichains. In the final iteration n+ 1 we add at most
h− 1 ≤ n/` extra antichains. The claim follows.

Lemma 5.1.5. The above algorithm (pseudo-code in Algorithm 6) takes O(n2) time.

Proof. The running time is dominated by the execution of the operations insert(), delete() and
move(). We execute delete(v) at most once on each v ∈ V . Assume v ∈ L′i at time of execution.
This operation requires to remove v from |Lprev(v)| lists Lnext(w) of vertices w ∈ L′i+1: notice
that we maintain pointers to the occurrence of v in each of these lists Lnext(w), hence this
operation can be performed in time O(`) since by Invariant 5.1.2 |Lprev(v)| ≤ |L′i+1| ≤ `. For
i ≥ 1, we also need to remove v from the list Lprev(u) of some u ∈ Li−1. The same invariant
guarantees that |Lprev(u)| ≤ |L′i| ≤ `, and the fact that we store pointers of the occurrence of v
in each of these lists Lprev(u), and hence this step also takes O(`) time. Thus the total cost of
delete() operations is O(n`).

Similarly, insert(v) is executed at most once on each v ∈ V , and this operation can be easily
performed in time O(n). Hence the total cost of insert() operations is O(n2).

It remains to consider the cost of move() operations. Let us focus on the operations of type
move(v) for a specific vertex v (notice that the same vertex v can be moved multiple times).
Assume v ∈ L′i at that time, and v is moved to layer L′j . Recall that by construction j < i.
Similarly to the delete(v) case, we spend O(`) time to remove v from affected lists Lnext(w),
w ∈ L′i+1, and Lprev(u), u ∈ L′i−1. Analogously, we spend O(`) time to create the new list
Lnext(v) and O(1) time to update Lprev(u) for some u ∈ L′j−1. The rest of the operations can
be easily performed in time O(`) for each level between i+ 2 and j − 1. Hence the cost of this
operation move(v) is O((j − i)`). Since the largest possible level of a vertex v on which we
execute move(v) is h− 1, a simple sum argument shows that the total cost of move(v) operations
involving the same vertex v is O(h`) = O(n). Hence the total cost of move() operations is
O(n2).
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Algorithm 7: Move vertex v to a lower layer
1 Procedure move(v)
2 Remove v from L′h(v), decrement |L′h(v)|
3 foreach w ∈ Lprev(v) do
4 Remove v from Lnext(w)
5 if Lnext(w) = ∅ then
6 Add w to MOVE

7 Lnext(v)← ∅, Lprev(v)← ∅
8 for j = h(v)− 2, . . . , 1 do
9 foreach u ∈ L′j do

10 if (u, v) ∈ E(G′) then
11 Add u to Lnext(v)

12 if Lnext(v) 6= ∅ then
13 Add v to L′j+1, increment |L′j+1|, and set h(v)← j + 1
14 for u ∈ Lnext(v) do
15 Add v to Lprev(u)

16 return

17 Add v to L′1, increment |L′1|, and set h(v)← 1
18 foreach u ∈ L′2 do
19 if (v, u) ∈ E(G′) then
20 Add u to Lprev(v) and v to Lnext(u)

Algorithm 8: Insert vertex v
1 Procedure insert(v)
2 Lprev(v)← ∅, Lnext(v)← ∅
3 for i = h− 1, h− 2, . . . , 1 do
4 foreach u ∈ L′i do
5 if (u, v) ∈ E(G′) then
6 Add u to Lnext(v)

7 if Lnext(v) 6= ∅ then
8 Add v to L′i+1, increment |L′i+1|, and set h(v)← i+ 1
9 for u ∈ Lnext(v) do

10 Add v to Lprev(u)

11 return

12 Add v to L′1, increment |L′1|, and set h(v)← 1
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Algorithm 9: Delete vertex v
1 Procedure delete(v)
2 Remove v from G′ and from L′h(v), decrement |L′h(v)|
3 foreach u ∈ Lnext(v) do
4 Remove v from Lprev(u) and u from Lnext(v)

5 foreach w ∈ Lprev(v) do
6 Remove v from Lnext(w) and w from Lprev(v)
7 if Lnext(w) = ∅ then
8 Add w to MOVE

5.2 Faster decomposition in sparse graphs

We observe that our decomposition algorithm can be implemented more efficiently in sparse
graphs (more precisely, whenever m/`� n). This is not critical in our application, since the
number of edges will be Θ(n2) in our case. However, since this might be helpful in other
applications, we give the details in the following.

