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Abstract

Algebraic effects offer a modern solution to dealing with computational effects.
They have seen widespread academic interest, and are now making their way into
industrial-strength programming languages as well. One important topic of discussion
in this area is how to use multiple instances of one effect while preserving static
guarantees and convenience of use. The former question has been addressed by the
introduction of lexically scoped instances [3]. However, while easier to use than
the earlier effect coercions [2] and adaptors [5], it can still be inconvenient in large
programs relying on a lot of instances, in many cases requiring explicit instance
variable binding and passing. To remedy this we propose a systematic approach that
extends lexically scoped instances. The key element is the separation of the notion
of instance names, as given by the programmer, and instance variables, which allows
us to use named instance application without sacrificing α-conversion. Once the
distinction is made, we can add two useful mechanisms. The first is to allow instances
to be declared as implicit for a set of function definitions, which can all become
parametrized with the instance. The second mechanism is that instance parameters
can be instantiated automatically based on the instance names associated with the
function and present in the environment. We give formal semantics for a toy calculus
equipped with these features via type-directed translation into a more standard
calculus. To determine whether this approach is practical, we implement a proof of
concept programming language, which in addition to the aforementioned mechanisms,
offers other functionality useful for writing large programs, and demonstrate its use.



Streszczenie

Efekty algebraiczne oferują nowoczesne rozwiązanie dla zarządzania efektami
obliczeniowym. Spotkały się z szerokim zainteresowaniem ze strony społeczności
naukowej, i zaczynają pojawiać się także w przemysłowych językach programowania.
Jednym z istotnych tematów dyskusji w tej dziedzinie jest to, jak używać wielu
instancji tego samego efektu, jednocześnie zachowując zarówno statyczne gwarancje
jak i wygodę użytkowania. W pierwszej z tych kwestii satysfakcjonujące rozwiązanie
zostało znalezione poprzez dodanie leksykalnie wiązanych instancji [3]. Choć są
prostsze w użyciu niż wcześniejsze koercje [2] lub adaptory [5], to nadal w dużych
programach z wieloma instancjami często konieczne jest jawne wiązanie i przeka-
zywanie zmiennych instancyjnych. By temu zaradzić, proponujemy systematyczne
podejście rozszerzające leksykalne wiązanie instancji. Kluczowe okazuje się być
rozdzielenie koncepcji nazw instancji od zmiennych instancyjnych, co pozwala na
użycie aplikacji opartej na nazwach bez utraty α-konwersji. Gdy dokonamy tego
rozróżnienia, możemy dodać dwa przydatne mechanizmy. Pierwszy z nich polega
na możliwości zadeklarowania niejawnych instancji dla pewnego zbioru definicji funk-
cji, które mogą zostać sparametryzowane taką instancją. Drugi mechanizm pozwala
na automatyczną instancjację parametrów instancyjnych na podstawie nazw powią-
zanych z funkcją i aktualnego środowiska. Przedstawiamy formalną semantykę dla
niewielkiego rachunku wyposażonego w te elementy poprzez tłumaczenie sterowane
typami do bardziej standardowego rachunku. Aby określić, czy to podejście jest
praktyczne, zaimplementowaliśmy eksperymentalny język programowania, który poza
wspomnianymi mechanizmami, oferuje też inne elementy przydatne do pisania dużych
programów, i którego użycie zademonstrujemy.
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Chapter 1

Introduction

Programs that never interact with their environment would not be very useful.
Computational effects, such as input and output, stateful computation, exceptions,
and backtracing are ubiquitous in programming, yet they are also a large source of
errors due to subtle and unexpected interactions. In recent years, algebraic effects,
as introduced by Plotkin and Power [10], and later equipped with effect handlers
by Plotkin and Pretnar [11], have emerged as a promising and modern solution
to managing computational effects, building on the idea that the invocation of an
effect can be separated from its semantics. In the following section, we will briefly
introduce algebraic effects. For a more thorough introduction, the reader may also
consult the Overview section of Leijen’s Type Directed Compilation of Row-typed
Algebraic Effects [6], or another introduction due to Pretnar [13].

1.1 Algebraic Effects

So, how do we model a computational effect? Essentially, an effect is specified by the
list of its operations (also called a signature). The operations may be called with some
number of arguments, much like normal functions. In a typed setting, we will write
the type of an operation with a bold arrow in the format of arg1 arg2 arg3 . . . ⇒
result. By themselves, the operations have no specified meaning. To interpret the
effect, an expression making use of its operations needs to be wrapped in an effect
handler. This affords a high degree of modularity, as effectful functions may be
defined independently of the semantics of their effects.

