
Faster algorithms for the Permutation Pattern
Matching Problem

(Szybsze algorytmy dla problemu wyszukiwania wzorca permutacyjnego)

Mateusz Rzepecki

Praca licencjacka

Promotor: dr Paweł Gawrychowski

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

28 czerwca 2021





Abstract

Permutations and their properties are studied in many areas of science. For two
permutations σ and π arises a very natural and simple to formulate question: does
π occur in σ as a subpermutation and if so, then what is the number of such oc-
currences. It was shown by Bose, Buss and Lubiw [4] that the detection problem is
NP-complete. This thesis shows three solutions to the counting problem. First works

for k = nb, such that 0 < b < 1, any c ≤ 1
3 and any ε > 0 in time O

(
nk(1−b)

(
1
3
+ c

3
+ε
))

and uses O
(
nk
(
1−b
)(

1−2c
3

+ε
))

space. For 1
4 < b it improves result by Berendsohn,

Kozma and Marx [3], which works in time O(n
1
4
k+o(k)). Second algorithm works in

time O(n2
(dn+k

2
e

bn−k
2
c

)
) and uses O(n) space. Third algorithm works in time O(n ·

(bn
2
c

b k
2
c

)
)

and uses O(n) space. Its time complexity can be also bounded by O(n ·2b
n
2
c), there-

fore it improves the result by Berendsohn, Kozma and Marx [3], who designed an
algorithm which works in time O(1.6181n).

Permutacje i ich własności są obiektem badań w wielu dziedzinach nauki. Dla
danych dwóch permutacji σ oraz π nasuwa się dość naturalne i proste do sformu-
łowania pytanie: czy π występuje jako podpermutacja w σ i jeśli tak, to ile jest
łącznie takich wystąpień. Bose, Buss i Lubiw [4] pokazali, że jest to problem NP-
zupełny. Ta praca pokazuje trzy algorytmy rozwiązujące problem zliczania. Pierwszy
z nich działa dla k = nb, takiego że 0 < b < 1, dowolnego c ≤ 1

3 oraz dowolnego

ε > 0 w czasie O
(
nk(1−b)

(
1
3
+ c

3
+ε
))

i używa O
(
nk
(
1−b
)(

1−2c
3

+ε
))

pamięci. Dla 1
4 < b

poprawia on wynik Berendsohna, Kozmy i Marxa [3], którzy pokazali algorytm dzia-

łający w czasie O(n
1
4
k+o(k)). Drugi algorytm działa w czasie O(n2

(dn+k
2
e

bn−k
2
c

)
) i używa

O(n) pamięci. Trzeci natomiast działa w czasie O(n ·
(bn

2
c

b k
2
c

)
) i używa O(n) pamięci.

Jego czas działania można również oszacować przez O(n · 2b
n
2
c), co poprawia wy-

nik Berendsohna, Kozmy i Marxa [3], którzy pokazali algorytm działający w czasie
O(1.6181n).





Contents

1 Introduction 7

2 Preliminaries 9

3 Constraint graph method 15

3.1 Binary Constraint Satisfaction Problem . . . . . . . . . . . . . . . . 15

3.2 Permutation Pattern Matching Problem . . . . . . . . . . . . . . . . 18

4 Segment decompositions 25

4.1 Special case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Complement method . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 1-proper method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Lowerbound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Bibliography 35

5





Chapter 1

Introduction

Permutations are fundamental objects in mathematics and computer science. Per-
mutation Pattern Matching Problem is to decide, for a given length-n permutation
σ and length-k permutation π, if π occurs in σ as a subpermutation. The counting
version of this problem asks about the number of different occurrences. For instance,
for σ = (3, 2, 5, 4, 1) and π = (1, 3, 2) the answer to the decision problem is yes and
answer to the counting problem is 2, since subpermutations of σ that have the same
ordering as π are (3, 5, 4), (2, 5, 4).

Bose, Buss and Lubiw [4] showed that Permutation Pattern Matching Problem
is NP-complete, thus we do not expect an efficient algorithm that solves this prob-
lem to exist. We can ask for an algorithm that works efficiently in special cases.
Guillemot and Marx [9] showed that the detection problem can be solved in time
O(n · 2O(k2 log k)), which works very well for small k. Later, Fox [8] cleansed the
proof of Marcus and Tardos [11], what implied that the algorithm by Guillemot and
Marx [9] works in time O(n · 2O(k2)). There is also a very interesting reduction by
Dudek and Gawrychowski [6] which states that counting cycles of length four in
a sparse undirected graph is equivalent to counting the number of occurrences of
length-4 permutations in a given permutation.

There is a trivial algorithm for the counting problem that works in time
O(nk+1). The first algorithm that improved it was designed by Albert, Aldred,
Atkinson and Holton [2] and works in time O(n

2
3
k+1). Their result was im-

proved by Ahal and Rabinovich [1], who designed an algorithm that works in
time O(n0.47k+o(k)). Another improvement was made by Berendsohn, Kozma and
Marx [3], who showed an algorithm that works in time O(nk/4+o(k)). They also
showed that the existence of an algorithm for the counting problem that works in

time O(f(k) · no
(

k
log k

)
) contradicts exponential time hypothesis [10].

Berendsohn, Kozma and Marx [3] showed an algorithm for the counting problem
that works in time O(1.6181n) and uses polynomial space. Their algorithm guesses
part of occurrence and then uses a polynomial-time algorithm to count the exact

7



8 CHAPTER 1. INTRODUCTION

number of occurrences that match with the guessed values. This improved the result
by Bruner and Lackner [5], who showed an algorithm working in time O(1.79n).

We present an algorithm that works for k = nb, such that 0 < b < 1, any c ≤ 1
3

and any ε > 0 in time O
(
nk(1−b)

(
1
3
+ c

3
+ε
))

and uses O
(
nk
(
1−b
)(

1−2c
3

+ε
))

space.
The idea is similar to the one by Berendsohn, Kozma and Marx [3]. Our algorithm
splits [k] into smaller segments, by guessing part of occurrence of π in σ, then it
runs an algorithm that solves the counting version of binary Constraint Satisfaction
Problem.

We introduce an algorithm that works in time O(n2
(dn+k

2
e

bn−k
2
c

)
) and uses O(n)

space. Our algorithm splits all occurrences of π in σ into groups based on part of
positions in σ that do not match the pattern. Then, each group is solved separately
with a polynomial-time algorithm which is an extension of the algorithm showed by
Berendsohn, Kozma and Marx [3].

We also show an algorithm that works in time O(n ·
(bn

2
c

b k
2
c

)
) and uses O(n) space.

The main improvement is achieved by generalizing the polynomial-time algorithm
showed by Berendsohn, Kozma and Marx [3] even more. Our algorithm splits all pos-
sible occurrences of π in σ into groups based on approximate positions in σ of some
elements in π. Then, each group is solved separately with the improved polynomial-
time algorithm. We show that for specific properties of grouping occurrences, our
split is almost optimal.

The diagram below presents the fastest algorithms for different values of k.

1

[9], [8]

logn
2

[3]

n
1
4

Chapter 3

O( n
logn)

Chapter 4

n



Chapter 2

Preliminaries

We denote {1, . . . , n} by [n] and {n, . . . ,m} by [n,m]. Permutation σ of length n

is a bijection σ : [n] → [n]. We call it also a length-n permutation. For a given
a ∈ [n] we denote a value of σ in a by σ[a] and a value of σ−1 in a by σ−1[a]. For a
given set {a1, . . . , am} = A ⊆ [n] we denote an array σ[a1], . . . , σ[am] by σ[A], where
ai < ai+1 for i ∈ [m − 1]. For a function f and a set B we denote a restriction of
function f to the set B by f |B. For functions f and g we write O(f) = O(g) if and

only if limn→∞
f(n)
g(n) <∞.