Theorem 5.2.1. Let G = (V,E) be a DAG with n vertices and m edges, represented via
adjacency lists, and let ` ∈ [1, n] be an integer parameter. Then there exists an O(mn` ) time
deterministic algorithm to compute an (`, 2n

` ) decomposition of G.

Proof. We modify the above algorithm as follows. We do not compute the adjacency matrix of
G, and we compute the topological order of G in time O(m+ n). In each insert(v) operation,
we simply scan the in-neighbors of v and check in which layer they are to identify the layer
where v has to be inserted. We similarly modify the involved lists Lnext() and Lprev(). Hence we
can perform this operation in time O(deg(v)), where deg(v) is the degree of v in G. Similarly,
for each delete(v) operation, v ∈ L′i, we consider the out-neighbors of G and check which ones
belong to L′i+1. Hence also this operation can be performed in time O(deg(v)). Thus insert()
and delete() operations cost O(m) in total. In each move(v) operation we consider all parents of
v and identify the lowest layer of any such parent. Hence this operation can be implemented
in O(deg(v)) time. By construction each time we execute move(v), v is moved to a strictly
lower level. Since the largest level of a vertex v on which we execute move(v) is h − 1, we
can perform this operation at most h − 2 times. So the total cost of move() operations is
O(
∑
v∈V deg(v)n` ) = O(mn` ). The claim follows.

Recall that we have already shown a greedy Algorithm 1, that calculates (`, n` ) decomposition
in O(m`) time, which is better than O(mn` ) iff ` <

√
n. This immediately yields the following

corollary.

Corollary 5.2.2. Let G = (V,E) be a DAG with n vertices and m edges, represented via
adjacency lists, and let ` ∈ [1, n] be an integer parameter. Then there exists an O(m

√
n) time

deterministic algorithm to compute an (`, 2n
` ) decomposition of G.
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Chapter 6

Applications of the faster
decomposition

6.1 Faster LCA for smaller set of queries

We now show that if one is interested in computing the LCA for all pairs of vertices from a subset
S ⊂ V of the vertices, where |S| = O(nδ), δ ≤ 1, we can modify the Algorithm 5 from Chapter 4
and get a better running time. We refer to this problem as the S-pairs LCA problem. We remark
that obtaining faster (than the solution for the global problem) algorithm for S-pairs LCA
problem is possible when using O(n`2) decomposition (Algorithm 2). However, by computing
decomposition in O(n2) (Algorithm 6) we obtain even better bound on the running time.

On a high-level, the algorithm remains the same. Let Ginput be the input DAG. We first
compute in O(nω) the transitive closure of G, and solve the S-pairs LCA problem on G. Then,
we compute in O(n2) time an (nx, 2n1−x)-decomposition (P,Q) of G with the algorithm from
Theorem 3.3.1. Again, the parameter x will be fixed later on to optimize the running time of
the algorithm.

Incorporating the W -restricted LCAs to the context of the S-pairs LCA problem, we give
the following definition.

Definition 6.1.1. Given a DAG G = (V,E), and two subsets of vertices W,S ⊆ V , the W -
restricted S-Pairs LCA problem is to compute lcaW (u, v) ∈ LCAW (u, v) for all pairs of vertices
u, v ∈ S (lcaW (u, v) = −∞ if LCAW (u, v) = ∅).

Similarly like in the solution for the global problem, we compute a solution to the P-
restricted and Q-restricted S-Pairs LCA problems (that is, the values lcaP(u, v) and lcaQ(u, v)
for all pairs of vertices u, v ∈ S), and later on combine these solutions to compute a solution
to the S-pairs LCA problem. Again, we set lca(u, v) = max{lcaP(u, v), lcaQ(u, v)}, where the
labels of the vertices respect a Q-compact topological order, where Q is a path-respecting family
of antichains of G. Throughout the section, we assume the vertices are are labeled with integers
1, . . . , n according to a Q-compact topological order.
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While it is straightforward to modify our solution to the global All-Pairs LCA problem in
order to get a solution to the S-pairs LCA problem, and the proof of correctness is essentially
the same, we still spell-out the details for completeness.

The first modifications are in the algorithms that compute the solutions to the P-restricted
and Q-restricted S-Pairs LCA problems. The modified version of Algorithm 3 is presented
in Algorithm 10 and its proof in Lemma 6.1.2, while the modified version of Algorithm 4 is
presented in Algorithm 11 and its proof in Lemma 6.1.3.

