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Abstract

Product demand forecasting is crucial for logistics and production to have the
right item in the right place at the right time. This affects the performance of
the entire supply chain. The problem of predicting future consumption becomes
especially challenging for intermittent demand, where demand occurrences appear
sporadically in time. This pattern is often experienced in slow-moving, high-value
items, which happens in e-commerce, manufacturing, and automotive industries.
However, many of the forecasting methods may perform poorly for this kind of item
demand. Moreover, the typical methods for this problem do not have underlying
statistical models, so they do not provide access to estimates of forecast uncertainty.
It is essential in an intermittent demand context where inventory control is inherently
difficult and meaningful.

This thesis proposes an approach to probabilistic time series forecasting that
combines state-space models with deep learning. The usage of the state-space model
provides interpretability and statistical assumptions. Simultaneously, the deep learn-
ing approach offers the ability to learn complex patterns from multiple time series
using additional input like weather or calendar events. This is ensured by the sepa-
rate parameterization of the state space model per time series via a recursive neural
network.

I then conducted experiments on simulated data and two real data sets with in-
termittent time series. Also, I tested the performance of the model on data consisting
of three other demand types. In all cases, I compared results with the best baseline
models, using a variety of relevant metrics. Finally, it presented the advantages of
the proposed approach.



Streszczenie

Prognozowanie popytu ma kluczowe znaczenie dla logistyki i produkcji, aby
mieć właściwy towar we właściwym miejscu i czasie. Wpływa to na wydajność całego
łańcucha dostaw. Problem przewidywania przyszłej konsumpcji staje się szczególnie
trudny w przypadku popytu przerywanego, gdzie zapotrzebowanie pojawia się spora-
dycznie w czasie. Taki wzorzec jest często spotykany w przypadku wolno rotujących
artykułów o wysokiej wartości, co ma miejsce w handlu elektronicznym, przemy-
śle wytwórczym i motoryzacyjnym.Jednakże, wiele metod prognozowania może nie
sprawdzać się w przypadku tego rodzaju popytu. Co więcej, typowe metody dla
tego problemu nie posiadają bazowych modeli statystycznych, więc nie zapewniają
dostępu do szacunków niepewności prognozy. Jest to niezwykle istotne w kontekście
popytu przerywanego, gdzie kontrola zapasów jest z natury trudna i znacząca.

W niniejszej pracy zaproponowano podejście do probabilistycznego prognozowa-
nia szeregów czasowych, które łączy modele przestrzeni stanów z głębokim uczeniem.
Wykorzystanie modelu przestrzeni stanów zapewnia interpretowalność i przyjęcie
założeń statystycznych. Jednocześnie, podejście głębokiego uczenia oferuje zdolność
do uczenia się złożonych wzorców z wielu szeregów czasowych przy użyciu dodatko-
wych danych wejściowych, takich jak pogoda lub wydarzenia kalendarzowe. Jest to
zapewnione przez oddzielną parametryzację modelu przestrzeni stanów dla każdego
szeregu czasowego przy pomocy rekurencyjnej sieci neuronowej.

Następnie przeprowadziłem eksperymenty na danych symulowanych i dwóch
rzeczywistych zestawach danych z przerywanymi szeregami czasowymi. Ponadto,
przetestowałem działanie modelu na danych składających się z trzech innych typów
zapotrzebowania. We wszystkich przypadkach, porównałem wyniki z najlepszymi
modelami bazowymi, używając różnych i odpowiednich metryk. W końcu, przedsta-
wiłem zalety proponowanego podejścia.
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Chapter 1

Introduction

”Prediction is very difficult, especially if it’s about the future”

- Nils Bohr, Nobel laureate in Physics

Accurate forecasting of time series is one of the most critical factors in many
industrial and business decision-making processes. The final effectiveness of each
decision depends on the subsequent events following the operation. An important
example of such a task is demand forecasting, a fundamental aspect of supply chain
management. It is essential that the right product is available in the right place
at the right time, taking into account the optimization of logistics and production
costs.

A large proportion of inventory catalogs in e-commerce, manufacturing, and
logistics are plagued by ”intermittency”, where positive demand occurs at irregular
frequency. In general, this pattern concerns rare events and the occurrence of de-
mand for slow-moving, high-values items. In the case of intermittent demand, which
refers to the sporadic occurrence, it contains only zeroes and positive, usually low in-
teger values. For example, intermittent demand can be identified in products, such
as heavy machinery and respective spare parts, aircraft service parts, electronics,
and marine spare parts.

Figure 1.1: Comparing of non-intermittent time series (above) with intermittent
time series (below).

11



12 CHAPTER 1. INTRODUCTION

State-space models (SSMs), as a statistical model and by using a time se-
ries structure, provide a principled framework for modeling and learning patterns.
Therefore, SSMs are particularly well suited for applications where the time series
structure is well understood, as it allows these assumptions to be incorporated into
the model. By defining such components, it is possible to interpret the model, and
the learning procedure becomes data-efficient but requires a sufficiently long his-
tory. However, SSMs are not sufficient for much diverse time series and cannot infer
a pattern from a group of series with a similar structure. It makes them challenging
to forecast time-series with little or no history using SSMs.

Deep Learning, specifically Deep Neural Networks (DNN), has shown excellent
performance in many different fields. They can identify higher-order features, and
recurrent neural networks (RNNs) can identify complex patterns within and be-
tween time series. They can do so based on a set of raw time series with limited
additional human input. However, as these models have fewer structural assump-
tions, they require more data. Besides, these models are difficult to interpret and
control assumptions.

1.1 Problem motivation

Modern forecasting applications require the ability to process huge collections
consisting of even thousands of time series. This can now be seen very well in e-
commerce, where a supply chain is required for a vast number of varied products.
Such products often have just intermittent demand dynamics, or they become so
when demand for them ends. Besides, in e-commerce, where new products are
continually appearing and there is no sales history, it is necessary to extract this
knowledge from the group of products with a similar demand pattern. An additional
need is to include external information in preparing forecasts such as weather or
other special calendar events.

Furthermore, from a practical point of view of the supply chain, decisions on
supplements should be based on reliable estimates. Reasonable estimates of the
probability of demand are required for systems based on filling rates (percentage
of immediate demand from stocks). However, for stockholding systems based on
the probability of depletion, good estimates of the upper percentiles of demand are
required.

1.2 Related work

Large parts of inventory catalogs in e-commerce, manufacturing, and logistics
are plagued by ”intermittency”. The standard approach to intermittent demand
forecast, and the first paper to address it, is the method of Croston [3]. This method
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has then been studied for a very long time, and many other models based on it
have been developed. In [33], the authors proposed an adjustment, known as the
Syntetos-Boylan Approximation (SBA), to Croston’s forecast. In contrast, Teunter
et al. [35] suggested a different way to model the probability of demand occurrence
than in Croston’s approach. Snyder et al. [28] used the Poisson distribution rather
than the Bernoulli to model the occurrence of demand. The problem of forecasting
intermittent demand was further developed by Petropoulos and Kourentzes [21],
Pour et al. [22], Teunter and Duncan [34], and Willemain et al. [39].

Hyndman et al. [11], Durbin and Koopman [5], and Murphy [18] presented a
comprehensive review of the SSMs. The most recent literature work on machine
learning in the field of state-space models includes Seeger et al. [27]. Svetunkov and
Boylan [31] have proposed multiplicative state spaces for intermittent time series
needs, which have achieved satisfactory results.

In time series forecasting, neural networks have been investigated for a long
time, particularly recent work considering LSTM cells’ use. In the case of inter-
mittent data, Kourentzes [15] applied neural networks but obtained mixed results.
Moreover, Turkmen et al. [36] used recurrent neural networks in the context of Cros-
ton’s model. Usually, in forecasting, neural networks are applied to each time series
separately. On the other hand, apart from the forecasting community, time series
models using recurrent neural networks are successfully applied in other areas such
as sound modeling, natural language processing, and image generation.

Merging state-space models (SSM) with the RNN has already been proposed
before by Rangapuram et al. [24] and Salinas et al. [25]. In the first case, the
RNN parameterizes the transitions between the Gaussian states. The second one
is the recent probabilistic forecasting method, based on autoregressive recurrent
networks. However, none of these methods were for intermittent demand, which
requires different treatment due to its unique pattern.

1.3 The goal

Accurate forecasting of intermittent time series is essential for making optimal
decisions in the logistics and production industry. Therefore, it is a significant but
also tricky problem, which has already been studied for decades.

Recent approaches combining traditional methods of mathematical modeling
with modern deep neural networks have shown excellent efficiency. This results
from the use of the advantages of both of these tools, that is to say, the already
extensive knowledge and transparency of the long examined classical methods with
a tool capable of detecting very intricate patterns.

Therefore, this project aims to prepare a model that combines state-space mod-
els with deep recurrent neural networks to solve the intermittent time series fore-
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casting.

1.4 Report structure

This report is structured in the following way:

1. Introduction: Introduction to and motivation of the problem, previous re-
lated and useful work, and the project’s goal.

2. Background: The general theory of the different fields, methods, and mod-
els used in the project, including time-series basics, the general state-space
approach to forecasting, and neural networks.

3. Methods: Details about the proposed approach with a description of the
training and inference procedure and forecasting methods.

4. Experiments: Presentation of results from the performed experiments and
comparison of models.

5. Conclusions: The conclusions that can be drawn from the results are listed.



Chapter 2

Background

2.1 Time Series

Predicting the future has fascinated humanity for centuries and is a critical
element in planning and decision-making. It is used in such everyday things as
tomorrow’s weather, up to stock prices for a few months in advance. Thus, it is
already an indispensable part of everyday life, and correct forecasts have an ex-
tremely positive impact on the community’s functioning and optimization of many
processes. On the other hand, incorrect predictions can have very negative conse-
quences. Moreover, since this problem concerns the future, which can take shape in
a completely unpredictable way, it is not easy to verify.

Therefore, people have tried different approaches to know the future. In ancient
Babylon, the analysis of animal guts has been done, and in ancient Greece, questions
have been asked to the Delphic oracle. However, it turned out that misguided
predictions could be so damaging that they were banned in Byzantium. They were
also severely punished in the 18th century in the United Kingdom as the cause of
many deceptions. However, this thesis will focus on civilizations’ recent achievements
in this area, using mathematical modeling, which seems to be more effective than
centuries ago.

Before going any further, it is essential to introduce standard terminology used
in a time series context.

Definition 2.1. A time series is a series of data points indexed (or listed or graphed)
in time order. Most commonly, a time series is a sequence taken at successive equally
spaced points in time. Thus it is a sequence of discrete-time data.

Analysis and prediction of time series are significant issues in statistics and
machine learning. Nevertheless, they are often overlooked and taken for granted.
However, they deserve a great deal of attention because their use is ubiquitous,
and they can help predict sales, economists, budget analysis, and the stock market,

15



16 CHAPTER 2. BACKGROUND

as an example. Moreover, even though their use is almost inextricably linked to
industry and social science, time series analysis and prediction are among the least
understood machine learning methods by data engineers.

2.1.1 Time Series Forecasting

Forecasting involves preparing models based on historical data and using them
to predict future observations. An essential difficulty in forecasting is that the
future is entirely inaccessible and must be estimated only based on what has already
happened. Therefore, time series forecasting is a difficult problem. In some respects,
it is a more difficult problem than typical classification or regression. It requires
taking into account the relationship between observations through time. Besides,
there may be a seasonal trend, which makes the data variability depend on time.

The fact that predicting the future is a difficult task is perfectly illustrated by
examples from the past when experts in their fields have made mistakes in their
future assumptions. Consider the following examples of time-verified failed predic-
tions:

• ”I think there is a world market for maybe five computers.”, Thomas Watson,
president of IBM, 1943.

• ”I predict the Internet will soon go spectacularly supernova and in 1996 catas-
trophically collapse.”, Robert Metcalfe, founder of 3Com, 1995.