As a familiar example, exceptions may be modeled by an effect defined by
the single throw operation, which receives some additional information about the
exception that occurred (parametrized with the type variable e in Listing 1.1). We
can use the empty type Void as its result type, because the operation should never
return the control flow of the program to the point of its call, in line with how
exceptions are usually implemented.

7



8 CHAPTER 1. INTRODUCTION

signature Exc e = throw : e ⇒ Void

Listing 1.1: The signature of the exception effect.

Much like languages that implement exceptions directly, the meaning of exception-
throwing code is given by surrounding it with a handler that specifies what to do in
case an exception occurs. For a somewhat silly example, consider Listing 1.2. If b

is true, the value of the entire snippet is simply 1. But if it is false, an exception
is thrown, carrying with it the argument 0. Then it gets “caught” by the enclosing
handler, which overrides the result of the whole expression with 0.

handle
if b then 1 else throw 0

with
| throw n → n
end

Listing 1.2: An exception handler.

Algebraic effects are not restricted to operations that never return. In the clause
which handles an operation, we may call resume with some value of the expected
result type, and the computation will be restored at the point of the operation call,
but replacing it with the result. An interesting fact is that resume is not a dedicated
keyword, but rather just another variable associated with the resumption, which can
be used like any other function and represents the rest of the computation waiting
for a result from the operation. In Listing 1.3, we pair the classic Reader effect with
a handler that resumes with a constant value. Each operation use is evaluated to 21,
and the final answer is 42.

signature Reader a = ask : () ⇒ a

let x =
handle ask () + ask () with
| ask () → resume 21
end

Listing 1.3: The Reader effect.

As it happens, resume may even be invoked multiple times, returning from the opera-
tion more than once. This renders effects such as nondeterminism trivial to implement
in their most basic form. The handler for nondeterminism in Listing 1.4 produces
a list of all the possible outcomes of the computation. It includes an additional
return clause, which is not an operation, but specifies the behavior of the handler on
plain values. When omitted, it is considered to be the identity function, but in this
case, we want to wrap any individual values in singleton lists. In the clause for flip,
we resume for both True and False and then concatenate the results. The outcome of
the entire handler is the list [(’a’, ’c’), (’a’, ’d’), (’b’, ’c’), (’b’, ’d’)],
which encompasses all the possibilities.



1.2. MOTIVATION 9

signature Nondet = flip : () ⇒ Bool

let x =
handle

let x = if flip () then ’a’ else ’b’ in
let y = if flip () then ’c’ else ’d’ in
(x, y)

with
| flip () → resume True @ resume False
| return x → [x]
end

Listing 1.4: A possible implementation of nondeterminism.

Functions may be defined with outstanding effects that are triggered once they
are supplied with an argument. With a type-and-effect system, function types will
be annotated with the effects that are used and unhandled. In Listing 1.5, the
type of f is Int →[Nondet, Reader] Int. An effectful function can be called within
a handler with the expected result of handling its effects.

let f x = if flip () then ask () else x + 1

let _ =
handle handle f 0 with
| tell () → . . .

end
with
| flip () → . . .

end

Listing 1.5: A simple function making use of effects.

1.2 Motivation

So far, we have not considered the situation in which more than one instance of the
same effect is necessary. Addressing this need is nontrivial, and many of today’s
implementations forgo this feature altogether.

signature State = put : Int ⇒ () | get : () ⇒ Int
let inc () = put (get () + 1)

Listing 1.6: The State effect.

Consider the State effect (Listing 1.6), which models a single mutable cell, along with
operations to store and retrieve its value. Should you need to store any additional
state, you will have to define a brand new effect differing only in the operation
names. The inc function and any others will need to be redefined as well. This
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workaround scales rather poorly—what of libraries, which may define a single fixed
effect and a large collection of functions that make use of it? Several solutions have
been proposed to permit a multitude of separate objects, called instances, that can
be associated with the same effect and allow operations to be linked to the correct
handler: the dynamic instances of some versions of Eff [1] or the lexically scoped
instances of Helium [3]. In this work we will focus on the latter solution, as it offers
a static type-and-effect system that we can build upon.
let inc ’a () = put ’a (get ’a () + 1)

let swap ’a ’b () =
let x = get ’a () in
put ’a (get ’b ());
put ’b x

Listing 1.7: State with effect instances.

In Listing 1.7, we are able to implement a swap function that takes two mutable cells
and swaps their contents by supplying the put and get operations with the correct
instances. The new type of inc is ∀ ’a : State. () →[’a] (), while the type of
swap is ∀ ’a : State. ∀ ’b : State. () →[’a, ’b] (). Note that the instance
variables need to be bound in types as well, since now effect instances, and not effects,
are listed in function types.