Let σ be a length-n permutation and π be a length-k permutation. An instance
of Permutation Pattern Matching Problem is a pair of permutations (σ, π). Solution
to (σ, π) is an injection f : [k]→ [n] such that:

1) ∀i,j∈[k]π[i] < π[j]⇔ σ[f(i)] < σ[f(j)]

2) ∀i,j∈[k]i < j ⇔ f(i) < f(j)

Lemma 2.1. Function f : [k]→ [n] is a solution to (σ, π) if and only if:

1) ∀i∈[k−1]σ[f(π−1[i])] < σ[f(π−1[i+ 1])], we call them Y -axis constraints
2) ∀i∈[k−1]f(i) < f(i+ 1), we call them X-axis constraints

Proof. It follows from the definition of a solution to (σ, π) and the fact that relation<
is transitive. �

Permutation Pattern Matching Problem
Input: length-n permutation σ and length-k permutation π

Output: Does there exist an injection f : [k]→ [n] such that:
1) ∀i,j∈[k]π[i] < π[j]⇔ σ[f(i)] < σ[f(j)]

2) ∀i,j∈[k]i < j ⇔ f(i) < f(j)

Segment decomposition of an interval [n] are segments [l1, r1], . . . , [lm, rm], such
that li ≤ ri and [li, ri] ⊆ [m] for i ∈ [m]. Length of a segment decomposition is the

9



10 CHAPTER 2. PRELIMINARIES

Counting Permutation Pattern Matching Problem
Input: length-n permutation σ and length-k permutation π

Output: The number of injections f : [k]→ [n] such that:
1) ∀i,j∈[k]π[i] < π[j]⇔ σ[f(i)] < σ[f(j)]

2) ∀i,j∈[k]i < j ⇔ f(i) < f(j)

number of segments it consists of. We say that a segment decomposition is proper
if
⋃
i∈[m][li, ri] = [n] and ri + 1 = li+1 for i ∈ [m − 1]. We say that a segment

decomposition is 1-proper if ri ≤ li+1 for i ∈ [m− 1]. See Figure 2.1 and Figure 2.2
as illustrations.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Figure 2.1: Black segments represent the interval [8] and blue segments represent a
proper segment decomposition of [8], where l1 = 1, r1 = 3, l2 = 4, r2 = 6, l3 = 7,
r3 = 8.

1 2 3 4 5 6 7 8

1 2 3

3 4 5

7 8

Figure 2.2: Black segments represent the interval [8] and blue segments represent a
1-proper segment decomposition of [8], where l1 = 1, r1 = 3, l2 = 3, r2 = 5, l3 = 7,
r3 = 8.

Observation 2.2. Proper segment decomposition is 1-proper.

Observation 2.3. In a proper segment decomposition l1 = 1 and pm = n.

Segment decomposition with length m of (σ, π) are segment decomposition
[l1, r1], . . . , [lm, rm] of [n] with length m and a proper segment decomposition
[l′1, r

′
1], . . . , [l

′
m, r

′
m] of [k] with length m, such that ri − li ≥ r′i − l′i for i ∈ [m].

We define the width of a segment decomposition of (σ, π) by maxi∈[m]{min{r′i−
l′i+1, (ri− li+1)− (r′i− l′i+1)}}. We call a segment decomposition of (σ, π) proper
(1-proper) if its segment decomposition of [n] is proper (1-proper).

Observation 2.4. Each segment decomposition with width at most 1 satisfies r′i −
l′i + 1 ≤ 1 ∨ (ri − li + 1)− (r′i − l′i + 1) ≤ 1 for i ∈ [m].

Definition 2.5. Solution f to (σ, π) respects segment decomposition if f([l′i, r
′
i]) ⊆

[li, ri] for i ∈ [m]. See Figure 2.3 as an illustration.



11

1 2 3

3 4 5

7 8

5 2 1 3 4

1 2 3 4 5

7 3 1 5 68 24

Figure 2.3: A solution f to (σ, π) that respects 1-proper segment decomposition
of (σ, π). Black segments represent permutations σ = (7, 8, 3, 1, 5, 4, 6, 2) and π =

(5, 2, 1, 3, 4). Orange, blue and purple segments represent the 1-proper segment
decomposition of (σ, π), where l1 = 1, r1 = 3, l2 = 3, r2 = 5, l3 = 7, r3 = 8, l′1 = 1,
r′1 = 2, l′2 = 3, r′2 = 4, l′3 = r′3 = 5. Arrows represent the solution f to (σ, π), where
f(1) = 1, f(2) = 3, f(3) = 1, f(4) = 5 and f(5) = 7.

Definition 2.6 (Tree Decomposition). For a given graph G = (V,E), tree decom-
position of G is a tree T = (V ′, E′) and f : V ′ → P(V ) such that:

1) ∀e∈E∃v′∈V ′e1, e2 ∈ f(v′), where e1, e2 are the nodes connected by the edge e
2) ∀v∈V {v′ ∈ V ′ : v ∈ f(v′)} is a nonempty connected subtree of T

The width of a tree decomposition is defined by maxv′∈V ′{|f(v′)| − 1}. The
treewidth of a graph G is defined as the minimum width of all of its tree decompo-
sitions.

Path decomposition is defined by analogy with tree decomposition, but we add
one more requirement, namely T needs to be a path (a special type of a tree). We
define the width of a path decomposition and the pathwidth of a graph by analogy
with tree decomposition.

Lemma 2.7. For any tree decomposition T , f of a graph G we can construct a tree
decomposition T ′, f ′ of G with the same width, such that the number of edges in T ′

is less than the number of edges in G. We can construct it in polynomial time.

Proof. Let T ′, f ′ be the value returned by Algorithm 1 called with parameters G,
T and f . Clearly, T ′ and f ′ are a tree decomposition of G. There exists a function
from edges in G onto nodes in T ′, since while loop in Algorithm 1 stopped. As a
result, the number of edges in G is greater than the number of edges in T ′. Running
time of Algorithm 1 is polynomial in the size of the input, since an endpoint of each
edge in T can be changed at most as many times as the number of nodes in T and
each edge and node can be removed at most once. �



12 CHAPTER 2. PRELIMINARIES

Algorithm 1

Input: graph G and its tree decomposition T , f
Output: tree decomposition of G

begin
Create a function g from edges in G to nodes in T , such that for any e
both endpoints of e belong to f(g(e))
. Possibly one node is assigned to more than one edge
while exists a node in T that is not in the image of g do

u← node in T that is not in the image of g
v ← any neighbour of u in T

Remove edge between u and v from T

foreach edge in T with one endpoint in u do
Change endpoint of this edge from u to v

end
Remove u from T

end
f ← f restricted to the nodes in T

return T , f
end

An instance of binary Constraint Satisfaction Problem are variables X1, . . . , Xn,
domains of the variables D1, . . . , Dn and constraints C1, . . . , Cm, where each Ci is
represented by (i1, i2, Ri), where i1, i2 ∈ [n] and Ri ⊆ Di1 × Di2 . Solution to the
instance of binary Constraint Satisfaction Problem is any array (d1, . . . , dn) such
that:

1) ∀i∈[n]di ∈ Di

2) ∀i∈[m](di1 , di2) ∈ Ri

We define a constraint graph of the instance of binary Constraint Satisfaction
Problem as a graph G = (V,E), where nodes correspond to variables and for each
constraint Ci = (i1, i2, Ri) there is exactly one edge connecting nodes corresponding
to the variables i1 and i2.

Binary Constraint Satisfaction Problem
Input: variables X1, . . . , Xn, domains of the variables D1, . . . , Dn and con-

straints C1, . . . , Cm, where each Ci is represented by (i1, i2, Ri),
where i1, i2 ∈ [n] and Ri ⊆ Di1 ×Di2 .

Output: Does there exist an array (d1, . . . , dn) such that:
1) ∀i∈[n]di ∈ Di

2) ∀i∈[m](di1 , di2) ∈ Ri

Let R1, R2 ⊆ [n]× [n] be binary relations, such that:

1) (a, b) ∈ R1 ⇔ a < b



13

Counting binary Constraint Satisfaction Problem
Input: variables X1, . . . , Xn, domains of the variables D1, . . . , Dn and con-

straints C1, . . . , Cm, where each Ci is represented by (i1, i2, Ri),
where i1, i2 ∈ [n] and Ri ⊆ Di1 ×Di2 .