• ”There is no reason anyone would want a computer in their home.”, Ken Olsen,
co-founder of DEC, 1997.

• ”There’s no chance that the iPhone is going to get any significant market
share.”, Steve Ballmer, Microsoft CEO, 2007.

So, as can be seen, even people with close links to the industries concerned can make
a catastrophic mistake that costs them much.

Here are some examples of how time forecast is used in the industry:

• Energy: in the energy sector, it is necessary to plan the electricity demand
due to the difficulties in storing it.

• Retail: forecasting demand for specific products and planning logistics opera-
tions in this connection.

• State government: predicting tax receipts.

• Transport: planning future travel needs and managing the flow of goods.
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Its effectiveness determines the ability of a time series forecasting model in
predicting the future. This is often at the expense of explaining why a particular
forecast was made, the confidence intervals, and even a better understanding of the
underlying causes.

A forecasting problem that requires predicting the next step in time is called
single-step forecasting. In contrast, a problem that requires forecasting more than
a one-time step is called multi-step forecasting. As the length of the prediction
interval increases, the problem is more and more difficult because each step carries
more estimation uncertainty.

2.1.2 Probabilistic forecasting

Probabilistic prediction estimates the probability distribution of future time
series values based on the past instead of predicting a single number. Furthermore,
while such predictions contain much more information, they are also more difficult
to obtain accurately. Therefore, a simplified version of the problem is sometimes
considered to forecast the quantiles of distribution, which is sufficient to solve the
problem.

2.1.3 Demand forecasting

Demand forecasting is a forecasting analysis field that seeks to understand and
predict customer demand to optimize purchasing decisions by corporate supply chain
and business management. Demand forecasting includes data-driven methods, espe-
cially historical sales data and statistical techniques. Understanding and forecasting
customer demand for products is essential for manufacturers and distributors to
plan their logistics adequately, thereby avoiding inventory build-up and maintaining
adequate product quantities. Although forecasts are never perfect, they are essen-
tial to prepare for actual demand. To this end, maintaining optimal inventories and
planning an efficient supply chain requires accurate demand forecasts.

This thesis focuses mainly on the problem of demand forecasting. This means
considering a time series in which the values are non-negative and integer. This type
of time series is also called count data time series.

2.1.4 The categorization of demand patterns

When it comes to predicting demand, time series can be categorized in a certain
way. It turns out that some time series are more comfortable to forecast, and others
are impossible. This can be seen in the Figure 1.1. Therefore, the accuracy of a
given product’s forecasting method depends on the characteristics of the product’s
historical demand. For this reason, demand time series are sometimes divided into
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several discrete categories in order to assign the best forecasting method.

Williams [40] initially conceived the idea of categorizing demand patterns. He
tested products’ classification by type of demand, stock control policies for different
product categories, and demand forecasting methods for different product categories.
Similar ideas for categorizing demand patterns for forecasting and stock control
purposes are considered in Eaves and Kingsman [6]. However, Syntetos et al. [32]
proposed a more formal way of categorizing time series. For this classification, to
determine a product forecastability, we apply two coefficients:

• the Average Demand Interval (ADI): it measures the demand regularity
in time by computing the average interval between two demands.

• the square of the Coefficient of Variation (CV 2): it measures the vari-
ation in quantities.

Based on these properties, they classified the demand profiles into 4 different
categories:

1. Smooth demand (ADI < 1.32 and CV 2 < 0.49): the demand is very regular
in time and quantity.

2. Intermittent demand (ADI ≥ 1.32 and CV 2 < 0.49): the demand history
shows a tiny variation in demand quantity but a high variation in the interval
between two demands.

3. Erratic demand (ADI < 1.32 and CV 2 ≥ 0.49): the demand has regular
occurrences in time with high quantity variations.

4. Lumpy demand (ADI ≥ 1.32 and CV 2 ≥ 0.49): the demand is characterized
by a large variation in quantity and in time. It is actually impossible to produce
a reliable forecast, no matter which forecasting tools you use. This particular
type of demand pattern is unforecastable.

Example series from each category are presented in Figure 2.1.

2.1.5 Traditional Methods for Time Series Forecasting

In this section, I present one of the classical and simplest time series forecasting
methods for the needs of later considerations.

2.1.5.1 Simple exponential smoothing

Exponential smoothing was introduced in the late 1950s and is the basis of
some of the most successful forecasting methods. Forecasts produced using this ap-
proach are weighted averages of previous observations, with the weights decreasing
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Figure 2.1: The categorization of demand patterns.

exponentially as the age of the observations. This means that the more recent obser-
vation, the greater the associated weight, and older observations have less influence
on the outcome. This framework generates reliable forecasts quickly and for a wide
range of time series, which is advantageous and essential for industrial applications.
These methods are well described by Hyndman and Athanasopoulos [12].

The simplest of the exponential smoothing methods, which assumes the lack
of trend and seasonality in the data, is called simple exponential smoothing (SES).
The following system of equations describes it:

ŷt+h|t = lt (2.1)

lt = αyt + (1− α)lt−1 (2.2)

where lt is the level at time t and α ∈ [0, 1] is the smoothing parameter. The smaller
α is, the more past observations have a more significant influence on the forecast.

An extension of this approach that additionally takes trend into account is
Holt’s method, and another extension that takes seasonality into account is the
Holt-Winters’ method.

2.1.6 Methods for Intermittent Demand Forecasting

The many zero values present in the intermittent time-series make typical fore-
casting methods challenging to apply. For example, simple exponential smoothing
(SES, 2.1.5.1) performs poorly in forecasting intermittent timeseries. Croston was
the first to note that when demand is intermittent, there is an upward bias in the
SES’s forecast in the period directly after a non-zero demand.

In the remainder of this section, some methods for forecasting intermittent time
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series are presented in more detail.

2.1.6.1 Croston’s method

Croston [3] proposed the most popular method for forecasting intermittent de-
mand. His method has been widely studied in recent years and is widely used in the
industry. He proposed to divide the observed data into two parts: demand volume
and demand incidence. The proposed Croston model has the following form:

yt = otzt (2.3)

where yt is the actual observation, ot is a binary value from the Bernoulli distribu-
tion, indicating the demand occurrence. Also, zt is the quantity of demand, with
a conditional distribution. Each of these two parts is modelled separately. Croston
proposed to estimate the occurrence using intervals between demand. For this pur-
pose, he introduced the qt variable, which represents the demand interval between
consecutive non-zero demands. Both demand sizes zt, and demand intervals qt are
forecasted separately using simple exponential smoothing (2.1.5.1). This leads to
the following system of equations:

ŷjt =
1

q̂jt
ẑjt (2.4)

ẑjt = αzzjt−1 + (1− αz) ẑjt−1 (2.5)

q̂jt = αqqjt−1 + (1− αq) q̂jt−1 (2.6)

ŷt = ŷjt (2.7)

jt = jt−1 + ot (2.8)

where ŷjt is the predicted mean demand, ẑjt is the predicted demand size, q̂jt is the
predicted demand interval, αq and αz are smoothing parameters for intervals and
sizes.

Syntetos and Boylan [33] proved that the original method is biased. To overcome
this problem, they proposed a modified version that gives a more accurate forecasts
(known as Syntetos-Boylan approximation, SBA):

ŷt =
(

1− αq
2

) 1

q̂t
ẑt (2.9)

2.1.6.2 TSB method

A method incorporating the possibility of item obsolescence was proposed by
Teunter et al. [35]. The authors proposed to apply the same principle as Croston,
but to estimate the time-varying probability of demand occurrence pt using simple
exponential smoothing rather than modeling the intervals between demands. The
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Teunter, Syntetos, and Babai (TSB) method can be presented using the following
set of equations:

ŷt = p̂tẑt (2.10)

ẑjt = αzzjt−1 + (1− αz) ẑjt−1 (2.11)

p̂t = αpot−1 + (1− αp) p̂t−1 (2.12)

ẑt = ẑjt (2.13)

However, this approach as well as this proposed by Croston, doesn’t have statistical
model. Nevertheless, this method’s advantage is that the conditional expectation
does not need any corrections similar to Syntetos and Boylan [33].

2.1.6.3 iETS model

Svetunkov and Boylan [31] proposed a different approach to intermittent series
forecasting. In their paper, they presented a statistical model that derives from
state-space models and takes into account the intermittency of data. Furthermore,
it uses the same principle as Croston in its assumptions about dividing observations
into two components. The following system of equations can present the basis of
their method iETS:

yt = otlz,t−1 (1 + εt) (2.14)

lz,t = lz,t−1 (1 + αz,tεt) (2.15)

(1 + εt) ∼ logN
(
µε, σ

2
ε,t

)
(2.16)

Furthermore, they propose few different approaches to modeling the distribution of
the variable ot, i.e., the probability of demand occurrence. They also presented a
framework to select the best version automatically. This model allows for a sys-
tematic approach to method selection, rigorous parameterization, and estimation of
upper percentiles of demand.

2.1.7 Traditional Accuracy Metrics

The effectiveness of any forecasting method must be evaluated using some indi-
cator to measure how closely the forecasted value matches the actual one. Depending
on the measure chosen, forecasts can produce quite different results, making it very
difficult to assess correctly. Intermittent or lumpy demand series is challenging be-
cause typical forecasting accuracy indicators are often inadequate or impossible to
use. Furthermore, since sets of time series are considered in this thesis, they require
metrics that allow meaningful aggregation of multiple values. Therefore, additional
scale-independent variants of them will be introduced when defining metrics.

The following sections contain examples of traditional forecasting accuracy met-
rics, where T is the number of in-sample observations, H is the total length of the
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prediction range, yT+h is the actual value of the hth out-of-sample period and ŷh is
the h-steps-ahead forecast.

2.1.7.1 Mean Signed Error

The Mean Signed Error (ME) of the forecasts is measured to determine if an
examined approach is consistently positively or negatively biased.

ME =
1

H

H∑
t=1

(yT+t − ŷt) (2.17)

To average across all series, we scale the out-of-sample mean error of each series
using the mean value of all in-sample periods. Thus, the scaled Mean Signed Error
(sME) is given by:

sME =
ME

1
T

∑T
t=1 yt

(2.18)

2.1.7.2 Mean Squared Error

The Mean Squared Error (MSE) measure the performance in terms of variance.

MSE =
1

H

H∑
t=1

(yT+t − ŷt)2 (2.19)

In order to make the measure scale independent, it is scaled by the squared average
of the actual demands. So, the scaled Mean Squared Error (sMSE) is given by:

sMSE =
1

H

H∑
t=1

(
yT+h − ŷh
1
T

∑T
t=1 yt

)2

=
MSE(

1
T

∑T
t=1 yt

)2 (2.20)

2.1.7.3 Mean Absolute Percentage Error

The Mean Absolute Percentage Error (MAPE) is a measure of prediction ac-
curacy of a forecasting method. It usually expresses the accuracy as a ratio defined
by the formula:

MAPE =
1

H

H∑
t=1

∣∣∣∣yT+t − ŷt
yT+t

∣∣∣∣ (2.21)

Percentage errors have the advantage of being independent of scale but have the
disadvantage of being infinite or undefined if there are zero values in the series.
Furthermore, percentage errors can have an extremely skewed distribution when the
actual values are close to zero.
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Moreover, MAPE imposes a larger penalty on positive errors than on nega-
tive errors. The symmetric Mean Absolute Percentage Error (sMAPE) is therefore
considered:

SMAPE =
1

H

H∑
t=1

|ŷt − yT+t|
(|yT+t|+ |ŷt|) /2

(2.22)

However, if the actual value is zero, the prediction will likely be close to zero, so the
measurement will still require dividing by a number close to zero. Also, it is not
entirely symmetric since over- and under-forecasts are not treated equally.