Algorithm 10: Compute lcaP(u, v) for all pairs of vertices u, v ∈ S.
Data: Transitive closure graph G = (V,E), a subset S ⊂ V of vertices, and a family of

chains P = {P1, . . . , Pp} of G where p ≤ nx.
Result: P-restricted LCA lcaP(u, v) for each pair of vertices u, v ∈ S.

1 Initialize lcaP(·, ·) with −∞
2 Let A be a |S| × p matrix initialized with −∞’s ;
3 for (u, v) ∈ V × S do
4 if (u, v) ∈ E and u ∈

⋃
P∈P P then

5 i← index of chain Pi such that u ∈ Pi ;
6 Update A[v, i]← max(A[v, i], u) ;
7 end
8 end
9 Compute the (max,min)-product A>AT

10 for all u, v ∈ S do
11 lcaP(u, v)← (A>AT )[u, v]
12 end

Lemma 6.1.2. Algorithm 10 computes for each pair of vertices u, v ∈ S, |S| = nδ, a P-restricted
LCA lcaP(u, v). The algorithm runs in Õ(n2 + n

ω(δ,x,δ)+2δ+x
2 ) time.

Proof. The proof of correctness follows from Lemma 4.2.1. We now analyze the running time.
It is clear from the description of the algorithm that the construction of matrix A takes O(n2)
time. Now, the (max,min)-matrix multiplication A>AT , where A is a nδ × p matrix, can be
performed in time Õ(n

ω(δ,x,δ)+2δ+x
2 ), by Theorem 2.3.3. The last step of Algorithm 10 takes

O(|S|2) = O(n2δ) time.

Lemma 6.1.3. Algorithm 11 computes the Q-restricted LCA lcaQ(u, v) ∈ Qi for each pair of
vertices u, v ∈ S ⊆ V, |S| = nδ. The algorithm runs in time Õ(n1+δ + n1−x+ω(δ,x,δ)).

Proof. The proof of correctness follows from Lemma 6.1.3. Initializing the nδ × |Qi| dimen-
sional matrix A for all q iterations takes O(

∑q
i=1 n

δ · |Qi|) = O(nδn) time. The running
time of the Boolean matrix multiplications and witness calculations is upperbounded by
Õ(
∑q
i=1 MM(nδ, |Qi|, nδ)). Using similar reasoning like in the proof of the Lemma 4.3.4, we can

show that Õ(
∑q
i=1 MM(nδ, |Qi|, nδ)) ≤ Õ(q ·MM(nδ, n/q, nδ)) ∈ O(n1−x+ω(δ,x,δ)).
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Algorithm 11: Compute lcaQ(u, v) for all pairs of vertices u, v ∈ V .
Data: Transitive closure graph G = (V,E), a subset S ⊂ V of the vertices, and a

family of antichains Q = {Q1, . . . , Qq} of G that is path-respecting such that
q ≤ 2n1−x.

Result: Q-restricted LCA lcaQ(u, v) for each pair of vertices u, v ∈ V .
1 Initialize lcaQ(·, ·) with −∞.
2 for i = q, . . . , 1 do
3 Initialize a |S| × |Qi| matrix A with zeros.
4 Let φi : Qi

1:1−−→ {1, . . . , |Qi|} be an arbitrary bijection and φ−1
i (·) be its inverse

function.
5 for all x ∈ |S|, y ∈ Qi such that (y, x) ∈ E do
6 A[x, φi(y)]← 1
7 end
8 Compute A ·AT , and its witness matrix W
9 for all u, v ∈ S do

10 if lcaQ(u, v) = −∞ and A ·AT [u, v] 6= 0 then
11 lcaQ(u, v)← φ−1

i (W [u, v]).
12 end
13 end
14 end

Theorem 6.1.4. Algorithm 12 computes for all pairs of vertices u, v ∈ S a LCA lca(u, v). If
|S| = nδ, then the algorithm runs in time O(nω + n1−x+ω(δ,x,δ) + n

ω(δ,x,δ)+2δ+x
2 ).

Proof. Let |S| = O(nδ). The proof for correctness follows from Theorem 4.4.3. The running
time of the algorithm is trivially Õ(nω + n2 + n1+δ + n

ω(δ,x,δ)+2δ+x
2 + n1−x+ω(δ,x,δ)) = Õ(nω +

n
ω(δ,x,δ)+2δ+x

2 + n1−x+ω(δ,x,δ)) for a fixed x ∈ [0, 1].