Output: The number of arrays (d1, . . . , dn) such that:
1) ∀i∈[n]di ∈ Di

2) ∀i∈[m](di1 , di2) ∈ Ri

2) (a, b) ∈ R2 ⇔ σ[a] < σ[b]

Let X1, . . . , Xk be variables corresponding to the elements of π, D1 = D2 =

. . . = Dk = [n], Ci = (i, i+ 1, R1), Ci+k−1 = (π−1[i], π−1[i+ 1], R2) for i ∈ [k − 1].

Definition 2.8. Variables X1, . . . , Xk, domains D1, . . . , Dk and constraints
C1, . . . , C2k−2 are the instance of binary Constraint Satisfaction Problem correspond-
ing to (σ, π). See Figure 2.4 for an illustration.

(3, 8)

(1, 9)

(9, 6)

(4, 1)

(2, 2)

(5, 3)

(6, 5)

(7, 7)

(8, 4)

Figure 2.4: Constraint graph for π = (9, 2, 8, 1, 3, 5, 7, 4, 6), where description of
each node is (i, π[i]). Blue edges correspond to X-axis constraints and orange edges
correspond to Y -axis constraints.

Lemma 2.9. There exists a bijection between solutions to (σ, π) and solutions to
the instance of binary Constraint Satisfaction Problem corresponding to it.

Proof. Let A be a set of solutions to (σ, π) and B be a set of solutions to the instance
of binary Constraint Satisfaction Problem corresponding to (σ, π).

For any f ∈ A we know that (f(1), f(2), . . . , f(k)) ∈ B, since

1) ∀i∈[k]f(i) ∈ [n] = Di,
2) ∀i∈[k−1]f(i) < f(i+ 1), thus ∀i∈[k−1](f(i), f(i+ 1)) ∈ R1,



14 CHAPTER 2. PRELIMINARIES

3) ∀i∈[k−1] σ[f(π−1[i])] < σ[f(π−1[i + 1])], thus ∀i∈[k−1](f(π−1[i]), f(π−1[i + 1])) ∈
R2.

Thus, there exists a function h1 : A→ B, such that h1(f) = (f(1), f(2), . . . , f(k)).

For any (d1, . . . , dk) ∈ B let g : [k] → [n] be defined by g(i) = di, then g ∈ A,
since

1) ∀i∈[k−1] σ[g(π−1[i])] < σ[g(π−1[i + 1])], since constraints Ck, . . . , C2k−2 are ful-
filled,

2) ∀i∈[k−1]g(i) < g(i+ 1), since constraints C1, . . . , Ck−1 are fulfilled.

From Lemma 2.1 function g is a solution to (σ, π), thus there exists a function
h2 : B → A, such that h2((d1, . . . , dk)) = g, where g(i) = di.

h1 is a bijection, since h1 ◦ h2 is an identity function. �

As a result, instead of counting the number of solutions to the instance of
Permutation Pattern Matching Problem, we can count the number of solutions to
the instance of binary Constraint Satisfaction Problem corresponding to it.



Chapter 3

Constraint graph method

3.1 Binary Constraint Satisfaction Problem

Let X1, . . . , Xa, D1, . . . , Da and C1, . . . , Cb be an instance of binary Constraint Sat-
isfaction Problem. Let G = (V,E) be its constraints graph. Let T be a tree decom-
position of G with width t. Let Root be an arbitrary node in T and let T be rooted
in Root. Let e be equal to the number of edges in T .

By nodes we mean nodes in T and by variables, we mean nodes in G and
variables in the instance of binary Constraint Satisfaction Problem that correspond
to those nodes. By Var(u) we denote a set of variables that are assigned to the
node u. By Subtree(u) we denote nodes in the subtree of the node u (including
u). By Varsub(u) we denote

⋃
v∈Subtree(u) Var(v). By Children(u) we denote all

children of the node u in T . We call a function f : A→ B a mapping if A ⊆ [a] and
f(i) ∈ Di for i ∈ A. By Mapping(A) we denote a set of mappings from a set A. By
Correct(u,m) we denote a function that is equal to 1 if m ∈ Mapping(Var(u))
and assignment of values given by m fulfills all constraints in the node u and 0

otherwise. By Con(u) we denote the number of constraints in the node u. By
Deg(u) we denote the number of children of the node u. By Nodes we denote the
set of nodes in T .

Definition 3.1 (DP). For u ∈ Nodes and m ∈ Mapping(Var(u)) we define
DPu,m as the number of mappings g ∈ Mapping(Varsub(u)), such that all con-
straints in the subtree of u are fulfilled by the assignment of values given by g and
g|Var(u) = m.

Definition 3.2 (Mutual). For u, v ∈ Nodes and m ∈ Mapping(Var(u) ∩
Var(v)), where u is a parent of v we define Mutualu,v,m as the number of mappings
g ∈Mapping(Varsub(v)), such that all constraints in the subtree of v are fulfilled
by the assignment of values given by g and g|Var(u)∩Var(v) = m.

Let A be a multiset {|Di| : i ∈ [a]}, Mi be equal to the i-th biggest value in A,

15



16 CHAPTER 3. CONSTRAINT GRAPH METHOD

Algorithm 2

Input: node u in T

Output: DPu,m filled in with values, where m ∈Mapping(Var(u))

begin
foreach v ∈ Children(u) do

Make a recursive call in v

foreach m ∈Mapping(Var(v)) do
m′ ← m|Var(u)∩Var(v)
Mutualu,v,m′ ← DPv,m + Mutualu,v,m′

end

end
foreach m ∈Mapping(Var(u)) do

DPu,m ← 1

foreach v ∈ Children(u) do
mv ← m|V ar(u)∩V ar(v)
DPu,m ← DPu,m ·Mutualu,v,mv

end
DPu,m ← DPu,m ·Correct(u,m)

end

end

M =M1 ·M2 · . . . ·Mt+1 and Domu = |Mapping(Var(u))|.

Lemma 3.3. Domu ≤M for u ∈ Nodes.

Proof. Domu ≤M1 ·M2 · . . . ·Mt+1 =M , since there are at most t+ 1 variables in
each node. �

Lemma 3.4. Algorithm 2 called parameter Root computes all values of DP in time
O(M · (b+ (t+ 1)e)).

Proof. For any u, v ∈ Nodes, where u is a parent of v the process of computing
Mutualu,v,m for all m takes O(Domv · |Var(v) ∩Var(u)|) time, since Algorithm 2
iterates over each g ∈Mapping(Var(v)), restricts it to Var(v) ∩Var(u) and then
updates value of Mutual. As a result, computing Mutual in all recursive calls takes
O(e · maxu{Domu} · (t + 1)) time, since T has e edges and |Var(v) ∩ Var(u)| ≤
|Var(u)| ≤ t+ 1.

The process of computing DPu,m for any u ∈ Nodes and any m ∈
Mapping(Var(u)) takes O(Con(u) + |Var(u)| ·Deg(u)) time, since Algorithm 2
computes value of Correct(u,m) and restricts m to Var(u) ∩ Var(v) for each
v ∈ Children(u). Thus, the process of computing all values of DP takes



3.1. BINARY CONSTRAINT SATISFACTION PROBLEM 17

O(
∑

u∈Nodes

∑
m∈Mapping(Var(u))

(Con(u) + |Var(u)| ·Deg(u)))

=O(
∑

u∈Nodes
Domu(Con(u) + |Var(u)| ·Deg(u)))

=O(max
u
{Domu}

∑
u∈Nodes

(Con(u) + |Var(u)| ·Deg(u)))

=O(max
u
{Domu} · (b+

∑
u∈Nodes

|Var(u)| ·Deg(u)))

=O(max
u
{Domu} · (b+ (t+ 1)

∑
u∈Nodes

Deg(u)))

=O(max
u
{Domu} · (b+ (t+ 1)e))

After applying Lemma 3.3 we get the stated thesis.