2.1.7.4 The unsuitability of Traditional Accuracy Metrics

For intermittent or lumpy demand patterns where there are a large number
of zero demand cases, the most popular metrics, such as MAPE and MSE, are
not suitable for assessing forecasting errors [34, 38]. They do not sufficiently con-
sider, for example, dividing by zero or temporal shifts (prediction before or after
actual demand), as shown in the Figure 2.2. The bias measure ME can break down
in certain circumstances, while the mean square error and, most importantly, the
mean absolute error focus on periods with zero demand, favoring distorted forecasts.
Consequently, most existing metrics only work with smooth and linear patterns but
become less accurate or even useless as the frequency of intermittent patterns in-
creases.

Figure 2.2: Example of a time series in which the forecasted values are shifted by
one in time, relative to the true values. Which, for metrics such as RMSE, will lead
to large errors. However, from an inventory supply perspective, such forecasts could
be acceptable to manage inventory over the long term.

2.1.8 New and Recommended Accuracy Metrics

Because of the problems with traditional metrics described in the subsubsec-
tion 2.1.7.4, other special metrics have been prepared for intermittent time series.
Some of them are directly linked to inventory control.
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2.1.8.1 Mean Absolute Scaled Error

The Mean Absolute Scaled Error(MASE) was proposed by Hyndman and Koehler
[10] as a generally applicable measure of forecast accuracy. They proposed scaling
errors based on the in-sample MAE from the näıve forecasting method. Using the
näıve method, we generate one-period-ahead forecasts from each data point in the
sample. The formula is as follows:

MASE =
1

H

H∑
t=1

|yT+t − ŷt|
1

T−1

∑T
i=2 |yi − yi−1|

(2.23)

MASE is scale-independent, relative (so forecast error measures for different prod-
ucts might be compared), and could be computed for almost all intermittent demand
series. If MASE > 1, then a given forecasting method is worse than the average näıve
method. Otherwise (MASE < 1), the analyzed forecasting method is better than
the näıve method. However, it was shown that MASE is equivalent to the weighted
arithmetic mean of MAEs [4], so it induces a bias towards overrating benchmark
and is affected by extreme cases when the MAE of benchmark forecast is relatively
low. MASE is also vulnerable to outliers or structural breaks in time series history
[13].

2.1.8.2 Cumulative Forecast Error

Cumulative Forecast Error (CFE) is the cumulative error over the entire pre-
diction horizon, with negative and positive errors canceling each other out. This has
direct implications to over or under stocking in a supply chain. A zero CFE can also
happen due to ”luck”, and we can omit many details in between, so two additional
versions are also being considered. CFEmax is equal to the greatest shortage during
the forecast, and CFEmin is equal to the greatest surplus.

CFEt =

t∑
i=1

(yT+i − ŷi) = yT+t − ŷt + CFEt−1 (2.24)

CFEmin = min
tε[1,2,...H]

CFEt (2.25)

CFEmax = max
tε[1,2,...H]

CFEt (2.26)

2.1.8.3 Number of Shortages

Number of Shortages (NOS) measure, more commonly represented as Percent-
age of Number of Shortages (NOSp), counts the number of instances where the
cumulative forecast error (CFE) was greater than zero, resulting in a shortage. Few
or none NOS may indicate the method creates a fictive surplus stock because de-
mand is overestimated. The reverse situation where almost every demand results in
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a backorder is also a sign of bias.

If Xt 6= 0 and CFEt > 0 then NOS← NOS + 1, t = 1, 2, . . . ,H (2.27)

NOSp =
NOS
H

100 (2.28)

2.1.8.4 Periods in Stock

NOS does not identify systematic errors because it does not consider the tem-
poral dimension of stock carryover. Periods in Stock (PIS) goes a step further and
measures the total number of periods the forecast items have spent in stock or the
number of out-of-stock periods.

To understand how PIS works, suppose we forecast one unit per day over a
three-day horizon. At the start of the first period, one item goes into a fictitious
stock (this is a simplification compared to reality). If there was no demand during
the first day, the result is plus one PIS. When there is demand, the demand is
subtracted from the forecast. A demand of one in period 1 results in zero PIS in
period 1. If the demand is zero in all three periods, the PIS in period 3 is plus six.
The item from day one was in stock for three days, the item from day two was in
stock for two days, and the last item was in stock for one day.

A positive number indicates that the forecasting method tends to overestimate
demand. A negative number is a sign that demand is underestimated.

PISt = PISt−1 +
t∑
i=1

(ŷt − yT+t) =
t∑
i=1

(ŷi − yT+i) (t+ 1− i) (2.29)

PISt = PISt−1 − CFEt = −
t∑
i=1

CFEi (2.30)

PIS = PISH = −
H∑
t=1

CFEt (2.31)

In order to make the measure scale independent, it is scaled by 1
T

∑T
t=1 yt. So,

the scaled Periods in Stock (sPIS) is given by:

sPIS =
PIS

1
T

∑T
t=1 yt

(2.32)

The sPIS acts complementarily to the sCE by providing evidence of systematic
behavior with respect to the direction of the forecast error. The absolute value
of sPIS is also considered as a measure of the magnitude of the bias. The scaled
Absolute Periods in Stock (sAPIS) for series i are calculated by:

sAPIS =
|PIS|

1
T

∑T
t=1 yt

(2.33)
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2.1.8.5 Stock-keeping-oriented Prediction Error Costs

Stock-keeping-oriented Prediction Error Costs (SPEC) is a newer metric [17],
which tries to take a similar approach as Periods in Stock (PIS), but in a more
slightly sophisticated way. It is defined in the following way:

SPECα1,α2
=

1

T

T∑
t=1

t∑
i=1

max

0;min

yi; i∑
k=1

yk −
t∑
j=1

ŷj

 · α1; min

ŷi; i∑
k=1

ŷk −
t∑
j=1

yj

 · α2

 · (t− i+ 1)



Although it looks complicated at first, we can understand it intuitively. Two
minimum internal conditions deal with the heart of the calculation - Opportunity
cost and Stock Keeping costs. We need to balance these two costs in the supply
chain from an inventory management perspective. The two parameters, α1 and α2,
allow us to apply different weights to opportunity cost and storage cost. Depending
on the organization’s strategy, we can choose the appropriate type of weights. It is
recommended that the summation of the weights is equal to 1 and α1 = 0.75 and
α2 = 0.25 is a common choice in retail. The disadvantage of this is time complexity.
We need nested loops to calculate this metric, which makes it slow to compute.

2.1.9 Probabilistic Forecasts Accuracy Metrics

This section discusses the quantile loss metric for evaluating probabilistic fore-
casts. It applies to models that generate probabilistic forecasts, i.e., prediction
intervals, in contrast to point forecasts, which consist only of predicted values. By
calculating the prediction quantiles, the model shows how much uncertainty is as-
sociated with each forecast and provides further information for the user. Without
predictive quantiles, point forecasts have limited value for different decisions. The
quantile loss calculates how far the forecast is from actual demand in either direction
as a percentage of demand on average in each quantile. This metric helps capture
the inherent bias in each quantile. For a given quantile ρ ∈ (0, 1), the ρ-quantile loss
is defined as:

QLρ = 2

∑H
t=1 Pρ (yT+t, ŷt)∑H

t=1 |yT+t|
, Pρ(y, ŷ) =

 ρ(y − ŷ) if y > ŷ

(1− ρ)(ŷ − y) otherwise
(2.34)

Lower values indicate better overall forecast accuracy. Generating forecasts for dif-
ferent quantiles is particularly useful when the costs of underestimating and overes-
timating are different.

For a p10 forecast, the actual value is expected to be lower than the predicted
value 10% of the time. For a use case where there is not much storage space and the
cost of capital invested is high or the price of overstocked goods is a concern, the
p10 quantile forecast is useful for ordering a relatively small number of stocks. A
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p10 forecast overestimates demand for an item only 10% of the time, meaning that
it will be sold out about 90% of the time.

For a p50 forecast (often referred to as the median), the actual value is expected
to be lower than the predicted value 50% of the time. When excess inventory is not
too worrisome and demand for an item is moderate, the p50 quantile forecast can
be useful.

For a p90 forecast, the actual value is expected to be lower than the predicted
value 90% of the time. When not stocking an item will result in a large amount
of lost revenue, the cost of not selling the item is too high, or the cost of capital
invested is low. The p90 forecast may be useful for ordering a relatively large number
of stocks.

2.2 State-Space Model

Two approaches are often found in the literature used in time series forecasting,
and these are the use of filters and statistical models. Filter-based methods assume
that observations are used as inputs to a system of equations. The classic example
of a filter is single exponential smoothing (SES, 2.1.5.1), which has the form:

ŷt = αyt−1 + (1− α)ŷt−1 (2.35)

The advantage of filters is their simplicity and a low number of assumptions. For
example, SES is straightforward to interpret and can be used without assumptions
about the residuals’ distributions. The main disadvantage is the lack of a statis-
tical basis, which leads to difficulties in estimating parameters and constructing
confidence intervals.

A statistical model is a mathematical representation of observed data using sta-
tistical analysis. They have their advantages as well as disadvantages. For example,
statistical models usually have strict assumptions about the error component, which
means choosing the right model requires certain assumptions. The advantages of
having a statistical model are the simplified model selection procedure, the statisti-
cal estimation of parameters, and prediction ranges. In general, these models allow
working with distributions of variables. Filters, in this case, focus on point values.
Finally, it is known that there is no such thing as a true model, but even an incorrect
one can be useful.

2.2.1 Latent variable models

One significant problem in machine learning is the unsupervised learning of a
complex probability distribution p(y) given a finite sample of observations y drawn
from that distribution. So instead of modeling this distribution directly, we can
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introduce an unobserved latent variable l and define a conditional probability p(y | l)
on the data. Each observed variable y will depend on a latent variable l, which we can
think of as containing some simpler information that makes it easier to describe the
observations. The desired distribution of the data is then obtained by marginalizing
after the latent variable as follows:

p(y) =

∫
p(y, l)dl =

∫
p(y | l)p(l)dl (2.36)

Thus, by introducing a latent variable into the model, we can express the complex
marginal distribution p(y) in terms of a more tractable joint distribution, whose
components p(y | l) and p(l) are usually simpler to define.

Latent variable models can be used as black-box density models. However,
we can also incorporate some prior knowledge of the generative mechanism that
produced the data with distributions that define the joint distribution p(y, l), e.g.,
using probabilistic graphical models.

To infer the latent variable from observations as a posterior distribution p(l | y),
we can use Bayes’ rule:

p(l | y) =
p(y | l)p(l)

p(y)
(2.37)

However, the posterior is intractable in many cases due to the lack of analytical
solution of the integral in Equation 2.37, which appears in the denominator.

2.2.2 State-Space Models

State-space models (SSMs) are a general and flexible methodology for sequen-
tial data modeling. SSMs are particularly well suited for applications where the time
series structure is well known because they allow these assumptions to be incorpo-
rated into the model. This allows the model to be interpreted, and the learning
procedure is data-efficient but requires time series with a suitable history. However,
in modern forecasting applications with a large body of time series, this requires high
computing power. Also, traditional SSMs cannot infer common patterns for similar
time series, as they are selected for each time series. This makes it difficult to make
forecasts for time series with little or no history. Hyndman et al. [11], Durbin and
Koopman [5], and Murphy [18] presented a comprehensive overview of state-space
models.

In an SSM, we are given a sequence of T observations y1:T = [y1, . . . , yT ],
that possibly depends on some inputs x1:T = [x1, . . . , xT ], and we are interested in
modelling the distribution p(y1:T | x1:T ). It is a very general formulation that can
be used in various applications. SSMs model the temporal structure of the data via
a latent state lt at each time step that summarizes all the information coming from
the past and determines the system’s present and future evolution. They can be
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used to encode time series components such as level, trend and seasonality patterns.
SSMs can then be seen as a temporal extension of the latent variable models, in
which the prior over the latent variables lt at each time step varies over time as it
depends on the previous state lt−1 and possibly some inputs xt to the model. The
model can be written in the following generic form:

lt = g (xt, lt−1, εt)

yt = h (lt, xt, δt)
(2.38)

where lt is the hidden state, xt is an optional input or control signal, yt is the
observation, g is the transition model, h is the observation model, εt is the system
noise at time t, and δt is the observation noise at time t. Graphical representation
of the SSM is given in Figure 2.3.