What is now left is to find optimal value of x as a function of δ. Balancing the cost terms,
we need to have 1− x+ ω(δ, x, δ) = ω(δ,x,δ)+2δ+x

2 which is equivalent to ω(δ, x, δ) = 3x+ 2δ − 2.
By Lemma 2.2.3 ω(δ, x, δ) = δω(1, xδ , 1), so we get the equation δω(1, xδ , 1) = 3x+ 2δ − 2. The
time complexity becomes O(n1−x+ω(δ,x,δ)) = O(n2δ+2x−1). We denote the exponent of the time
complexity as γ′ = 2δ + 2x− 1.

To get numerical bounds on the time complexity we can use bounds on ω(1, x, 1) outlined
in the Section 2.2. Using square matrix multiplication as a subroutine to implement rectangular
matrix multiplication (i.e., the bound in (2.1)), one obtains δ(2 + x

δ (ω − 2)) ≥ 3x+ 2δ − 2. This,
given current bound ω < 2.3728639, yields x ≤ 2

5−ω and γ′ ≤ 2δ + 4
5−ω − 1 ≤ 2δ + 0.522571.

Similarly, using the bound (2.2), one gets x ≤ 2−βαδ
3−β , γ′ ≤ 2(2−βαδ)

3−β +2δ−1 ≤ 0.6282973594+
1.86112061279δ. If instead we apply the bound (2.3), we get γ′ ≤ 0.711508 + 1.73504δ, with
x ≤ 0.855754− 0.132478δ.
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Algorithm 12: Compute lca(u, v) for all pairs of vertices u, v ∈ S.
Data: DAG Ginput = (V,Einput)
Result: lca(u, v) for each pair of vertices u, v ∈ S

1 Compute the transitive closure graph G = (V,E) of Ginput
2 Use Algorithm 2 to compute an (nx, 2n1−x)-decomposition into a family of chains
P = {P1, . . . , Pp} with p ≤ nx and |Pi| ≤ n1−x and a family of antichains
Q′ = {Q′1, . . . , Q′q′} with q′ ≤ 2n1−x.

3 Use Lemma 4.3.2 with input Q′ to compute a path-respecting family of antichains
Q = {Q1, . . . , Qq} of G where q ≤ 2n1−x.

4 Compute a Q-compact topological order of G using Lemma 4.4.2 and rename vertices
so that they are 1, . . . , n according to this order

5 Use Algorithm 10 to compute P-restricted LCA lcaP(u, v) for each pair of vertices
u, v ∈ S.

6 Use Algorithm 11 to compute Q-restricted LCA lcaQ(u, v) for each pair of vertices
u, v ∈ S for all u, v ∈ S do

7 lca(u, v)← max{lcaQ(u, v), lcaP(u, v)}
8 end

One might ask how small δ must be in order to bring the time complexity down to Õ(nω)
(i.e when γ′ ≤ ω). When using the bound (2.1), we had γ′ ≤ 2δ + 4

5−ω − 1, therefore we need
δ ≤ ω+1

2 −
2

5−ω , which is bounded by 0.925146 given the current bound on ω. Similarly, we get
δ ≤ (ω+1)(3−β)−4

2(3−β)−2βα ≤ 0.937374 using the bound in (2.2) and δ ≤ 0.957531 if we apply the bound
(2.3).

6.2 Faster max-min product implies faster All-Pairs LCA

Let λ′ = 0.7232761 be the approximation of λ (the solution of equation 3x = ω(1, x, 1)) that we
used to get the Õ(n2.447) time for All-Pairs LCA. Recall also that we use ω>(a, b, c) to denote
the rectangular max-min product exponent.

By Corollary 2.3.4 we have ω>(1, λ′, 1) ≤ (ω(1, λ′, 1) + 2 + λ′)/2 ≤ 2.4465522. In this
section we will prove that any improvement of this bound immediately implies improvement
over algorithm for All-Pairs LCA problem, derived in chapter 4.

Lemma 6.2.1. ω>(1, x+ c, 1) ≤ ω>(1, x, 1) + c

Proof. The proof is completely analogous to the proof of Lemma 2.2.2.