�

Lemma 3.5. Algorithm 2 called with parameter Root computes all values of DP
using O(M · (e+ 1)) space.

Proof. Algorithm 2 stores arrays DP and Mutual. Size of DP is O((e + 1) ·
maxu{Domu}). Size of Mutual is equal to O(e · maxu{Domu}), since for each
edge in T we store O(maxu{Domu}) values. Thus, the final space consumption is
O(maxu{Domu} · (e+ 1)). After applying Lemma 3.3 we get the stated thesis. �

Algorithm 3

Input: tree decomposition of the constraint graph of an instance of bi-
nary Constraint Satisfaction Problem

Output: the number of solutions to binary Constraint Satisfaction Prob-
lem

begin
Call Algorithm 2 in Root
result← 0

foreach m ∈Mapping(Val(Root)) do
result← result + DPRoot,m

end
return result

end

Lemma 3.6. Algorithm 3 computes the number of solutions to the instance of binary
Constraint Satisfaction Problem in time O(M ·(b+(t+1)e)) and uses O(M ·(e+1))

space.



18 CHAPTER 3. CONSTRAINT GRAPH METHOD

Proof. From the definition of DP, Algorithm 3 computes the number of solutions
to the instance of binary Constraint Satisfaction Problem.

The time complexity of Algorithm 3 can be bounded by O(t1 + DomRoot),
where t1 is the time complexity of Algorithm 2 called with parameter Root. From
Lemma 3.3 we know that Algorithm 3 works in time O(M · (b+ (t+ 1)e)).

Algorithm 3 uses the same amount of space as Algorithm 2 called with param-
eter Root, thus from Lemma 3.5 we obtain the stated space bound. �

3.2 Permutation Pattern Matching Problem

Proposition 3.7 ([7]). For any ε > 0, there exists an integer nε such that for every
connected graph G with n > nε nodes and m = β · n edges, where 3

2 ≤ β ≤ 2,
the treewidth of G is at most m−n

3 + ε · n. Moreover, a tree decomposition of the
corresponding width can be constructed in polynomial time.

Lemma 3.8. The number of edges in the tree decomposition from Proposition 3.7
can be bounded by the number of edges in the original graph.

Proof. This follows from Lemma 2.7 applied to the tree decomposition in Proposi-
tion 3.7. �

Let W be a polynomial such that the tree decomposition from Proposition 3.7
and Lemma 3.8 can be created in time O(W (n)) using O(W (n)) space, where n is
the number of nodes in the graph.

Let σ be a length-n permutation and π be a length-k permutation. To avoid
clutter, we assume that ck is an integer.

Lemma 3.9. Algorithm 4 computes the number of solutions f to (σ, π), such that
values f(a1), . . . , f(ack) are the same as the values of variables Xa1 , . . . , Xack from
the input.

Proof. This follows from Corollary 2.9 and the fact that modifications to G and the
instance of binary Constraint Satisfaction Problem corresponding to (σ, π) made by
Algorithm 4 do not change the number of solutions to it. �

Lemma 3.10. For any ε > 0 there exists nε such that if k > nε then tree decompo-
sition of a modified constraint graph in Algorithm 4 has treewidth at most k−2ck

3 +εk

and this tree decomposition can be constructed in O(W (k)) time.

Proof. Let X and Y be sets of the edges removed in Algorithm 4 that correspond
to X-axis and Y -axis constraints, respectively. Let Z be a set of nodes removed
in Algorithm 4. See Figure 3.1 as an illustration. Let G be the constraint graph



3.2. PERMUTATION PATTERN MATCHING PROBLEM 19

Algorithm 4

Input: σ, π, constant c ≤ 1
3 , integers a1, . . . , ack evenly distributed in the

interval [k] and values of variables Xa1 , . . . , Xack in the instance
of the Constraint Satisfaction Problem corresponding to (σ, π)

Output: the number of solutions f to (σ, π), such that values
f(a1), . . . , f(ack) are the same as the values of variables
Xa1 , . . . , Xack from the input

begin
Create a constraint graph G corresponding to (σ, π)

Remove all constraints that contain at least one of the variables
Xa1 , . . . , Xack from G

Remove all nodes corresponding to the variables Xa1 , . . . , Xack from G

Update domains of variables in G

. We call G a modified constraint graph
T, f ← tree decomposition of G stated in Proposition 3.7 and
Lemma 3.8

return value returned by Algorithm 3 called with parameter T and f

end

from Algorithm 4 before removal of the nodes and the edges, G′ be a graph G after
removing the edges from set X, G′′ be a graph G′ after removing the edges from set
Y and G′′′ be a graph G′′ after removing the nodes from set Z.

Let T ′ be a spanning tree of G′ that consists of the edges that correspond to
Y -axis constraints. Let T ′′ be a subgraph of G′′ obtained by removing the edges
from set Y from T ′. Let T ′′′ be a subgraph of G′′′ obtained by removing the nodes
from set Z from T ′′.

We observe that:

1) T ′ is a connected graph.
2) T ′′ consists of at most |Y |+ 1 connected components.
3) there are ck connected components in T ′′ that are single nodes corresponding to

variables Xa1 , . . . , Xack .
4) 2ck − 2 ≤ |X| ≤ 2ck, since c ≤ 1

3 and a1, . . . , ack are evenly distributed in the
interval [k].

From 1) we get that G′ is a connected graph. From 3) and 4) we get that T ′′′ consists
of at most |Y | + 1 − ck connected components, thus we can add at most |Y | − ck
edges to G′′′ to make it connected, since T ′′′ is a subgraph of G′′′ with the same set
of nodes.

Let H be a graph G′′′ with additional |Y |−ck+2+(|X|−2ck) edges, such that
H is connected. H has exactly k− ck nodes and 2k− 2− |X| − |Y |+(|Y | − ck+2+

(|X|−2ck)) = 2k−2−2ck− ck+2 = 2k−3ck edges. We can apply Proposition 3.7



20 CHAPTER 3. CONSTRAINT GRAPH METHOD

(3, 8)

(1, 9)

(9, 6)

(4, 1)

(2, 2)

(5, 3)

(6, 5)

(7, 7)

(8, 4)

Figure 3.1: Constraint graph edited by Algorithm 4 for π = (9, 2, 8, 1, 3, 5, 7, 4, 6)

and c = 1
3 , where description of each node is (i, π[i]). Black edges correspond to

removed X-axis constraints, pink edges correspond to removed Y -axis edges and
gray nodes correspond to removed nodes. Blue edges correspond to not removed
X-axis constraints and orange edges correspond to not removed Y -axis constraints.

and Lemma 3.8 to this graph, since 3
2(k − ck) ≤ 2k − 3ck ≤ 2(k − ck). We get that

for any ε > 0 there exists nε such that if k − ck > nε then the treewidth of H is
at most (2k−3ck)−(k−ck)

3 + ε(k − ck) = k−2ck
3 + ε(k − ck) ≤ k−2ck

3 + εk and a tree
decomposition of the corresponding width can be constructed in polynomial time.
Constraint k− ck > nε is implied by k > 2nε, since c ≤ 1

3 . From the fact that G′′′ is
a subgraph of H and they have the same set of nodes, we get the stated thesis. �

Lemma 3.11. Algorithm 5 computes the number of solutions to (σ, π).

Proof. This follows from Lemma 3.9 and the fact that for each solution to (σ, π)

there exists exactly one possible assignment of values to the variables Xa1 , . . . , Xack

that matches with this solution. �

Let m be an increasing function m : {a1, . . . , ack} → [n] read by Algo-
rithm 4. Let Di be a domain of Xi in the modified constraint graph from Algo-
rithm 4 constructed using m(ai) as a value of Xai for i ∈ [ck]. Let Domaini =⋃
j∈[ai−1+1,ai−1] Dj , where a0 = 0 and ack+1 = k + 1.

Lemma 3.12. Domaini ⊆ σ[[m(ai−1) + 1,m(ai)− 1]] for i ∈ [ck + 1].