Figure 2.3: Graphical representation of a SSM.

Based on the assumptions of SSMs, we can obtain the following nice properties
of them:

• p (yt | l1:t, y1:t−1, x1:t) = p (yt | lt)
The latent state fully determines the observation at time t, so it does not
depend on the model’s past states, inputs, and outputs.

• p (lt | l1:t−1, y1:t−1, x1:t) = p (lt | lt−1, xt)

Conditioned on lt−1, the current state lt does not depend on the previous states
l1:t−2, nor the past inputs or outputs.

• p (lt | lt+1:T , yt+1:T , xt+1:T ) = p (lt | lt+1)

Given the next state lt+1, lt does not depend on the future states, inputs and
outputs.

The emission distribution p(yt | zt) specifies how observation yt depends on the
latent state lt. Furthermore, p(lt | lt−1, xt) is called the transition distribution and
represents the prior distribution for the state at each time step given the previous
state and the current input to the model. This distribution fully determines the
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temporal evolution of the system. Then the marginal distribution in the observations
can be obtained by integrating the states:

p (y1:T | x1:T ) =

∫
p (y1:T , l1:T | x1:T ) dl1:T (2.39)

p (y1:T , l1:T | x1:T ) = p (y1:T | l1:T ) p (l1:T | x1:T ) (2.40)

=
T∏
t=1

p (yt | lt) · p (l1)
T∏
t=2

p (lt | lt−1, xt)

2.2.2.1 Posterior inference in the sequential setting

The inference problem consists of calculating the posterior probability of latent
states for a given output sequence. This computation can be done both forward and
backward. We can distinguish the following inference tasks:

• Filtering. We want to compute p (lt | y1:t, x1:t). This is interesting in an
online setting as it allows the state to be estimated on an ongoing basis.

• Smoothing. We are interested in the posterior p (lt | y1:T , x1:T ). Since the
smoothed posterior requires the whole sequence’s knowledge, it can be com-
puted only offline.

• Prediction. We can also be interested in predicting the state of the system h

steps in the future given only past information by computing p (lt+h | y1:t, x1:t+h).

2.2.2.2 Parameter learning

In some cases, the model parameters are unknown, and we have to learn them
from the data. We can perform inference in the model for known parameters θ, but
this time we turn to estimate these parameters. Unfortunately, there is no maximum
likelihood estimation (MLE) of closed-form, so we turn to the EM algorithm.

The expectation-maximization (EM) algorithm is an iterative method for find-
ing maximum likelihood or maximum a posteriori (MAP) estimates of a statistical
model’s parameters. The approach is based on the fact that the model depends
on unobservable variables. The EM algorithm alternates between an expectation
step (E), which provides the expectation of the conditional logarithm of the reliabil-
ity estimated using the current parameter estimate, and a maximization step (M),
which computes the parameters to maximize the expected found log-likelihood at
step E. These parameter estimates are then used to determine the latent variables’
distribution in the next step E.
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2.2.3 General Intermittent State-Space Model

Svetunkov and Boylan [31] proposed a general state-space model for intermittent
time series. It is derived from Croston’s original model with the division of non-
regulatory demand yt into two components ot and zt. Only zt has its own statistical
model. The component zt corresponds to the demand of potential customers for
the product, while ot corresponds to the realisation of demand when the customer
makes a purchase. In their work, they adopted the single source error (SSOE) state-
space model, where the same error term is used in the transition and measurement
equations because it is well established. The following system of equations defines
this model:

yt = otzt (2.41)

zt = w (lt−1) + r (lt−1) εt (2.42)

lt = f (lt−1) + g (lt−1) εt (2.43)

where ot is a Bernoulli distributed random variable, lt is the state vector, εt is the
error term, f(·) is the transition function, w(·) is the measurement function, g(·) is
the persistence function and r(·) is the error term function.

The first equation corresponds to the original formula from the Croston model,
while the second, called the measurement equation, reflects the potential evolution
of demand over time. The third equation is the standard transitions for the SSOE
model, describing the change of state over time. The general intermittent state-
space model’s interpretation is that the potential magnitude of demand can change
over time, even if actual demand is not observed. In this case ot = 0, which leads
to yt = 0 in the first equation. However, measurement (2.42) and transition (2.43)
equations are not affected by ot, leading to the evolution of zt regardless of whether
there is actual demand.

2.3 Artificial neural networks

Artificial neural networks (ANN) or simpler Neural Networks (NN) are models
used for pattern recognition, inspired by the human brain. A large part of machine
learning research has been devoted in recent times. Due to their popularity in an
application, a separate branch of machine learning called Deep Learning has been
dedicated.

While neural networks themselves are complex mathematical functions with
unique properties and assumptions, an analogy to the human brain anatomy can
be used to imagine how they work. In this case, neural networks consist of in-
terconnected nodes that resemble biological neurons in the human brain, and the
connections resemble axons. In this case, when a biological neuron receives input
signals via axons, it produces an output signal. The nodes in neural networks work
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on the same principle. In the rest of this chapter, nodes in artificial neural networks
will be referenced as neurons.

Figure 2.4: Visualization of a single neural network neuron.

The operation of a single neuron with input signals {x1, x2, . . . , xn}, weights
{w1, w2, . . . , wn}, bias b and activation function f is visualized in the Figure 2.4.
This represents the following equation:

output = f

(
n∑
i=1

xiwi + b

)

While weights and bias values are determined by a learning process described
in a later section, the activation function must be defined in advance. Moreover, to
match non-linear patterns in the data, and since assembling multiple linear functions
is a linear function, the activation function is usually a non-linear transformation.

Many candidates for activation functions are known, and new proposals are still
being investigated. However, the final choice depends on the problem we need to
solve and the required properties. The only requirement for activation functions
is that they must be differentiated so that optimization and learning are possible.
Examples of activation functions:

Sigmoid : σ(x) =
1

1 + e−x
(2.44)

Hyperbolic tangent : tanh(x) =
e2x − 1

e2x + 1
(2.45)

ReLU : ReLU(x) = max(0, x) (2.46)

Then, such neurons, which are the fundamental component of neural networks,
are combined and stacked, allowing various types of networks, often referred to as
network architectures. The next sections explain the following types of networks:

• Feed-forward neural network

• Recurrent neural network

• LSTM
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2.3.1 Feed-forward neural network

Feed-Forward Neural Network (FFNN) is one of the simplest types of a neural
network, where data is just transferred between neurons. We distinguish three
components in such a network: the input layer, hidden layers, and the last layer
called the output layer. Despite its simplicity, FFNN is a powerful model. The
example is presented in the Figure 2.5.

Figure 2.5: Visualization of a 3-layer feed-forward neural network.

Hidden layers number means the network’s depth. The deeper the network is,
the greater its ability to learn abstract combinations of features from data due to its
complexity compared to shallow networks that may not have the necessary capacity.
However, greater depth brings with it additional problems. One of the problems is
the risk of over-fitting when the network begins to model the noise in the training
dataset. In this way, the ability to generalize is lost. It is usually a compromise
between the amount of training data and the difficulty of the problem which is tried
to solve.

Denoting W as the set of network parameters (every neurons’ weights and
biases), the network function f calculating the output for a given input is uniquely
defined as

ŷ = f(x | W), (2.47)

i.e. the parameters define the network. The loss function for the network for which
the weights should be optimal must be defined to find the optimal parameters for a
given neural network and training dataset.

2.3.2 Recurrent neural network

The FFNN presented in the previous subsection 2.3.1 is a powerful model, but
it has its restrictions. One of them is that it is a memoryless model, whats means
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that for each input, the network does not have information about the previous ones.
However, this property can be achieved with the usage of recurrent neural networks
(RNNs).

RNN’s are identical to FFNN’s with the difference that each layer transfers the
output to the next layer and itself, hence the recurring connections. It is visualized
on the Figure 2.6.

Figure 2.6: Visualization of a 3-layer recurrent neural network.

A popular way of visualizing the RNN’s is by network unfolding, thus clearly
showing the repeated connections between each step t. An example of an unfolded
network is presented at the Figure 2.7.

Figure 2.7: Visualization of an unfolded 3-layer recurrent neural network.

Although this recurrent time-dependency of RNN’s makes them capable of
learning long-term dependency patterns and even using the information of any input
value that has ever occurred in theory, it turns out that there are problems with this
practice. How to solve them will be discussed in more detail in the next section.
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2.3.3 Long short-term memory

As mentioned in the previous section, the standard architecture of the RNN
has a particular problem with handling recurring information on the network. It
has turned out that in practice, learning long-term dependencies is a real difficulty
for ordinary RNN. Besides, the fact that the information is fed back into its hidden
layer at every step of the time causes the output to fade or explode exponentially.
This is called an exploding gradient problem and a fading gradient problem. A
similar problem also exists with very depth neural networks.

A famous architecture called ”Long Short-Term Memory” (LSTM) was created
to deal with this problem. LSTM can handle long-term dependencies and retain
gradient information over time, better than ordinary RNN architecture, making it
the preferred RNN architect over the basic version. These properties have been
obtained by extending the LSTM of ordinary neurons so that they contain many
operations. It makes sense to call every neuron in the RNN a block. A simple
illustration of a regular RNN block is shown in the Figure 2.8.

Figure 2.8: A regular RNN block.

LSTM expands the simple RNN’s block shown in figure 2.8 in several ways.
First, the cell state is introduced, which can contain information through time if
necessary. This can be seen as the memory of the LSTM block. Secondly, several
different gateways are inserted, each of which takes combined input and previous
output.

• The Forget gate: Determine what information should be forgotten when
performing an elementwise multiplication between data and the cell’s previous
state.

• The Input gate: Determines what new information from cell values should
be added to the cell state by performing an elementwise addition between the
updated cell state and modified cell values, resulting in a new cell state.

• The Output gate: It determines what values should be derived by performing
an elementwise multiplication between the non-linear transformation of the
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new cell state and the gateway output values, leading to the final result.

Figure 2.9: LSTM block.

The LSTM block’s visualisation is shown in the figure 2.9, and the full set of
equations is presented.

Forget gate : f (t) = σ
(

Wf

[
z(t−1),x(t)

]
+ bf

)
(2.48)

Input gate : i(t) = σ
(

Wi

[
z(t−1),x(t)

]
+ bi

)
(2.49)

c̃(t) = g
(

Wc

[
z(t−1),x(t)

]
+ bc

)
(2.50)

State update : c(t) = f (t) ⊗ c(t−1) + i(t) ⊗ c(t) (2.51)

Output gate : o(t) = σ
(

Wo

[
z(t−1),x(t)

]
+ bo

)
(2.52)

z(t) = o(t) ⊗ h
(
c(t)
)

(2.53)

2.3.4 Optimization

Training neural networks consist of minimizing the network target’s function
(loss function) related to network parameters. This optimization is usually per-
formed using gradient-based optimization algorithms such as Gradient Descent. In
this project, another gradient-based algorithm, called the Adam algorithm, is used.

2.3.5 The Promise of Deep Learning for Time Series

Deep learning neural networks can automatically learn any complex mapping
from input to output and handle multiple inputs and outputs. These powerful
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functions promise time series forecasting, especially when there are problems with
complex non-linear relationships, multi-value input data, and multi-stage forecast-
ing. Together with the capabilities of more modern neural networks, these features
can be up-and-coming, such as the automatic learning of features and native support
for sequential data in recurrent neural networks.

Furthermore, traditional forecasting methods cannot infer shared patterns from
a set of similar time series, as they are determined separately for each time series.
With deep learning, model parameters are shared between and learned jointly from
all time series in the dataset. This enables knowledge sharing, for example, by
considering the impact of special events such as holidays on demand size and allowing
forecasts to apply for time series with limited historical data or high levels of noise.