Lexically scoped instances can be bound explicitly as function arguments, which
is reflected in the type of the function. Then, instances that are lexically in scope
may be used with operations, or passed as arguments to other functions. Unlike
normal variables, instance variables do not enjoy a first-class status in the language,
and can only appear as a part of specific constructs, and not as general expressions.

Effect handlers also act as instance binders. For example, in h_state defined
below, an instance is bound by the handler and passed to a function, implementing
a reusable handler for the State effect. The handler evaluates to a function that
takes some initial state. This entails that the result of calling the resumption is
also such a function, so in the clauses for get and put it needs to be applied to the
current state.
let h_state init f =

handle ’a in f ’a () with
| get _ → λs. resume s s
| put s → λ_. resume () s
| return x → λ_. x
end init

Listing 1.8: Effect handlers with instances.

In large programs, there will often be effects that are used across multiple
functions and which are frequently passed down in function calls. Without instances,
none of this effect binding and passing is necessary, but we sacrifice flexibility; with
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instances, definitions and calls can become unwieldy and verbose. Worse yet is
modifying the code to extend it with an additional effect. What seems like a local
change to a few functions deep down in the call tree may cascade to other functions
which merely take a new argument and propagate it.

How to lower the overhead of using instances for the programmer, while main-
taining the advantages? The current implementation of Helium offers some ad-hoc
support for automatic abstraction and instantiation of instances based on their
signatures. This works quite well in cases when only one instance of an effect is being
used, but it is not clear how to generalize this method in a systematic way.

In this work, we propose an alternative solution which relies on instance names
in order to determine how to perform the necessary generalizations and instantiations.
Inspired by the section mechanism of Coq [15], described further in Section 5.2,
we introduce implicit instance declarations, which specify instances eligible for
generalization in let-definitions. In the process, we are forced to decouple the
instance names given by the programmer from the notion of instance variables, and
replace positional instance application with named application.
instance ’a : State
instance ’b : State

let inc () = put ’a (get ’a () + 1)

let swap () =
let x = get ’a () in
put ’a (get ’b ());
put ’b x

let f () = inc (); inc (); inc {’a = ’b} (); swap ()

Listing 1.9: Implicit instances in use.

In Listing 1.9, ’a ad ’b are marked as implicit. Subsequently, inc is parametrized
with ’a, and swap and f are both parametrized with ’a and ’b. In the body of f, two
uses of inc can be applied to ’a automatically, while the final occurrence requires
explicit named application to increment ’b instead. Both instance arguments are
supplied automatically to swap.

In the rest of this thesis, we present the type system and semantics of a simplified
calculus that includes the proposed mechanisms. Since these mechanisms concern
the surface language as exposed to the programmer, we are primarily interested
in matters of language design. In order to evaluate this approach, an interpreter
for a proof of concept language based on the calculus has been implemented and is
distributed alongside this work1. It integrates this scheme with standard ML-style
polymorphism and extends it with a variety of useful language features. As we set

1The source code of the implementation may be obtained from the Archive of Diploma Theses
system at https://apd.uni.wroc.pl.

https://apd.uni.wroc.pl
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out to determine whether this approach is useful, easy to use and intuitive, we will
analyze an example program implemented in the language in detail.



Chapter 2

The Calculus

In this chapter we will in fact present two different calculi. Of most interest is the
source calculus, upon which we will base the design of our language. Its type-and-
effect system will be presented, including the subtyping relation, which allows for
effect instance generalization and instantiation. We will specify its semantics via
type-directed translation into a second target calculus. Both calculi are based on the
calculi developed by Biernacki et al. [3], with lexical scoping of effect instance binders,
but without polymorphic signatures. Compared to the provided implementation, the
calculi are simplified to only include the elements necessary to formalize the core
ideas of the contribution, for the benefit of a concise presentation.

2.1 Syntax of the Source Calculus

The syntax of the core calculus, featuring the syntactic categories of expressions and
definitions, is presented in Figure 2.1.

Variables r, x, y, z, . . .

Instance Names a, b, c, . . .

Definitions d ::= val x = e | instancea

Expressions e ::= ( ) | x | let d̄ in e | λx. e | e e | λa. e | e {a = a}
| handlea e {x, r. e; x. e} | doa e

Figure 2.1: Syntax for the expressions and definitions of the calculus. Sequences of definitions
are denoted as d̄.