Proof. Removed X-axis constraints imply that Dj ⊆ [m(ai−1) + 1,m(ai) − 1] for
j ∈ [ai−1 + 1, ai − 1]. From the definition of Domaini we get the stated thesis. �

Lemma 3.13. Domaini ∩Domainj = ∅ for i, j ∈ [ck + 1].



3.2. PERMUTATION PATTERN MATCHING PROBLEM 21

Algorithm 5

Input: σ, π, constant c ≤ 1
3

Output: the number of solutions to (σ, π)

begin
Set values of integers a1, . . . , ack evenly distributed in the interval [k]
G← the instance of binary Constraint Satisfaction Problem
corresponding to (σ, π)

result← 0

foreach m in increasing assignments of values to variables
Xa1 , . . . , Xack in G do

result← result + value returned by Algorithm 4 called with
parameters σ, π, c and m

end
return result

end

Proof. Without loss of generality we assume that i < j. From Lemma 3.12 we know
that Domaini ⊆ σ[[m(ai−1)+1,m(ai)−1]] and Domainj ⊆ σ[[m(aj−1)+1,m(aj)−
1]]. From the fact that m(ai)− 1 < m(aj−1) + 1 we get the stated thesis. �

Lemma 3.14.
∑i=ck+1

i=1 |Domaini| ≤ n

Proof. From Lemma 3.13 we know that the sum
⋃
i Domaini ⊆ [n] consists of

disjoint sets. This concludes the proof. �

Lemma 3.15. For any integer t and a sequence of pairwise distinct integers
z1, . . . , zt from set [k] \ {a1, . . . , ack} the following inequality holds

∏i=t
i=1 |Dzi | ≤(

n
ct

)t
.

Proof. Let d = 1
c = k−ck

ck + 1 > dk−ckck+1e. For each zi ∈ [k] \ {a1, . . . , ack} there exists
exactly one yi such that Dzi ⊆ Domainyi , additionally |Dzi | ≤ |Domainyi |. For
each i there are at most d values j ∈ [t] such that Dj ⊆ Domaini, thus

∑i=t
i=1 |Dzi | ≤

d ·
∑i=ck+1

i=1 |Domaini| ≤ dn. The last inequality follows from Lemma 3.14. As a
result

i=t∏
i=1

|Dzi | ≤
(∑i=t

i=1 |Dzi |
t

)t
≤
(dn
t

)t
=
( n
ct

)t
,

where the first inequality follows from AM-GM inequality. �

Lemma 3.16. Algorithm 4 works in time O
(
W (k) + k2 ·

(
n

c(t′+1)

)t′+1)
and uses

O
(
W (k) + k ·

(
n

c(t′+1)

)t′+1)
space, for any c ≤ 1

3 and ε > 0, where t′ = k−2ck
3 + εk.

Proof. From Lemma 3.10 we know that for any ε > 0 the tree decomposition of the
modified constraint graph in Algorithm 4 has treeewidth at most t′ = k−2ck

3 + εk or



22 CHAPTER 3. CONSTRAINT GRAPH METHOD

is less than a constant dependent only on ε. Lemma 3.15 applied for t′+1 combined

with Lemma 3.6 yield a bound O
((

n
c(t′+1)

)(t′+1)
· (b + (t′ + 1)e)

)
on the running

time and O
((

n
c(t′+1)

)(t′+1)
· (e+1)

)
on the space consumption of Algorithm 3 called

in Algorithm 4, where b is the number of constraints and e is the number of edges
in the tree decomposition in Algorithm 4. We observe that b ≤ 2k, t′ + 1 ≤ 2k and
e ≤ b− 1 ≤ 2k, where the last two inequalities follow from Lemma 3.8). Time and
space required to construct the tree decomposition of the modified constraint graph

in Algorithm 4 isO(W (k)), thus Algorithm 4 works in timeO
(
W (k)+

(
n

c(t′+1)

)(t′+1)
·

(2k + 2k · 2k)
)

and uses O
(
W (k) +

(
n

c(t′+1)

)(t′+1)
· (2k + 1)

)
space. �

Lemma 3.17. Algorithm 5 works in time O
((

n
ck

)
·
(
W (k) + k2 ·

(
n

c(t′+1)

)t′+1))
and uses O

(
W (k) + k ·

(
n

c(t′+1)

)t′+1)
space, for any c ≤ 1

3 and ε > 0, where

t′ = k−2ck
3 + εk.

Proof. There are at most
(
n
ck

)
possible increasing assignments of values to the vari-

ables Xa1 , . . . , Xack and we can iterate over all of them in time O(
(
n
ck

)
) and O(n)

space. For each increasing assignment Algorithm 5 calls Algorithm 4, thus from
Lemma 3.16 we get the stated bounds. �

Fact 3.18.
(
n
k

)
≤ ( e·nk )k

Theorem 3.19. For k = nb, such that 0 < b < 1, any c ≤ 1
3 and any ε > 0 Counting

Permutation Pattern Matching Problem can be solved in time O
(
nk(1−b)

(
1
3
+ c

3
+ε
))

and O
(
nk
(
1−b
)(

1−2c
3

+ε
))

space.

Proof. From Lemma 3.11 we know that Algorithm 5 computes the number of so-
lutions to (σ, π). From Lemma 3.17 we know that Algorithm 5 works in time

O
((

n
ck

)
·
(
W (k) + k2 ·

(
n

c(t′+1)

)t′+1))
and O

(
W (k) + k ·

(
n

c(t′+1)

)t′+1)
space, for

any c ≤ 1
3 and ε > 0, where t′ = k−2ck

3 + εk. We bound the time complexity using
observations:

O
(( n

ck

)
·
(
W (k) + k2 ·

( n

c(t′ + 1)

)t′+1))
=O

((en
ck

)ck
·
(
W (k) + k2 ·

( n

c(t′ + 1)

)t′+1))
follows from Fact 3.18

(1)
=O

((en
ck

)ck
· k2 ·

( n

c(t′ + 1)

)t′+1)
(2)
=O

((en
ck

)ck
· k2 ·

(n
c
· 3
k
· 1

1− 2c

)t′+1)
=O

(
f(c)k · k2 ·

(n
k

)t′+ck+1)
follows from t′ + 1 ≤ k



3.2. PERMUTATION PATTERN MATCHING PROBLEM 23

=O
(
f(c)k · n2b · n

(
1−b
)(

k+ck+3
3

+εk
))

follows from k = nb

(3)
=O

(
n

(
1−b
)(

k+ck
3

+εk
))
,

where f(c) is a function dependent on c. Explanations to some steps in the above
calculations:

(1) follows from O(W (k)) = O
(
k2 ·

(
n

c(t′+1)

)t′+1)
, which is true, since n

c(t′+1) > 1

and t′ + 1 ≥ k
9 .

(2) follows from inequality 1
t′+1 = 1

k−2ck+3
3

+εk
= 3

k ·
1

1−2c+ 3
k
+3ε
≤ 3

k ·
1

1−2c .

(3) follows from ε being any constant greater than zero and O(f(c)k · n2b+(1−b)) =

O(nkδ) for any δ > 0.

We bound the space consumption using observations:

O
(
W (k) + k2 ·

( n

c(t′ + 1)

)t′+1)
(1)
=O

(
k2 ·

( n

c(t′ + 1)

)t′+1)
(2)
=O

(
k2 ·

(n
c
· 3
k
· 1

1− 2c

)t′+1)
=O

(
g(c)k · k2 ·

(n
k

)t′+1)
follows from t′ + 1 ≤ k

=O
(
g(c)k · n2b · n

(
1−b
)(

k−2ck+3
3

+εk
))

follows from k = nb

(3)
=O

(
n

(
1−b
)(

k−2ck
3

+εk
))
,

where g(c) is a function dependent on c.

Explanations to some steps in the above calculations:

(1) follows from O(W (k)) = O
(
k2 ·

(
n

c(t′+1)

)t′+1)
, which is true, since n

c(t′+1) > 1

and t′ + 1 ≥ k
9 .