Thanks to this ability to learn long-term correlations in a sequence, LSTM
networks eliminate the need for a predefined time window and accurately model
complex multidimensional sequences. They can do so based on a set of raw time
series data with little human effort. However, as these models have fewer structural
assumptions, they usually require larger training data sets to learn accurate models.
Unlike SSM, these models are challenging to interpret and, more importantly, they
make it challenging to enforce assumptions such as time smoothness.





Chapter 3

Methods

This thesis proposes a method for intermittent time series forecasting that in-
volves parameterizing the intermittent state-space model (iETS, 2.1.6.3) using re-
current neural networks (RNN). The result of this combination is named as Deep
iETS. RNN parameters are learned together from the set of time series and related
feature variables. This approach allows automatic modeling, feature extraction, and
recognition of intricate temporal patterns present in the data. Furthermore, as each
time series is ultimately modeled using iETS, the method allows for interpretability.
The parameters for each time series can be controlled and adjusted to the required
properties if necessary.

The problem statement is the following. A set of N non-negative real-valued

processes in discrete time denoted
{
y

(i)
1:Ti

}N
i=1

is considered, where

y
(i)
1:Ti

=
(
y

(i)
1 , y

(i)
2 , . . . , y

(i)
Ti

)
and y

(i)
t denotes the value at time t of the i-th time series. For each time se-

ries, the same forecast horizon h ∈ N>0 is investigated, then y
(i)
1:Ti

is referred to
as target time series, with time range {1, 2, . . . , Ti} as the training range, and
{Ti + 1, Ti + 2, . . . , Ti + h} as the prediction range. Moreover, the set of associ-

ated, time-varying feature vectors
{
x

(i)
1:Ti+h

}N
i=1

is delivered, emphasising that these
are also provided for the prediction range.

Finally, the aim is to model the probability distribution for each time series
i = 1, . . . , N of future values y(i)

Ti+1:Ti+h
given the past. Formally, this is formulated

as follows:

p
(
y

(i)
Ti+1:Ti+h

| y(i)
1:Ti

, x
(i)
1:Ti+h

; Φ
)

(3.1)

where Φ denotes the set of model parameters shared between and learned jointly
from all N time series. It is in contrast to many traditional approaches (Croston
and others) that are local, meaning that each time series has its own model, and no
information is shared across time series.

39
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3.1 Intermittent State Space Model

An adjusted version of the multiplicative state-space model iETS(M,N,N) pro-
posed by Svetunkov and Boylan [31] is considered. Intermittent state-space model
(iETS) is formulated with the following system of equations:

yt = otzt (3.2)

zt = lz,t−1 (1 + εt) (3.3)

lz,t = lz,t−1 (1 + αz,tεt) (3.4)

ot ∼ Bernoulli (po,t) (3.5)

(1 + εt) ∼ logN
(
0, σ2

ε,t

)
(3.6)

Here at time t, the ot models the demand occurrence with probability po,t, while
zt models the demand size, with the latent state lz,t−1, smooth parameter αz,t, and
variance of innovation σ2

ε,t. The model’s interpretation is that the potential size of
demand can change over time, even if actual demand is not observed. Furthermore,
the multiplicative model for the measurement equation has the advantage of restrict-
ing the space of demand sizes to positive values. According to the authors’ analysis,
it is assumed that the demand size smoothing parameter, because it guarantees that
the level of time series is always positive whatever the error value is αz,t ∈ [0, 1]. For
boundary conditions, when αz,t = 0, the level is not updated, while when αz,t = 1,
the level has the dynamics of a random walk. The difference from the original ver-
sion of the model is that the smoothing parameters and the variance have become
time-variant, so they are no longer static as before. The probabilities po,t are not
modeled but are model parameters.

3.1.1 Model Properties

This section presents the properties of the considered model together with the
distributions of the individual variables, derived from the original iETS model [31].
This multiplicative model is also well studied by Akram et al. [1].

Since according to the model’s assumption ot ∼ Bernoulli (po,t), where po,t is
delivered as the parameter, the conditional expectation and the conditional variance
can be easily calculated as:

E
(
ot+h|t

)
= po,t+h (3.7)

V
(
ot+h|t

)
= po,t+h (1− po,t+h) (3.8)

An expectation conditional on the last non-zero demand should be used for zero
demand periods when the model’s demand realization is not observable (ot = 0).
This means that the equation of transition at some observation t+k is defined based
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on previous k values:

lz,t+k|t = lz,t

k∏
j=1

(1 + αz,t+jεt+j) = lz,t+k−1|t (1 + αz,t+kεt+k) (3.9)

It can be shown that (1 +αz,tεt) has a three-parameter log normal distribution
[26]. Firstly, we can regroup it as follows:

1 + αz,tεt = (1− αz,t) + αz,t (1 + εt) (3.10)

where (1 + εt) ∼ logN
(
0, σ2

ε,t

)
. Hence, we obtain that

1 + αz,tεt ∼ 3 PlogN
(
logαz,t, σ

2
ε , 1− αz,t

)
(3.11)

Then, the conditional expectation and conditional variance can be calculated as:

E (1 + αz,tεt) = (1− αz,t) + αz,t exp

(
σ2
ε

2

)
(3.12)

V (1 + αz,tεt) = α2
z,t

(
exp

(
σ2
ε

)
− 1
)

exp
(
σ2
ε

)
(3.13)

The conditional expectation, conditional variance, and conditional median of
the level lz,t+k given the value of lz,t, defined by (3.9), and assuming that the error
term is not autocorrelated, are as follows:

E
(
lz,t+k|t

)
= lz,t

k∏
j=1

E (1 + αz,t+jεt+j) (3.14)

= E
(
lz,t+k−1|t

)
E (1 + αz,t+kεt+k) (3.15)

V
(
lz,t+k|t

)
= l2z,t

(
k∏
j=1

(
V (1 + αt+jεt+j) + E (1 + αt+jεt+j)

2
)

−
k∏
j=1

E (1 + αt+jεt+j)
2

)
(3.16)

= V
(
lz,t+k−1|t

)
V (1 + αz,t+kεt+k)

+ E
(
lz,t+k−1|t

)2 V (1 + αz,t+kεt+k)

+ V
(
lz,t+k−1|t

)
E (1 + αz,t+kεt+k)

2 (3.17)

Md
(
lz,t+k|t

)
= lz,t (3.18)

where E (1 + αz,t+kεt+k) and V (1 + αz,t+kεt+k) are respectively defined by (3.12)
and (3.13).

In order to separate the level from the uncertainty coming from the error term,
the transition of states in model with the log-normal distribution, when the demand
is not observed (ot = 0), should be governed by the median (3.18) instead of the
mean (3.14). This is because the error component’s distribution is skewed, and the
conditional mean absorbs some of the uncertainty due to the error.
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The error term (1 + εt) ∼ logN
(
0, σ2

ε,t

)
, so the expectation and variance are as

follows:

E (1 + εt) = exp

(
σ2
ε,t

2

)
(3.19)

V (1 + εt) =
(
exp

(
σ2
ε,t

)
− 1
)

exp
(
σ2
ε

)
(3.20)

Prediction intervals of h steps ahead for zt+h should be derived separately.
Rewriting zt+h in terms of lz,t and error terms, we obtain

zt+h|t = lz,t (1 + εt+h)
h−1∏
j=1

(1 + αt+jεt+j) (3.21)

The conditional mean, variance, and median for h-steps ahead will be:

E
(
zt+h|t

)
= lz,t exp

(
σ2
ε,t+h

2

)
h∏
j=1

E (1 + αz,t+jεt+j) (3.22)

V
(
zt+h|t

)
=
(
exp

(
σ2
ε,t+h

)
− 1
)

exp
(
σ2
ε,t+h

)
E
(
lz,t+h−1|t

)2
+ exp

(
2σ2

ε,t+h

)
V
(
lz,t+h−1|t

)
(3.23)

Md
(
zt+h|t

)
= lz,t (3.24)

While lt+h|t and zt+h|t no longer have a log-normal distribution, we use it as a good
approximation of the actual conditional distribution.

The model is based on the one-step-ahead error, but can generate the h steps-
ahead conditional mean and variance. The considered intermittent state space
model, by assuming the conditional independence of the variables ot+h|t and zt+h|t,
allows these values to be calculated using the following formulas:

E
(
yt+h|t

)
= E

(
ot+h|t

)
E
(
zt+h|t

)
(3.25)

V
(
yt+h|t

)
= V

(
ot+h|t

)
V
(
zt+h|t

)
+ V

(
ot+h|t

)
E
(
zt+h|t

)2
+ E

(
ot+h|t

)2 V (zt+h|t)
(3.26)

where E
(
yt+h|t

)
and V

(
yt+h|t

)
are respectively conditional expectation and condi-

tional variance of yt; E
(
ot+h|t

)
and V

(
ot+h|t

)
are conditional expectation and vari-

ance of occurrence variable ot and finally E
(
zt+h|t

)
and V

(
zt+h|t

)
are the respective

values for the demand size zt.

3.1.2 Parameter learning

This state space model is fully specified by the parameters Θt =
(
lz,0, αz,t, σ

2
ε,t, po,t

)
,

∀t > 0. Besides, the following conditions are assumed for the parameters: lz,0 ∈ R+,
αz,t ∈ [0, 1], σ2

ε,t ∈ R+ and po,t ∈ [0, 1]. Because it is a statistical model, parameters
can be estimated via likelihood maximisation, Θ∗1:T = argmaxΘ1:T

p (y1:T | Θ1:T ).
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For the intermittent demand model, there are two cases which need to be inves-
tigated: when demand occurs and when it does not. In the first case, the probability
of obtaining the observation yt is equal:

p (yt, ot = 1 | Θ1:t, y1:t−1) = po,t · p (zt | Θ1:t, y1:t−1) (3.27)

In the second case, it is just equal to the probability of non-occurrence:

p (yt, ot = 0 | Θ1:t, y1:t−1) = (1− po,t) (3.28)

In summary, the likelihood function for all T observations is, therefore, as follows:

piETS (y1:T | Θ1:T ) =
∏
ot=1

po,t · p (zt | Θ1:t, y1:t−1)
∏
ot=0

(1− po,t) (3.29)

where p (zt | Θ1:t, y1:t−1) is a log-normal distribution.

Since not all the variables’ values are known, such as the latent states, it is
impossible to optimize likelihood directly. For this purpose, the EM algorithm is
used, where first the values of the unknown variables are estimated, and only then
the likelihood value is maximized.

It is worth noting that when using classical methods for multiple time series, a
separate set of parameters Θ(i) is learned independently for each time series y(i)

1:Ti
.

This approach’s disadvantage is that no information is shared between time series,
making it challenging to apply the method to time series with limited historical data
or a high noise level.

3.2 Deep Intermittent State Space Model

Alternatively to learning the parameters Θ(i) independently for each time series,
this approach learns and uses a global shared mapping from the feature vectors x(i)

1:Ti

associated with each target time series y(i)
1:Ti

to the time-varying parameters Θ
(i)
t

of the intermittent state-space model for the i-th time series. The mapping under
consideration is defined as follows:

Θ
(i)
t = Ψ

(
x

(i)
1:t,Φ

)
, i = 1, . . . , N, t = 1, . . . , Ti + h (3.30)

as a function of the feature vectors x(i)
1:t up to time t, as well as the shared parameters

Φ. Then, based on the considered model, the y(i)
1:Ti

values have a distribution defined
as:

p
(
y

(i)
1:Ti
| x(i)

1:Ti
,Φ
)

= piETS

(
y

(i)
1:Ti
| Θ(i)

1:Ti

)
, i = 1, . . . , N (3.31)

where piETS denotes the marginal likelihood under a intermittent state space model
as defined in Equation 3.29, given its time-varying parameters Θ

(i)
t .