The expression syntax includes the unit value ( ), variables, let-expressions, the
usual abstraction and application of the λ-calculus, effect instance abstraction, and
named application for instances. For simplicity, there is only one operation, do,

13
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which is always supplied with an instance name and an argument. Effect handlers
bind an instance within the body of the handled expression, and provide a clause for
the sole operation, where the passed argument x and resumption r are bound, and
a return clause.

Let-bindings take a form similar to the syntax of Standard ML [8]: a let-
expression consists of a sequence of definitions followed by an expression in which
the bindings are visible. A definition, represented by d in Figure 2.1, is either the
standard val x = e form, binding the result of e to x, or the new construct introduced
in this work, instancea. This construct creates a new implicit effect instance scope
for all following definitions in the sequence.

2.2 Typing the Calculus

Before we proceed with providing a type-and-effect system for the source calculus,
we have to work out some details regarding effect instances. So far, the syntax of
expressions only included effect instance names. The programmer-provided names
are important: they are used for explicit instance application, and for automatically
matching up instance parameters with instances available in the environment, the
specifics of which we will define in this section. One problem with instance names
is that we lose the ability to define capture-avoiding substitution in types, which
is needed for many important language features, such as polymorphism. The issue
arises because we are not allowed to just replace bound names with sufficiently
fresh ones, as that would break our instance application mechanisms. To regain
α-conversion, we decouple these names from the concept of instance variables. The
syntax will still only mention names, while types and effects will refer to the variables.
Finally, instance quantifiers will connect the two entities, binding the variable and
associating it with a name. This is reflected in the grammar of Figure 2.2.

Instance Variables i, j, . . .

Types τ ::= unit | τ →ε τ | ∀a=i : σ. τ

Effects ε ::= ι | i | ε · ε

Signatures σ ::= τ ⇒ τ

Figure 2.2: Grammar for the types, effects and signatures of the calculus.

The types consist of the base unit type, the arrow type, with an effect attached,
and the instance quantifier. Effects are simply treated like finite sets, with the pure
effect ι acting like the empty set, instance variables treated as singletons, and the ·
operation signifying union. There is only one constructor for effect signatures, τ ⇒ τ .
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The well-formedness relations of Figure 2.3 all feature the single context ∆,
which contains all the instance variables that may appear free, along with their
names and signatures.

Well-formed types. ∆ ⊢ τ :: Type

∆ ⊢ unit :: Type
∆ ⊢ τ1 :: Type ∆ ⊢ ε :: Effect ∆ ⊢ τ2 :: Type

∆ ⊢ τ1 →ε τ2 :: Type

∆ ⊢ σ :: Signature ∆, a=i : σ ⊢ τ :: Type
∆ ⊢ ∀a=i : σ. τ :: Type

Well-formed effects. ∆ ⊢ ε :: Effect

∆ ⊢ ι :: Effect
a=i : σ ∈ ∆

∆ ⊢ i :: Effect
∆ ⊢ ε1 :: Effect ∆ ⊢ ε2 :: Effect

∆ ⊢ ε1 · ε2 :: Effect

Well-formed signatures. ∆ ⊢ σ :: Signature

∆ ⊢ τ1 :: Type ∆ ⊢ τ2 :: Type
∆ ⊢ τ1 ⇒ τ2 :: Signature

Figure 2.3: Well-formedness relations for types, effects and signatures.

The typing relation for expressions is presented in Figure 2.4 with the various
well-formedness premises omitted, as they are all quite simple and occur in the
expected instance environments. The relation is defined with the usual context for
regular variables, Γ, and the instance environment ∆. As opposed to ∈, as used in
the well-formedness relations, we use the alternative ⊏− inclusion operator for ∆ in
the typing rules. The distinction is based on the shadowing behavior: ∈ does not
care for shadowing, as it is used to “search” the context based on instance variables,
for which we can admit Barendregt’s convention and only allow distinct instance
variables in the context. ⊏− accounts for shadowing of instance names—which we
cannot rename—by only allowing the most recently added instance with a given
name. One of the premises in the rule for let involves an additional relation for
definition sequences.