(2) follows from inequality 1
t′+1 = 1

k−2ck+3
3

+εk
= 3

k ·
1

1−2c+ 3
k
+3ε
≤ 3

k ·
1

1−2c .

(3) follows from ε being any constant greater than zero and O(g(c)k · n2b+(1−b)) =

O(nkδ) for any δ > 0.

This concludes the proof. �





Chapter 4

Segment decompositions

4.1 Special case

Let σ be a length-n permutation and π be a length-k permutation, such that k =

n − 1. We assume there exists at least one solution to (σ, π). Each solution f to
(σ, π) can be interpreted as a single number c ∈ [n] \ f([k]), since |[n] \ f([k])| = 1.
Let a be the smallest and b be the biggest number that corresponds to a solution to
(σ, π). See Figure 4.1 as an illustration.

1 5 4 1 2

1 6 5 4 2 3

1 2 3 4 5

1 2 3 4 5 6

Figure 4.1: Situation from Section 4.1 for permutations σ = (1, 6, 5, 4, 2, 3) and
π = (1, 5, 4, 1, 2). Black segments represent permutations σ and π. Blue arrows
represent a solution to (σ, π) that correspond to 2, orange to 3 and brown to 4.
Purple blocks represent a proper segment decomposition of (σ, π) such that each
solution to (σ, π) respects it. This follows from Lemma 4.2 and Lemma 4.3 and the
fact that a = 2 and b = 4.

Lemma 4.1. σ[[a, b]] and π[[a, b− 1]] are monotonic.

Proof. If b < a + 2 then the thesis is true, thus we assume that a + 2 ≤ b. Let
f be a solution to (σ, π) that corresponds to a and g be a solution to (σ, π) that
corresponds to b. For i ∈ [a, b − 1] we know that f(i) = i + 1 and g(i) = i. As a
result π[i] < π[i + 1] ⇔ σ[i + 1] < σ[i + 2] and π[i] < π[i + 1] ⇔ σ[i] < σ[i + 1] for

25



26 CHAPTER 4. SEGMENT DECOMPOSITIONS

i ∈ [a, b− 2], thus σ[i] < σ[i+ 1]⇔ σ[i+ 1] < σ[i+ 2] for i ∈ [a, b− 2]. �

Lemma 4.2. For any i ∈ [a−1] and any solution f to (σ, π) we know that f(i) = i.

Proof. If f(i) 6= i for any i ∈ [a − 1], then f(i) = i + 1, thus there exists j ≤ i < a

such that j /∈ f([k]). This contradicts with the definition of a. �

Lemma 4.3. For any i ∈ [b, k] and any solution f to (σ, π) we know that f(i) = i+1.

Proof. If f(i) 6= i + 1 for any i ∈ [b, k], then f(i) = i, thus there exists j /∈ f([k]),
such that b ≤ i < j. This contradicts with the definition of b. �

Lemma 4.4. Any function f such that f(i) = i for i ∈ [a − 1], f(i) = i + 1 for
i ∈ [b, k], f(i) ∈ [a, b] for i ∈ [a, b − 1] and f fulfills all Y -axis constraints is a
solution to (σ, π).

Proof. From Lemma 4.1 and the fact that f fulfills Y -axis constraints we know
that X-axis constraints concerning interval [a, b − 1] are fulfilled. All other X-axis
constraints are fulfilled as well, thus f is a solution to (σ, π). �

4.2 Greedy algorithm

Let σ be a length-n permutation and π be a length-k permutation. Let
[l1, r1], . . . , [lm, rm] and [l′1, r

′
1], . . . , [l

′
m, r

′
m] be a 1-proper segment decomposition of

(σ, π) with width at most 1. We call it A.

Definition 4.5. For i ∈ [k] and j ∈ [n] we define DPi,j as the number of func-
tions f : π−1[[i]] → [n], such that all Y -axis constraints concerning π−1[[i]] are
fulfilled, f(π−1[i]) = j and f respects A. We denote an array that consists of
DPi,1, . . . ,DPi,n by DPi.

Definition 4.6. For i ∈ [k] and j ∈ [n] we define Prefi,j =
∑m=j

m=1 DPi,m. We
denote an array that consists of Prefi,1, . . . ,Prefi,n by Prefi.

We are now ready to present Algorithm 6 that counts the number of solutions
to (σ, π), see the pseudocode below.

Lemma 4.7. B in Algorithm 6 is a 1-proper segment decomposition of (σ, π) with
width at most 1. Moreover, a solution to (σ, π) respects A if and only if it respects
B.

Proof. B is a 1-proper segment decomposition of (σ, π), since A is a 1-proper segment
decomposition and segments added to B do not intersect with each other. New
segments can not make the width of B bigger than 1, thus the width of B is at most
1. From Lemma 4.2 and Lemma 4.3 we get rest of the stated thesis. �



4.2. GREEDY ALGORITHM 27

Algorithm 6

Input: σ, π and A

Output: the number of solutions to (σ, π) that respect A

begin
for i ∈ [m] do

if there is no solution to (σ[[li, ri]], π[[l
′
i, r
′
i]]) then

return 0
end

end
B ← A

for i ∈ [m] do
if ri − li = r′i − l′i + 1 then

Compute constants a and b defined in Section 4.1 for σ[[li, ri]]
and π[[l′i, r

′
i]]

Substitute [li, ri] with [li, li + a− 1], [li + a, ri − b], [ri − b+ 1, ri]

in B

Substitute [l′i, r
′
i] with [l′i, l

′
i + a− 1], [l′i + a, r′i − b− 1], [r′i − b, r′i]

in B
end

end
for i ∈ [k] do

for j in possible values of π−1[i] do
DPi,j ← Prefi−1,j−1

end
Update Prefi using DPi

end
return Prefk,n

end

Lemma 4.8. Algorithm 6 computes the number of solutions to (σ, π) that respects
A.

Proof. Let f be one of the functions counted by Algorithm 6. We know that f
fulfills:

1) all Y -axis constraints.
2) all X-axis constraints concerning two elements from two different segments [l′i, r

′
i],

since overlap of two segments is at most one element and we know that each
element has to have different value, since Y -axis constraints are fulfilled.

3) all X-axis constraints in the i-th segment, where r′i = l′i, since there is exactly
one element in this segment.

4) all X-axis constraints in the i-th segment, where ri − li = r′i − l′i, since there is
exactly one assignment from [l′i, r

′
i] to [li, ri] that fulfills Y -axis constraints and



28 CHAPTER 4. SEGMENT DECOMPOSITIONS

there exists a solution to (σ[[li, ri]], π[[l
′
i, r
′
i]]).

5) all X-axis constraints in the i-th segment, where ri− li = r′i− l′i+1. This follows
from Lemma 4.4.

We obtained that each function f counted by Algorithm 6 fulfills all X-axis
constraints, thus is a solution to (σ, π). Clearly, each solution to (σ, π) which respects
A is counted by Algorithm 6, thus we obtain the stated thesis. �

Lemma 4.9. At most 2n entries in DP can take a nonzero value. Moreover, there
are at most 2n entries in Prefi,j, such that Prefi,j 6= Prefi,j−1.

Proof. For each i ∈ [m] there are at most 2(ri − li + 1) nonzero values in
DPl′i

, . . . ,DPr′i
, since

case r′i = l′i: DPl′i
can take at most ri − li + 1 nonzero values,

case r′i − l′i + 1 ≥ ri − li: for j ∈ [l′i, r
′
i] we know that DPj can take at most two

nonzero values.

As a result, the number of all nonzero values in DP is at most
∑i=m

i=1 2(ri− li+1) =

2n. The second part of the lemma follows from the first part. �

Lemma 4.10. Algorithm 6 works in time O(n2). Moreover, if l′i = r′i for i ∈ [m],
then Algorithm 6 works in time O(n).

Proof. If (ri − li + 1) − (r′i − l′i + 1) = 1, then splitting the i-th segment of A in
Algorithm 6 takes O((ri − li + 1)2) time, since for each position in segment [li, ri]

we need to check if it induces a proper solution to Permutation Pattern Matching
Problem. We conclude that splitting all segments takes in total O(

∑
i∈[m](ri − li +

1)2) = O(
∑

i∈[m](ri − li + 1) · n) = O(n2) time.