A long short-term memory network (LSTM) is used to parameterize the map-
ping function Ψ from the feature vectors to the iETS parameters. The general
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Figure 3.1: Summary of the Deep iETS model.

scheme of the model’s operation unrolled for the training range has been presented
on the Figure 3.1. To obtain the state-space parameters Θ

(i)
t at each time t in

the training range {1, 2, . . . , Ti} for the target time series y(i)
1:Ti

, with associated fea-

tures x(i)
1:Ti

and network parameters Φ, the LSTM cell’s output ot is first computed,
together with the hidden state ht via a recurrent function as follows:(

o
(i)
t ,h

(i)
t

)
= cell

(
h

(i)
t−1,x

(i)
t ,Φ

)
(3.32)

Next, to constrain the real-valued output ot to the parameters domain of the iETS,
the following transformations are applied:

• for positive parameters θ > 0: the softplus function θ = log(1 + exp (·))

• for bounded parameters θ ∈ [0, 1]: a scaled and shifted sigmoid θ = 1
1+ 1

exp (·)

Parameters Θ
(i)
1:Ti

are then used to compute the likelihood of the given observations

y
(i)
1:Ti

, which is used for optimizing of the network parameters Φ.

3.3 Training

The model parameters Φ are learned by maximizing the probability of observing

the data
{
y

(i)
1:Ti

}N
i=1

in the training range, i.e., by maximizing the (log-)likelihood:

L(Φ) =
N∑
i=1

log p
(
y

(i)
1:Ti
| x(i)

1:Ti
,Φ
)

=
N∑
i=1

log piETS

(
y

(i)
1:Ti
| Θ(i)

1:Ti

)
= (3.33)

=

N∑
i=1

[
−
∑
o
(i)
t =1

log
(
z

(i)
t

)
+

1

2
log
(

2πσ2(i)
ε,t

)
+

1

2

(
log z

(i)
t − logµ

(i)
z,t|t−1

)2

σ2(i)
ε,t


+
∑
o
(i)
t =1

log
(
p

(i)
o,t

)
+
∑
o
(i)
t =0

log
(

1− p(i)
o,t

)]
(3.34)
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where µ(i)
z,t|t−1 = E

[
z

(i)
t | y

(i)
1:t−1,Θ

(i)
1:t−1

]
is the conditional mean of one-step-ahead

forecast error for demand sizes. Each summand of L(Φ) in the Equation 3.33 can
be viewed as a (negative) loss function that measures the compatibility between the
state-space model parameters produced by the LSTM with input x(i)

1:Ti
and the real

observations y(i)
1:Ti

. Each of these terms is a standard likelihood calculation in the
iETS.

3.4 Forecast

This section presents how to make probabilistic forecasts for a given time series,
once the Φ parameters of the network are known. This will be proposed using two
significantly different methods. In the first approach, the joint probability of the
predicted variables within the prediction range is estimated. The second approach
follows that presented in the original paper for iETS, where we assume that the
predictions are independent of each other and we forecast each variable separately.

Figure 3.2: Illustration of how the model is used to make forecasts after the network
parameters Φ are learned.

The scheme for using the model to make forecast, after learning the Φ param-
eters of the network, is demonstrated in the Figure 3.2. Given a time series y(i)

1:Ti

in the training range {1, 2, . . . , Ti} and associated features x(i)
1:Ti+h

for both training
and prediction ranges, forecasts are produced as follows:

1. First, the latent state’s posterior p
(
l
(i)
Ti
| z(i)

1:Ti

)
for the last time step Ti in the

training range is computed using the observations y(i)
1:Ti

and the state space

parameters Θ
(i)
1:Ti

obtained by unrolling the RNN network in the training range
and then using the filtering algorithm.

2. Given the latent state’s posterior p
(
l
(i)
Ti
| z(i)

1:Ti

)
, prediction samples are gen-
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erated where the state space parameters Θ
(i)
Ti+1:Ti+h

for the prediction range

Θ
(i)
Ti+1:Ti+h

are obtained by unrolling the RNN in the prediction range. This
is processed in two ways:

(a) Computing the joint distribution over the prediction range
ŷT+1:T+h ∼ p (yT+1:T+h | y1:T , x1:T+h,Θ1:T+h).

(b) Estimating each forecasted value separately
ŷT+1:T+h ∼

[
yT+1|T , yT+2|T , . . . , yT+h|T

]
.

3.4.1 Deep iETSMC

In this method, given Φ, we are interested in computing the joint distribution
over the prediction range for each time series. However, in practice this is difficult
to determine analytically, so it is often more convenient to represent the forecast
distribution in terms of K Monte Carlo samples,

ŷ
(i)
k,Ti+1:Ti+h

∼ p
(
y

(i)
Ti+1:Ti+h

| y(i)
1:Ti

, x
(i)
1:Ti+h

,Θ
(i)
1:Ti+h

)
, k = 1, . . . ,K (3.35)

Then recursively apply the transition equation and the observation model to generate
the prediction samples. More precisely, starting with a sample `T ∼ p (`T | y1:T ), we
recursively apply

(1 + εT+t) ∼ logN
(

0, σ2
ε,T+t

)
, t = 1, . . . h

lz,T+t = lz,T+t−1 (1 + αz,T+tεT+t) , t = 1, . . . h− 1

zT+t = lz,T+t−1 (1 + εT+t) , t = 1, . . . h

oT+t ∼ Bernoulli (po,T+t), t = 1, . . . h

ŷT+t = oT+tzT+t, t = 1, . . . h

(3.36)

We generate forecast samples by recursively applying the above equations K times.
Finally, we use the mean value for point forecasts or calculate the corresponding
quantiles. This method is referred to hereafter as Deep iETSMC.

3.4.2 Deep iETSmu & Deep iETSmd

In this prediction method, some assumptions are made about the independence
of the prediction range variables, and each value is forecasted separately. This is the
approach proposed in the original paper. The predictive values are then as follows:

ŷ
(i)
Ti+1:Ti+h

∼
[
y

(i)
Ti+1|Ti , y

(i)
Ti+2|Ti , . . . , y

(i)
Ti+h|Ti

]
(3.37)

In subsection 3.1.1, the conditional expectations, conditional variances, and condi-
tional medians for future observations were discussed. From these values, it is clear
that expectations and variances will increase over the forecast horizon. This is due
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to the skewness of the logarithmic normal distribution and the increase in uncer-
tainty. This may be a desirable property in some cases, but conditional medians
are considered preferable to conditional means. Furthermore, median values have
been shown to give more accurate predictions than averages for a logarithmic nor-
mal distribution. Medians are considered to be more robust and, in this case, easier
to work with. Therefore, two versions of this method are considered later in this
thesis. The final forecast for the first version of the proposed approach is the mean
forecast. In contrast, the second version is a multiplication of the median demand
forecast and the mean demand occurrence. These have been named Deep iETSmu
and Deep iETSmd, respectively.

Due to the assumption of logarithmic normality of the residuals, the prediction
ranges will be asymmetric. A critical feature of the iETS model used is that it allows
for significant one-sided intervals, which is essential when calculating safety stocks.
The cumulative distribution function (CDF) can be used to compute prediction
intervals for models with intermittent state space:

Fy
(
yt+h|t < Q

)
= pt+hFz

(
zt+h|t < Q

)
+ (1− pt+h) (3.38)

where Fz
(
zt+h|t

)
is the h-steps ahead CDF of log normal distribution for zt+h|t,

Fy
(
yt+h|t

)
is the final CDF of the variable yt+h|t and Q is the value of the desired

quantile of the distribution. Fy
(
yt+h|t

)
should correspond to the desired probability

(for example 0.9), so the only unknown element in (3.38) is Fz
(
zt+h|t

)
, which can

be calculated as:

Fz
(
zt+h|t < Q

)
=
Fy
(
yt+h|t < Q

)
− (1− pt+h)

pt+h
(3.39)

Thus, in the construction of prediction intervals, the formula can be used to calculate
the necessary quantiles of the logarithmic normal distribution of zt+h|t.

3.5 Features

The feature vectors x(i)
1:Ti+h

can be item-dependent, time-dependent, or both.
They can be used to provide additional information about the item (e.g., product
brand, category) or the time point (e.g., product price, week of the year) to the
model. They can also include features that one expects to influence the outcome, as
long as the features’ values are also available in the prediction range.

3.6 Remarks

In this model, unlike classical and deep learning-based autoregressive models,
target values are not used directly as inputs. It is a crucial feature of the method
and has several advantages:
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1. It makes the model more robust to noise, as target values are only included in
the likelihood component, where noise is correctly processed.

2. Generating a sample path of the forecast is more computationally efficient
because the RNN only needs to be expanded once for the entire forecast (re-
gardless of the number of samples).

3. Missing target values can be easily handled by simply discarding the relevant
probability terms.
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Qualitative experiments

This experiment tested whether the model can successfully recover intermittent
state-space parameters when trained on synthetic data. Three models with weekly
seasonality but different initial parameters lz,0, smoothing of demand size αz,t and
demand probability po,t, were prepared for this purpose. For convenience, the same
noise variance σ2

ε,t was used for all models. A group of time series was then generated
based on each model. Each time series consists of 8 weeks of daily data, of which
the first six weeks are used to train the model. The group identifier and day of the
week are used as an input feature using one-hot encoding. Ideally, for each time
series, the model should return the parameters of the iETS from which that time
series was generated.

The intermittent state space model parameters in this case are given by

Θ
(i)
t =

(
l
(i)
z,0, α

(i)
z,t, p

(i)
o,t, σ

2(i)
ε,t

)
, t = 1, . . . , Ti + h,

where Ti = 48 and h = 14. Except for σ2(i)
ε,t , all the other parameters are different

for each group. Besides, x(i)
t ∈ R10, where The first three dimensions are used to

encode the model identifier and the remaining seven to encode the week’s day. In
both cases, one-hot encoding is used.

An interesting issue is the amount of data needed to reproduce the param-
eters. For this purpose, various models have been trained based on increasing
numbers of time series for groups. The following amounts are considered N =

{10, 25, 50, 100, 200} per group. Figure 4.1 presents the results of the experiment.
All graphs present valid parameters and parameters obtained from models in the
forecast range. The columns show the smoothing parameter of demand size, the
probability of the demand occurrence, and the noise variance, while the rows corre-
spond to each group. The probability of demand occurrence has been reproduced
quite well, even with the smallest number of sample time-series. However, this qual-
ity increases with the number of samples. The noise variance is also reproduced
reasonably well, but it does not seem that more examples improve the result. Also,
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the initial values of level size were well recovered. The most difficult to reproduce
is the smoothing of the demand size parameter. Even with the biggest amount
of time series, the original parameters cannot be reproduced entirely. This is due
to a ”lack” of observations and increased uncertainty in estimating demand’s size.
However, we still manage to discover these parameters’ values and seasonality. It
is noteworthy that the model could detect these parameters in a set of time series
with three different dynamics.

Figure 4.1: Experiments results of the intermittent state-space models’ parameters
recovery as the number of examples per group increases. The columns show the
state space parameters (demand size smoothing parameter, probability of demand
occurrence, and noise variance), while the rows correspond to specific groups. Each
graph shows the real and recovered parameter values with the increasing number of
examples.

Table 4.1 presents in numerical form the results of parameter discovery and com-
pare these values between different sample sizes. The following rows correspond to
the results for increasing numbers of sample per group, respectively {10, 25, 50, 100, 200}.
The columns show the summed absolute values of the errors between the parame-
ter’s true values and those estimated in the prediction range. Parameters such as
demand magnitude smoothing, demand probability, noise variance, initial condition
are considered in turn. The previous conclusions are confirmed that as the number
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of samples increases, the parameter po,t is better and better discovered, and the best
result is achieved for N = 100. A similar situation occurs when predicting the initial
state’s value lz,0, where the best result is achieved for N = 200. On the other hand,
the most difficult parameters such as αz,t and σ2

ε,t were determined best for N = 50

and N = 25. Therefore, comparing these results in general, satisfactory results are
achieved at N ∈ {25, 50}, which shows this model’s efficiency in terms of the amount
of data required.