Theorem 6.2.2. If ω>(1, λ′, 1) ≤ ω(1,λ′,1)+2+λ′
2 − ε for some ε > 0, then there exists δ > 0 such

that All-Pairs LCA problem can be solved in Õ(n2.447−δ) time.

Proof. By Theorem 5.1.1 we have an algorithm for All-Pairs LCA problem running in time
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Figure 6.1: A better bound on ω>(1, λ′, 1) gives a better approximation of ω>(1, ·, 1) (drew in
dashed line). However it does not lead to a faster algorithm to All-Pairs LCA problem if we
compute chain/antichain decomposition in Õ(n1+2x) time (as pictured on the left). When we
speed up decomposition down to O(n2), we only need to balance two running times, and an
improvement appears (pictured on the right).

Õ(nω>(1,x,1) + n1−x+ω(1,x,1)) for a fixed x ∈ [0, 1]. In particular it can run in time nω>(1,λ′+t,1) +
n1−λ′−t+ω(1,λ′+t,1)) for a fixed t ∈ [0, 1− λ′].

Usinga Lemma 6.2.1 we get that ω>(1, λ′ + t, 1) ≤ ω(1,λ′,1)+2+λ′
2 + t− ε ≤ 2.4465522 + t− ε.

Using bound (2.3) we also get that 1 − λ′ − t + ω(1, λ′ + t, 1) ≤ 2.4465522 − 0.33712 · t for
t ≤ 0.75 − λ′ = 0.0267239. Setting t = min( ε

1.33712 , 0.0267239) and δ = 0.33712 · t we get the
claimed Õ(n2.447−δ) running time.

Theorem 6.2.2 shows that computation of max-min product is the source of hardness for
All-Pairs LCA problem. We stress that the usage of Algorithm 6 (i.e. decomposition in time
O(n2)) is crucial for the proof of this theorem. The reason is that now we only had to balance
the running time of two algorithms (i.e computation of P-restricted LCAs and Q-restricted
LCAs), whereas when using decomposition in time n1+2x, we would need to balance the running
time of three algorithms simultaneously. An improvement in running time for one of them would
not lead to change in the optimal value of parameter x for the other two. We show the intuition
behind this phenomenon in Figure 6.2.
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Chapter 7

Conclusions and Open Problems

To the best of our knowledge, All-Pairs LCA is the first example of a natural graph problem
with an algorithm based on fast matrix multiplication, which has a running time strictly between
Ω(n2) and O(n2.5), under the assumption ω = 2. This might suggest that a faster algorithm
exists (e.g., with a running time of Õ(nω)). Alternatively, it would be interesting to derive
fine-grained lower bounds based on All-Pairs LCAs in DAGs.

A simple greedy algorithm for decomposing a DAG into O(
√
n ) chains and antichains

runs in time O(n2.5) for dense graphs. Our algorithm improves this bound to O(n2). In the
similar problem of decomposing a sequence into O(

√
n ) monotonic subsequences, a naive greedy

algorithm works in time O(n1.5 log(n)). Yehuda and Fogel improved this to O(n1.5) [5] and there
has been no further progress ever since. It was also noted by Jørgensen and Pettie that this
is a natural example of a problem with a large (Ω̃(

√
n )) gap between the current algorithmic

and decision-tree complexity [26]. Therefore, it would be interesting to see if the techniques
developed in this work can be used to improve the time complexity of sequence decomposition.
Alternatively, one could further investigate the relationship between the two problems in order
to prove some lower bounds.

In Section 5.2 we showed faster algorithm for computing (`, 2n
` ) decomposition in sparse

graphs, in particular we observed that for graphs with m edges and arbitrary value of parameter
` we can compute the decomposition in O(m

√
n) time. It is an interesting open question,

whenever this can be improved e.g. down to Õ(m).
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[11] K. Bringmann, M. Künnemann, and K. Węgrzycki. Approximating APSP without scaling:
equivalence of approximate min-plus and exact min-max. In STOC 2019, pages 943–954.

[12] F. Claude, J. I. Munro, and P. K. Nicholson. Range queries over untangled chains. In
SPIRE, volume 6393 of Lecture Notes in Computer Science, pages 82–93. Springer, 2010.

49



[13] K. Cohen and R. Yuster. On minimum witnesses for boolean matrix multiplication.
Algorithmica, 69(2):431–442, 2014.

[14] R. W. Cottingham, R. M. Idury, and A. A. Schäffer. Faster sequential genetic linkage
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