From Lemma 4.9, its proof and the fact that Algorithm 6 computes values
of DP and Pref in a monotonic way, we can compute value of Prefk,n in O(n)
time. �

Lemma 4.11. Algorithm 6 uses O(n) space.

Proof. Space used by Algorithm 6 is proportional to the sum of the sizes of arrays
DP and Pref. From Lemma 4.9 and its proof we know that Algorithm 6 can store
information about DP and Pref in O(n) space. This does not affect the time
complexity, since Algorithm 6 computes the values of DP and Pref in a monotonic
way. �

4.3 Complement method

Let σ be a length-n permutation and π be a length-k permutation. Each solution f
to (σ, π) can be interpreted as a set Af ⊆ [n] of size n−k, where a ∈ Af ⇔ a /∈ f([k]).



4.3. COMPLEMENT METHOD 29

Let m = bn−k2 c. We call a set Z sparse if there is no integer i such that i ∈ Z
and i+1 ∈ Z. Let C = {B ⊆ [2, n] : |B| = m∧B is sparse∧ (n /∈ B ∨ 2 | (n− k))}.
For each {b1, . . . , bm} = B ∈ C, we define SnB as a 1-proper segment decomposition
of [n] given by li = bi−1 + 1, ri = bi − 1 for i ∈ [m], where b0 = 0, additionally if
n /∈ B, then we define lm+1 = bm+1 and rm+1 = n. We denote length of SnB by dB,
which is equal to m+ 1 if n /∈ B and m otherwise.

Let z = (n − k) mod 2. For any B ∈ C we define a segment decomposition SkB
of [k] with length dB as l′1 = 1, r′i = l′i + (ri − li) − 1 for i ∈ [m] and l′i+1 = r′i + 1

for i ∈ [m − 1], additionally if dB = m + 1, then we define l′m+1 = r′m + 1 and
r′m+1 = l′m+1 + (rm+1 − lm+1)− z.

Lemma 4.12. For any B ∈ C, we know that SkB is a proper segment decomposition
of [k].

Proof. We see that r′i + 1 = l′i+1 for i ∈ [dB − 1] and l′1 = 1.

case dB = m+ 1:
∑i=m+1

i=1 r′i − l′i + 1 = (
∑i=m+1

i=1 ri − li) + 1 − z = n −m − (m +

1) + 1− z = n− 2bn−k2 c − z = k.
case dB = m:

∑i=m
i=1 r

′
i − l′i + 1 =

∑i=m
i=1 ri − li = n −m −m = k, since dB = m

implies that n ∈ B, thus 2 | (n− k), so 2m = n− k.

In both cases, we get that sum of lengths of all intervals in SkB is equal to k. �

For any B ∈ C we define SB as a 1-proper segment decomposition of (σ, π) that
consists of SnB and SkB.

Lemma 4.13. For any B ∈ C the width of SB is at most 1.

Proof. (ri− li+1)− (r′i− l′i+1) = (ri− li+1)− ((l′i+ (ri− li)− 1)− l′i+1) = 1 for
i ∈ [m] and (rm+1 − lm+1 + 1)− (r′m+1 − l′m+1 + 1) = (rm+1 − lm+1 + 1)− (l′m+1 +

(rm+1 − lm+1)− z − l′m+1 + 1) = z. �

Lemma 4.14. For each solution f to (σ, π) there exists exactly one B ∈ C such that
f respects SB.

Proof. Let f be a solution to (σ, π), {b1, . . . , bm} = B ∈ C and Af =

{a1, a2, . . . , an−k}. We know that f respects SB if and only if for each i ∈ [0,m+z−1]
there is exactly one value ci ∈ Af ∩ [bi + 1, bi+1 − 1], where b0 = 0 and if
z = 1, then bm+1 = n + 1. As a result f respects SB if and only if Af =

{b1, b2, . . . , bm} ∪ {c0, c1, . . . , cm+z−1} and bi < ci < bi+1 for i ∈ [0,m + z − 1],
so f respects SB if and only if B = {ai : 2 | i}. See Figure 4.2 as an illustration. �

Theorem 4.15. Counting Permutation Pattern Matching Problem can be solved in

time O(n2 ·
(dn+k

2
e

bn−k
2
c

)
) using O(n) space.



30 CHAPTER 4. SEGMENT DECOMPOSITIONS

7 2 6 8 4 3 5 1

1 4 2 3

1 2 3 4

1 2 4 5 6 7

Figure 4.2: Situation from Lemma 4.14 for permutations σ = (7, 2, 6, 8, 4, 3, 5, 1),
π = (1, 4, 2, 3), c0 = 1, c1 = 5, B = {3, 8} and a solution f to (σ, π), where f(1) = 2,
f(2) = 4, f(3) = 6 and f(4) = 7. Black segments represent σ and π, arrows
represent f . Orange values represents c0 and c1, blue values represents set B and
purple segments represent SB.

Algorithm 7

Input: σ, π

Output: the number of solutions to (σ, π)

begin
result← 0

foreach B ∈ C do
result← result + value returned by Algorithm 6 called with
parameters σ, π, SB

end
return result

end

Proof. From Lemma 4.14 we know that Algorithm 7 computes the number of solu-

tions to (σ, π). |C| ≤
(n−bn−k

2
c

bn−k
2
c

)
and we can iterate over all sets in C in amortized

time O(|C|) using O(n) space, thus from Lemma 4.10 we know that Algorithm 7

works in time O(n2 ·
(n−bn−k

2
c

bn−k
2
c

)
) = O(n2 ·

(dn+k
2
e

bn−k
2
c

)
). From Lemma 4.11 we know that

Algorithm 7 uses O(n) space. �

4.4 1-proper method

Let σ be a length-n permutation and π be a length-k permutation. Let A = {i :
(2 | i) ∧ (1 ≤ i ≤ k)}, B = {i : (2 | i) ∧ (1 ≤ i ≤ n)} and C be a set of all
increasing functions A→ B.

For each f ∈ C let Snf be a segment decomposition of [n] with length k defined
as l1 = 1, l2i = f(2i), r2i = min{n, f(2i)+1}, l2i+1 = r2i, r2i+1 = l2i+2, additionally
if 2 - k then rk = n. Let Skf be a proper segment decomposition of [k] defined as



4.4. 1-PROPER METHOD 31

l′i = r′i = i for i ∈ [k]. Let Sf be a segment decomposition of (σ, π) that consists of
Snf and Skf . Let D = {Sf : f ∈ C}.

Lemma 4.16. For each f ∈ C we know that Sf is a 1-proper segment decomposition
of (σ, π) with width at most 1.

Proof. The width of Sf is at most 1, since l′i = r′i. We see that ri ≤ li+1 for any
i ∈ [k − 1], thus Snf is a 1-proper segment decomposition of [n]. �

Lemma 4.17. For each solution h to (σ, π) there exists exactly one segment decom-
position D ∈ D such that h respects D.

Proof. For each solution h to (σ, π) we can construct f such that h respects Sf . We
set f(2i) to be a value, such that h(2i) is one of the elements in the 2i-th interval
in Snf . There is a unique way to do it and h respects Sf . Our construction is the
only one that is respected by h, thus we get the stated thesis. See Figure 4.3 as an
illustration. �

5 2 3 1 4

8 1 3 9 5 4 2 7 6

1 2

2 3

3 4 5 6 7 8 9

7 8

1 2 3 4 5

Figure 4.3: Situation from Lemma 4.17 for permutations σ = (8, 1, 3, 9, 5, 4, 2, 7, 6),
π = (5, 2, 3, 1, 4) and a solution h to (σ, π), where h(1) = 1, h(2) = 3, h(3) = 5,
h(4) = 7 and h(5) = 9. Arrows represent h, black segments represent σ and π. Red,
purple, green, gray and blue segments represent Sf .