Number of samples
αz po σ2

ε l0
per group

10 4.6226 2.0863 1.1926 0.2410

25 4.4813 1.1011 1.0178 0.1049

50 4.0481 0.9538 1.4005 0.0962

100 5.0916 0.5235 1.1994 0.0391

200 4.3927 0.5546 1.2956 0.0338

Table 4.1: The table presents the summed absolute error values between the true
parameters and those estimated when learning the model from different sample time
series numbers per group. The columns contain the following parameters: demand
size smoothing parameter, probability of demand occurrence, noise variance, initial
state. The rows contain the results obtained based on different time series in the
training dataset. The best results are marked in bold (less is better).





Chapter 5

Quantitative experiments

5.1 Walmart Sales Dataset

This dataset was made available as part of the M5 Competition on Kaggle, the
popular M Competition series’s current installment on forecasting [16]. The dataset
contains time series data of sales of various Walmart store products organized hierar-
chically by item level, department, product category, and geographical area. There
are 3,075 products classified into 3 product categories (hobby, food, and household)
and 7 product departments in which the categories mentioned above are disaggre-
gated. The products are sold across ten stores in three different states (California,
Texas, and Wisconsin). In particular, four shops are located in California, three in
Texas, and three in Wisconsin. The total number of M5 series across the hierarchy
is 42,840. The M5 competition dataset also included exogenous/explanatory vari-
ables, including calendar-related information and sales prices. Therefore, in addition
to past unit sales of products and relevant timestamps (e.g., date, weekday, week
number, month, and year), there was also information available:

• Special events and holidays (e.g., Super Bowl, Valentine’s Day, and Orthodox
Easter), organized into four classes: sporting, cultural, national, and religious.

• Sales prices are given at weekly shop level (seven-day average). If not available,
this means that the product was not sold during the week under-examined.
Although prices are fixed each week, they can change over time.

• SNAP activities that serve as promotions. Encoded a binary variable (0 or
1) indicating whether CA, TX or WI shops allow SNAP purchases during the
study period.

The forecast horizon (forecasts 28 days ahead) was determined by the nature of the
decisions that companies typically support when forecasting data similar to that of
M5, i.e., daily series disaggregated across locations and product categories.
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Figure 5.1: Distribution of time series in the dataset according to the type of demand:
23366 intermittent (76.63%), 5587 lumpy (18.32%), 1041 smooth (3.41%), 496 erratic
(1.63%).

As shown in Figure 5.1, the fraction of intermittent time series among all time
series in the dataset is 76.63%. In comparison, smooth time series account for
only 3.41%. This confirms that accurate forecasting of intermittent time series is
very much needed and required. Given this fact and the provision of descriptive
variables in static (item-dependent) and dynamic (time-dependent) forms, this is an
appropriate dataset for the proposed model.

5.1.1 Dataset Processing

The large size of the original dataset and the variety of time series demand cate-
gories were divided into six subsets with different characteristics. The categorization
of the time series into intermittent, smooth, lumpy, erratic types was performed ac-
cording to the subsection 2.1.4 conditions. Besides, each collection contains demand
series for products from a single department. In all cases, the training period con-
sists of 364 days (52 weeks), while the following 28 days (4 weeks) are used for
prediction evaluation. The datasets presented were obtained in the following way.
Initially, the time series in the entire set was trimmed to the required length, and
only then were they categorized according to demand type. Next, series with a given
type of demand and concerning items from a given category (e.g., household 1) were
selected. It is worth noting that one item may have several series because it is sold
in many stores. Finally, a given number of products and all related time series are
selected from such a set. This means that the resulting dataset contains only time
series with the same type of demand and linked to each other by items and items’
category. The sets under consideration are shown in Table 5.1.
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Dataset name
Demand Number of Number of Items’

category time series items department

m5 intermittent foods1 intermittent 281 30 Foods1

m5 intermittent hobbies2 intermittent 277 30 Hobbies2

m5 smooth foods3 smooth 291 30 Foods3

m5 lumpy hobbies1 lumpy 110 12 Hobbies1

m5 erratic hobbies1 erratic 79 16 Hobbies1

Table 5.1: The table presents the considered data sets that were used to test the
capability of the proposed model. In all cases, the training period consists of 364 days
(52 weeks), while the following 28 days (4 weeks) are used for prediction evaluation.

5.2 Accuracy comparison

To the best of my knowledge regarding state-of-the-art methods for the problem
of demand forecasting, the following models have been used as reference points:

• Croston: the Croston method [9] developed for intermittent demand fore-
casting from R package tsintermittent.crost() [14].

• TSB: the TSB (Teunter-Syntetos-Babai) method [35], implemented in R pack-
age tsintermittent.tsb() [14].

• ETS: the ETS model [11] with automatic type selection. Used implementation
from R package smooth.es() [30].

• iETS: the occurrence state space exponential smoothing model [31]. It auto-
matically selects the most suitable model from among several versions. Imple-
mented in R package smooth.oes() [30].

• NegBin: Negative Binomial filter from [28], implemented in the function
counter.negbin() from R package [29].

• HSP: Hurdle shifted Poisson filter discussed in [28] and implemented in the
function counter.hsp() from R package [29].

• DeepAR: recent probabilistic forecasting method, based on autoregressive
recurrent networks [25]. To produce non-negative demand output Negative
Binomial Distribution has been used. This model uses inference from multi-
ple time series and feature vectors. Applied implementation in Python from
gluonts.model.deepar [2].
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5.3 Accuracy metrics

To measure the prediction accuracy between all competing methods and mod-
els, the following error metrics were used. These are described in more detail in
subsections 2.1.7, 2.1.8, 2.1.9.

• sME: scaled Mean (Signed) Error, determining the potential positive or neg-
ative bias in forecast of examined approach;

• sPIS: scaled Periods in Stock, acts complementary to sME in providing ev-
idence for systematic behavior with regards to the direction of the forecast
error;

• MASE: Mean Absolute Scaled Error, measuring the accuracy of point fore-
casts;

• sMAPE: symmetric Mean Absolute Percentage Error, measuring the accuracy
of point forecasts;

• sMSE: scaled Mean Squared Error, measuring the accuracy of point forecasts;

• sAPIS: scaled Absolute Periods in Stock, measuring the magnitude of the
systematic bias;

• SPECα: Stock-keeping-oriented Prediction Error Costs, α = 0.75 means that
Opportunity cost is more important than Stock Keeping cost (common choice
in retail), α = 0.5 means that both costs are equally important (identical
to sAPIS), α = 0.25 means that Stock Keeping cost is more critical than
Opportunity cost;

• ρ-Loss: Quantile loss, p50Loss is adequate when excess inventory is not too
worrisome and demand for an item is moderate, p90Loss is appropriate when
not stocking an item will result in a large amount of lost revenue;

Firstly, a given metric was calculated for each individual time series, and then the
mean of the obtained values was taken. Besides, since it does not interpret some
metrics’ values, a relative version is considered. It is indicated by adding the prefix
(R). The new value was calculated by dividing each model’s results by the best result
obtained by some baseline models. For example, if the (R)sAPIS of the proposed
model is equal to 0.94, it performs 6% more accurately than the best benchmark in
terms of the sAPIS.

5.4 Results on intermittent demand

This section tests the proposed model’s performance and forecast methods on
the target type of time series (intermittent demand). The results are based on
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m5 intermittent foods1 and m5 intermittent hobbies2 datasets, introduced in
detail in subsection 5.1.1. An infrequent occurrence of demand characterizes this
demand but a small variance between successive values of the demand sizes.

5.4.1 Intermittent: m5 intermittent foods1

The results of the experiment on m5 intermittent foods1 data are given in
the Table 5.2. As can be seen, the proposed methods outperform the baseline models
for most metrics. First, it is the least biased, as shown by the sME and sPIS metrics.
Then, all new methods achieve the best result for the metrics sMSE and sMAPE,
where the accuracy at each point between the prediction and the target value is
calculated. The only TSB has a better score for the MASE metric, but on its basis,
it can be seen that all models perform on average worse than the näıve one-step
approach. Of course, a multi-step prediction range is considered on these data. Fur-
thermore, the proposed methods are best for metrics such as sAPIS, SPEC0.75, and
SPEC0.5, dedicated to intermittent time series. Although probabilistic prediction
and metrics p50Loss and p90Loss, NegBin, and HSP achieved the best result, the
proposed methods are next in rank.
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Deep iETSmd -0.082 -40.561 1.184 0.979 0.983 0.967 0.849 0.913 1.064 1.025 1.046

Deep iETSmu 0.068 18.222 1.210 0.983 0.965 0.989 0.700 0.923 1.355 1.025 1.046

Deep iETSMC 0.090 23.513 1.215 0.989 0.964 0.992 0.695 0.939 1.411 1.037 1.053

iETSA -0.648 -259.339 1.117 1.052 1.100 1.456 2.673 2.284 1.690 1.227 1.590

Croston -0.375 -148.488 1.119 1.006 1.011 1.075 1.035 1.008 1.003 1.272 1.646

TSB -0.381 -150.932 1.115 1.006 1.011 1.076 1.038 1.009 1.000 1.271 1.648

NegBin -0.297 -116.675 1.116 1.000 1.000 1.000 1.000 1.000 1.042 1.000 1.040

HSP -0.351 -138.451 1.121 1.007 1.009 1.074 1.048 1.026 1.029 2.030 1.000

ETS -0.324 -127.637 1.150 1.032 1.017 1.161 1.253 1.243 1.277 1.297 1.715

DeepAR -0.286 -118.664 1.127 1.004 1.010 1.032 1.057 1.031 1.028 1.002 1.051

Table 5.2: Accuracy metrics for experiments performed on an
m5 intermittent foods1 dataset. Metrics with the prefix (R) are presented
relative to the strongest baseline methods. The best results are marked in bold
(closer to zero is better). Additionally, if the result is better than all baseline
models, it has been underlined.

5.4.2 Intermittent: m5 intermittent hobbies2

The results of the experiment for the m5 intermittent hobbies2 data are
shown in Table 5.3. As can be seen, the proposed methods outperform the baseline
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models for most metrics. First, it is the least biased, as shown by the sME and sPIS
metrics. Then, all new methods achieve the best result for the metric sMSE, where
the accuracy at each point between the prediction and the target value is calculated.
The original iETS has a better score for the MASE metric, but on its basis, it can
be seen that all models perform on average worse than the näıve one-step approach.
Furthermore, the proposed methods are best for metrics such as sAPIS, SPEC0.75,
and SPEC0.5, dedicated to intermittent time series. Although probabilistic predic-
tion and metrics p50Loss and p90Loss, NegBin, and HSP achieved the best result,
the proposed methods are next in rank.
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Deep iETSmd -0.226 -107.793 1.456 0.987 1.012 0.931 0.944 0.970 1.045 1.002 1.040

Deep iETSmu -0.153 -78.905 1.482 0.987 1.008 0.934 0.874 0.939 1.084 1.002 1.040

Deep iETSMC -0.147 -78.170 1.482 0.978 1.008 0.931 0.870 0.940 1.094 1.002 1.043

iETSA -0.773 -313.916 1.232 1.042 1.027 1.159 1.400 1.266 1.058 1.483 1.227

Croston -0.558 -226.852 1.312 1.024 1.014 1.036 1.000 1.000 1.029 1.593 1.314

TSB -0.588 -239.144 1.298 1.034 1.015 1.048 1.012 1.002 1.013 1.582 1.315

NegBin -0.615 -250.170 1.281 1.039 1.004 1.088 1.061 1.029 1.000 1.000 1.041

HSP -0.471 -191.660 1.352 1.000 1.014 1.000 1.002 1.002 1.031 4.928 1.000

ETS -0.651 -264.096 1.362 1.082 1.015 1.330 1.223 1.253 1.344 1.643 1.389

DeepAR -0.454 -159.742 1.354 1.035 1.000 1.126 1.114 1.195 1.377 1.043 1.185

Table 5.3: Accuracy metrics for experiments performed on an
m5 intermittent hobbies2 dataset. Metrics with the prefix (R) are pre-
sented relative to the strongest baseline methods. The best results are marked in
bold (closer to zero is better). Additionally, if the result is better than all baseline
models, it has been underlined.