Theorem 4.18. Counting Permutation Pattern Matching Problem can be solved in
time O(n ·

(bn
2
c

b k
2
c

)
) using O(n) space.

Proof. From Lemma 4.17 we know that Algorithm 8 computes the number of so-
lutions to (σ, π). Size of D is at most

(bn
2
c

b k
2
c

)
. We can iterate over all elements in

D in amortized time O(
(bn

2
c

b k
2
c

)
) and O(n) space. For each D ∈ D Algorithm 8 runs

Algorithm 6, so from Lemma 4.10 and Lemma 4.11 we get the stated thesis. �

Fact 4.19.
(
a
b

)
≤ 2a for any 0 ≤ b ≤ a.

Theorem 4.20. Counting Permutation Pattern Matching Problem can be solved in
time O(n · 2b

n
2
c) using O(n) space.



32 CHAPTER 4. SEGMENT DECOMPOSITIONS

Algorithm 8

Input: σ, π

Output: the number of solutions to (σ, π)

begin
result← 0

foreach D ∈ D do
result← result + value returned by Algorithm 6 called with
parameters σ, π,D

end
return result

end

Proof. From Theorem 4.18 we know that there exists an algorithm that works in
time O(n ·

(bn
2
c

b k
2
c

)
) and uses O(n) space. From Fact 4.19 we know that O(n2 ·

(bn
2
c

b k
2
c

)
) =

O(n · 2b
n
2
c), which concludes the proof. �

4.5 Lowerbound

For a fixed n and k let Dn,k be a set such that for each length-n permutation σ,
length-k permutation π and a solution f to (σ, π) there exists exactly one D ∈ Dn,k,
such that D is a 1-proper segment decomposition of (σ, π) with width at most 1 and
f respects D.

Lemma 4.21. For any D ∈ Dn,k there exists a 1-proper segment decomposition A

with width at most 1, such that for any length-n permutation σ, length-k permutation
π and any solution f to (σ, π) we know that f respects D if and only if f respects A
and segment decomposition of [k] in A consists of segments with length one.

Proof. For a pair [li, ri] and [l′i, r
′
i], such that ri − li = r′i − l′i we substitute it with

ri − li + 1 pairs of segments [j, j], [l′i − li + j, l′i − li + j] for j ∈ [li, ri]. For a pair
[li, ri] and [l′i, r

′
i], such that ri − li = r′i − l′i + 1 we substitute it with ri − li + 1

pairs of segments [j, j + 1], [l′i − li + j, l′i − li + j] for j ∈ [li, ri − 1]. We see that
our construction fulfills all the requirements, thus it is the stated 1-proper segment
decomposition. �

Corollary 4.22. We can assume that Dn,k consists only of segment decompositions
D, such that a segment decomposition of [k] in D consists of segments with length
one.

Let z = k mod 2 and m = 2 · bn−z2 c. Let C be a set of all increasing functions
f : [k− z]→ [m], such that f(2i− 1) = f(2i)− 1 and f(2i) is even for any i ∈ [k−z2 ].
For each f ∈ C we define a function gf : [k]→ [n] by gf (i) = f(i) for i ∈ [k− z] and
if z = 1, then gf (k) = n. Let B be a set of all increasing functions [k−z2 ]→ [m2 ].



4.5. LOWERBOUND 33

Observation 4.23. bk2c =
k−z
2 , m

2 ≥ b
n−1
2 c

Lemma 4.24. |C| ≥
(bn−1

2
c

b k
2
c

)
Proof. We know that k − z and m are even numbers, thus for each function h ∈ B
exists a function fh ∈ C, such that fh(2i − 1) = 2h(i) − 1 and fh(2i) = 2h(i).
Additionally, for any h, h′ ∈ B if fh = fh′ , then h = h′, thus |C| ≥ |B| =

( m
2

k−z
2

)
=( m

2

b k
2
c

)
≥
(bn−1

2
c

b k
2
c

)
, where last two transitions follow from Observation 4.23. �

Fact 4.25. For any function f : [k]→ [n], there exists length-n permutation σ and
length-k permutation π, such that f is a solution to (σ, π).

Lemma 4.26. |Dn,k| ≥
(bn−1

2
c

b k
2
c

)
Proof. From Fact 4.25 and property of Dn,k for any f ∈ C exists exactly one Df ∈
Dn,k, such that gf respects Df . Let [l1, r1], . . . , [lk, rk] be a segment decomposition
of [n] that Df consists of. Since g(2i−1) = f(2i−1) = f(2i)−1 = g(2i)−1 we know
that f(2i− 1) ≤ p2i−1 ≤ l2i ≤ f(2i) = f(2i− 1) + 1, thus p2i−1 ∈ {f(2i− 1), f(2i)}.
As a result, for any f, f ′ ∈ C if Df = Df ′ , then f = f ′, thus |Dn,k| ≥ |C| ≥

(bn−1
2
c

b k
2
c

)
,

where the last inequality follows from Lemma 4.24. �

Corollary 4.27. Family of 1-proper segment decompositions with width at most 1

presented in Section 4.4 has a size that is very close to the optimal.





Bibliography

[1] Shlomo Ahal and Yuri Rabinovich. On complexity of the subpattern problem.
SIAM J. Discret. Math., 22(2):629–649, 2008.

[2] Michael H. Albert, Robert E. L. Aldred, Mike D. Atkinson, and Derek A.
Holton. Algorithms for pattern involvement in permutations. In Peter Eades
and Tadao Takaoka, editors, Algorithms and Computation, pages 355–367,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[3] Benjamin Aram Berendsohn, László Kozma, and Dániel Marx. Finding and
Counting Permutations via CSPs. In Bart M. P. Jansen and Jan Arne Telle, ed-
itors, 14th International Symposium on Parameterized and Exact Computation
(IPEC 2019), volume 148 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 1:1–1:16, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[4] Prosenjit Bose, Jonathan F. Buss, and Anna Lubiw. Pattern matching for
permutations. In Frank K. H. A. Dehne, Jörg-Rüdiger Sack, Nicola Santoro,
and Sue Whitesides, editors, Algorithms and Data Structures, Third Workshop,
WADS ’93, Montréal, Canada, August 11-13, 1993, Proceedings, volume 709
of Lecture Notes in Computer Science, pages 200–209. Springer, 1993.

[5] Marie-Louise Bruner and Martin Lackner. A fast algorithm for permutation
pattern matching based on alternating runs. In Fedor V. Fomin and Petteri
Kaski, editors, Algorithm Theory – SWAT 2012, pages 261–270, Berlin, Heidel-
berg, 2012. Springer Berlin Heidelberg.

[6] Bartłomiej Dudek and Paweł Gawrychowski. Counting 4-Patterns in Permuta-
tions Is Equivalent to Counting 4-Cycles in Graphs. In Yixin Cao, Siu-Wing
Cheng, and Minming Li, editors, 31st International Symposium on Algorithms
and Computation (ISAAC 2020), volume 181 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 23:1–23:18, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[7] Fedor V. Fomin, Serge Gaspers, Saket Saurabh, and Alexey A. Stepanov. On
two techniques of combining branching and treewidth. Algorithmica, 54(2):181–
207, 2009.

35



36 BIBLIOGRAPHY

[8] Jacob Fox. Stanley-wilf limits are typically exponential. CoRR, abs/1310.8378,
2013.

[9] Sylvain Guillemot and Dániel Marx. Finding small patterns in permutations in
linear time. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014, pages 82–101. SIAM, 2014.

[10] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J.
Comput. Syst. Sci., 62(2):367–375, 2001.

[11] Adam Marcus and Gábor Tardos. Excluded permutation matrices and the
stanley-wilf conjecture. J. Comb. Theory, Ser. A, 107(1):153–160, 2004.


	Introduction
	Preliminaries
	Constraint graph method
	Binary Constraint Satisfaction Problem
	Permutation Pattern Matching Problem

	Segment decompositions
	Special case
	Greedy algorithm
	Complement method
	1-proper method
	Lowerbound

	Bibliography