5.5 Result on other demand types

In this section, I test the proposed model’s performance on other demand types
such as lumpy, erratic, and smooth, defined in the subsection 2.1.4.

5.5.1 Lumpy: m5 lumpy hobbies1

The results of the experiment for the m5 lumpy hobbies1 data are shown in
Table 5.4. In this dataset, time series with a lumpy demand-type are considered.
Those where demand is infrequent and the variance between successive demand
values is large. This is considered the most difficult type of time series to forecast
among those studied in this thesis. Moreover, there is no single model here that
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outperforms the others, as you can see. Rather, the results are dependent on the
metric considered. Firstly, based on MASE, it can be seen that all the models
analyzed are performing better than the näıve model on average, as their value is
less than 1. In this metric, the original iETS performed best. However, in the
other metrics investigating the in point time performance as sMSE and sMAPE, the
best score is achieved by the proposed Deep iETSmu and Deep iETSMC approaches,
where the original approach has the worst score. For the model bias analysis, Croston
and TSB achieved the best results. However, when analyzing the SPEC metric, the
proposed approaches achieve better scores than most baseline models, especially
Deep iETS. A worse result is achieved by the Deep iETSmd version, which may be
due to the lack of consideration of the variance of demand values when determining
the forecast, which affects the lower variance of values and not fitting into the data
type. For the probability distribution predictions, NegBin performed best, but the
proposed approaches do not perform much worse and are in the next rank.
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Deep iETSmd -0.238 -87.774 0.787 1.001 1.023 1.067 1.520 1.143 0.774 1.005 1.038

Deep iETSmu 0.023 17.273 0.851 0.993 0.995 1.023 0.991 1.032 1.072 1.005 1.038

Deep iETSMC 0.046 24.054 0.861 0.993 0.997 1.022 0.965 1.025 1.083 1.009 1.043

iETSA -0.688 -269.090 0.728 1.064 1.173 1.707 4.472 2.965 1.487 1.162 1.429

Croston -0.019 2.761 0.846 1.003 1.000 1.086 1.086 1.112 1.139 1.502 1.191

TSB -0.029 -1.473 0.842 1.001 1.001 1.067 1.068 1.092 1.115 1.488 1.195

NegBin -0.055 -11.819 0.834 1.000 1.011 1.000 1.091 1.069 1.047 1.000 1.000

HSP -0.030 -1.756 0.839 1.000 1.003 1.001 1.000 1.000 1.000 2.087 1.031

ETS -0.129 -41.358 0.942 1.092 1.043 1.596 1.654 1.701 1.746 1.662 1.534

DeepAR -0.109 -22.921 0.895 1.102 1.108 1.356 1.964 1.640 1.322 1.083 1.296

Table 5.4: Accuracy metrics for experiments performed on an m5 lumpy hobbies1
dataset. Metrics with the prefix (R) are presented relative to the strongest baseline
methods. The best results are marked in bold (closer to zero is better). Additionally,
if the result is better than all baseline models, it has been underlined.

5.5.2 Smooth: m5 smooth foods3

The results of the experiment for the m5 smooth foods3 data are shown in Ta-
ble 5.5. In this dataset, time series with a smooth demand-type are considered.
That is, in which the probability of demand occurs is very high, and the variance
between successive demand values is low. Furthermore, the demand values them-
selves are typically larger than in intermittent cases. Thus, this pattern fits the
proposed model’s definition, but in particular, po,t ≈ 1, simplifying to an expo-
nential smoothing state-space model. With this type of time series, it is useful to
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analyze metrics comparing the forecasts with targets at each point, such as MASE,
sMSE, sMAPE. In this classification, DeepAR is the strongest model, and indeed it
performs best. However, Deep iETSmd and Deep iETSmu are in second and third
position and declassify the other baseline models, showing that they can process this
type of series very well. Deep iETSMC performs a little less well, where based on the
bias analysis with sME and sPIS, it can be seen that it overestimates. This may be
because Monte Carlo simulations of exponential smoothing can quickly explode with
the increasing length of the prediction range. Additionally, the proposed methods
perform very well in forecasting the probability distribution, as shown by p50Loss
and p90Loss, where all versions are not much worse than the strongest DeepAR and
outperform the other models. Moreover, the proposed models perform better for
the sAPIS metric than the baselines. In other results, it can be seen that NegBin is
the least biased and is the best in SPEC metrics, which the original authors did not
even consider for smooth demand time series. Hence, it is better not to make any
suggestions based on these results.
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Deep iETSmd -0.052 -11.857 0.818 1.065 1.023 0.931 2.995 2.320 1.810 1.040 1.145

Deep iETSmu 0.113 53.727 0.868 1.133 1.042 1.197 2.314 2.899 3.342 1.040 1.145

Deep iETSMC 0.396 125.246 1.201 2.488 1.187 1.985 3.923 6.440 8.347 1.160 1.614

iETSA -0.515 -199.219 1.061 10.018 3.112 3.318 7.746 4.482 2.010 2.502 5.142

Croston -0.176 -61.546 0.994 9.577 2.676 2.430 1.344 1.240 1.161 2.540 4.558

TSB -0.168 -58.462 0.990 9.506 2.667 2.352 1.231 1.141 1.073 2.528 4.538

NegBin -0.037 -5.040 0.987 9.003 2.617 2.015 1.000 1.000 1.000 2.066 2.756

HSP -0.136 -45.308 0.997 9.618 2.662 2.442 1.199 1.139 1.093 3.390 2.732

ETS -0.108 -34.509 1.057 12.742 2.632 2.866 1.186 1.210 1.227 2.705 4.855

DeepAR -0.072 -15.712 0.792 1.000 1.000 1.000 4.574 3.134 2.044 1.000 1.000

Table 5.5: Accuracy metrics for experiments performed on an m5 smooth foods3
dataset. Metrics with the prefix (R) are presented relative to the strongest baseline
methods. The best results are marked in bold (closer to zero is better). Additionally,
if the result is better than all baseline models, it has been underlined.

5.5.3 Erratic: m5 erratic hobbies1

The results of the experiment for the m5 erratic hobbies1 data are shown in
Table 5.6. In this dataset, time series of the erratic demand-type are considered.
This is a type of demand characterized by a high frequency of occurrence and a
large variance between the demand quantity’s successive values. It is worth noting
that, as for the smooth type, the SPEC metric was not originally considered for
this type of series and be omitted in this analysis. Besides, as can be seen from the
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experiment results analysis, the proposed methods outperform the baseline models.
Both in the case of metrics comparing in time point predictions like MASE, sMSE,
sMAPE and aggregated values like sAPIS. The new approach also achieved a much
better result when forecasting the distribution of values in metrics such as p50Loss
and p90Loss. Only NegBin achieved a better result for sME and sPIS, indicating a
less biased model.
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Deep iETSmd -0.141 -60.570 0.679 0.479 0.870 0.692 5.510 3.430 1.854 0.815 0.818

Deep iETSmu 0.232 91.013 0.768 0.501 0.888 0.942 2.719 3.702 4.446 0.815 0.818

Deep iETSMC 0.269 102.030 0.787 0.519 0.896 1.005 2.830 4.007 4.899 0.824 0.842

iETSA -0.515 -199.219 1.061 1.608 1.537 1.647 7.746 4.482 2.010 1.211 1.882

Croston -0.176 -61.546 0.994 1.537 1.321 1.206 1.344 1.240 1.161 1.229 1.668

TSB -0.168 -58.462 0.990 1.526 1.317 1.168 1.231 1.141 1.073 1.223 1.661

NegBin -0.037 -5.040 0.987 1.445 1.292 1.000 1.000 1.000 1.000 1.000 1.009

HSP -0.136 -45.308 0.997 1.544 1.314 1.212 1.199 1.139 1.093 1.640 1.000

ETS -0.108 -34.509 1.057 2.045 1.300 1.422 1.186 1.210 1.227 1.309 1.777

DeepAR 0.545 248.907 1.067 1.000 1.000 1.934 7.420 12.391 16.156 1.047 1.151

Table 5.6: Accuracy metrics for experiments performed on an m5 erratic hobbies1
dataset. Metrics with the prefix (R) are presented relative to the strongest baseline
methods. The best results are marked in bold (closer to zero is better). Additionally,
if the result is better than all baseline models, it has been underlined.

5.6 Experiment conclusions

In this chapter, I have presented the results of experiments on real-world datasets
to compare the proposed model with the best, to my knowledge, currently used
baseline models for forecasting intermittent time series presented in the literature.
On two sets containing time series with intermittent demand, my proposed ap-
proach outperformed other existing forecasting methods and several filters in both
cases, showing its effectiveness in real-world applications. Moreover, this is the
case for all three proposed methods (Deep iETSmd, Deep iETSmu, Deep iETSMC)
which demonstrates the overall stability of this result. Only the models proposed by
Snyder (NegBin, HSP) proved better in quantile losses. In particular, I was able to
show that the introduced modification in the form of deep recurrent neural networks
improved the performance of the original model very positively.

I also compared the performance of my proposed approach in time series with
other demand types such as lumpy, smooth, and erratic. This is essential for fore-
casting a wide range of products, as their dynamics can evolve and change from
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slow-moving to fast-moving (or vice versa). In all these cases, my model has shown
good performance, which demonstrates its versatility. For lumpy time series, which
is the most challenging type to predict, none of the models is dominant, and my
approach for several metrics turns out to be the best, but this result is not stable.
In the case of smooth type demand, only DeepAR proved to be better, but it was
dedicated to this type of time series, and the model I proposed ranks second. This is
important because, even if demand for products is generally smooth, it can be inter-
mittent during introduction and withdrawal from sale. Furthermore, my model was
better for in-time point comparing and probabilistic metrics than baseline models
for erratic type demand.



Chapter 6

Conclusions

This thesis has proposed an improved statistical model for intermittent de-
mand. This approach extends the basic state-space model proposed by Svetunkov
and Boylan [31] by using a deep recurrent neural network for parameterization. This
combination allows the structural assumptions of intermittent time series to be ex-
plicitly taken into account and, on the other hand, complex patterns to be learned
from raw time series data with the additional use of external features. I have pre-
sented the mechanism of model construction and proposed approaches to estimating
both point and probabilistic values.

I presented the experiments’ results initially on synthetic data, where I demon-
strated the model’s ability to reproduce initially set parameters for different groups
of time series occurring in a single data set. I also demonstrated that this is an
efficient process due to the number of sample time series needed.

Finally, I compared the proposed model with the best, to my knowledge, cur-
rently used baseline models for intermittent time series forecasting proposed in the
literature. I started by presenting experiments on two datasets containing time se-
ries with intermittent demand. My proposed model outperformed other existing
forecasting methods and several filters in both cases, showing its effectiveness when
used in real applications. In particular, I was able to show that the introduced
modification in the form of deep recurrent neural networks very positively improved
the performance of the original model. I also compared my proposed approach’s
performance on time series with other demand types such as lumpy, smooth, and
erratic. My model showed good or outstanding performance in all these cases, which
proves its universal applicability. This is essential for forecasting a wide range of
SKUs, which can evolve from slow-moving to fast-moving products (or vice versa).
Despite this, the proposed model has shown its best apply when the data is heavily
intermittent.

As in the original authors’ remark, it is also worth mentioning that it is possible
to apply another statistical model to forecast the demand size in the proposed ap-
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proach, as long as the necessary transformations are made, ensuring that the model
gives only positive values. Investigating these modified models’ properties could be
another area of future research.
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