The environment for the relation for definitions, as shown in Figure 2.5, includes
an additional stack for implicit instances, Θ, which is of the same form as ∆. It is
built up by instance, and always starts out empty in the premise of the rule for
let-expressions.
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Typing expressions. Γ; ∆ ⊢ e : τ / ε

Γ; ∆ ⊢ ( ) : unit / ι

x : τ ∈ Γ
Γ; ∆ ⊢ x : τ / ι

Γ, x : τ1; ∆ ⊢ e : τ2 / ε

Γ; ∆ ⊢ λx. e : τ1 →ε τ2 / ι

Γ; ∆ ⊢ e1 : τ1 →ε τ2 / ε Γ; ∆ ⊢ e2 : τ1 / ε

Γ; ∆ ⊢ e1 e2 : τ2 / ε

Γ; ∆, a=i : σ ⊢ e : τ / ι

Γ; ∆ ⊢ λa. e : ∀a=i : σ. τ / ι

b=j : σ ⊏− ∆ Γ; ∆ ⊢ e : ∀a=i : σ. τ / ε

Γ; ∆ ⊢ e {a = b} : τ{i 7→ j} / ε

Γ; ∆; · ⊢ d̄⇝ Γ′ / ε Γ′; ∆ ⊢ e : τ / ε

Γ; ∆ ⊢ let d̄ in e : τ / ε

Γ; ∆, a=i : τ1 ⇒ τ2 ⊢ e : τ ′ / i · ε Γ, x : τ1, r : τ2 →ε τ ; ∆ ⊢ eh : τ / ε Γ, x : τ ′; ∆ ⊢ er : τ / ε

Γ; ∆ ⊢ handlea e {x, r. eh; x. er} : τ / ε

a=i : τ1 ⇒ τ2 ⊏− ∆ Γ; ∆ ⊢ e : τ1 / ε

Γ; ∆ ⊢ doa e : τ2 / i · ε

Γ; ∆ ⊢ e : τ ′ / ε′ ∆ ⊢ τ ′ <: τ ∆ ⊢ ε′ <: ε

Γ; ∆ ⊢ e : τ / ε

Figure 2.4: The typing relation.

As the rule for instance is unusual in its use of the well-formedness predicates,
we will examine it in full now.

∆, Θ ⊢ σ :: Signature Γ; ∆; Θ, a=i : σ ⊢ d̄⇝ Γ′ / ε

Γ; ∆; Θ ⊢ instancea d̄⇝ Γ′ / ε

Of note is the fact that the instances allowed to appear in the signature include any
prior implicit instances in the sequence, as ∆ and Θ are merged in the well-formedness
rule. These are not visible in any other situation until bound. The decision to make
this exception stems from its usefulness in programming, and from the more intuitive
behavior it provides: one way to think about it is that an implicit instance declaration
is a promise that the instance will be eventually bound, if needed. Then it seems
natural that a promise may refer to the ones made prior, as they all live in the
context of potential future instances.

In the case of val, there are two rules. The first does not restrict the effects
available for the expression, performs no generalization and none of the implicit
variables are accessible in e. The second, requiring e to be pure, allows for some of the
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Typing definitions. Γ; ∆; Θ ⊢ d̄⇝ Γ′ / ε

Γ; ∆; Θ ⊢ ∅⇝ Γ / ε

Γ; ∆; Θ, a=i : σ ⊢ d̄⇝ Γ′ / ε

Γ; ∆; Θ ⊢ instancea d̄⇝ Γ′ / ε

Γ; ∆ ⊢ e : τ / ε Γ, x : τ ; ∆; Θ ⊢ d̄⇝ Γ′ / ε

Γ; ∆; Θ ⊢ val x = e d̄⇝ Γ′ / ε

Γ; ∆, θ̄ ⊢ e : τ / ι Γ, x : ∀θ̄. τ ; ∆; Θ ⊢ d̄⇝ Γ′ / ε ∆ ⊢ θ̄ ≤ Θ

Γ; ∆; Θ ⊢ val x = e d̄⇝ Γ′ / ε

Figure 2.5: Typing the definitions.

Valid instance subsequences. ∆ ⊢ θ̄ ≤ Θ

∆ ⊢ ∅ ≤ Θ
∆ ⊢ θ̄ ≤ Θ

∆ ⊢ θ̄ ≤ a=i : σ, Θ
∆ ⊢ σ :: Signature ∆, a=i : σ ⊢ θ̄ ≤ Θ

∆ ⊢ a=i : σ, θ̄ ≤ a=i : σ, Θ

Figure 2.6: Dependency-respecting subsequences of implicit instances.

Subtyping. ∆ ⊢ τ1 <: τ2

∆ ⊢ τ <: τ

∆ ⊢ τ1 <: τ ∆ ⊢ τ <: τ2

∆ ⊢ τ1 <: τ2

∆ ⊢ τ ′
1 <: τ1 ∆ ⊢ ε <: ε′ ∆ ⊢ τ2 <: τ ′

2

∆ ⊢ τ1 →ε τ2 <: τ ′
1 →ε′ τ ′

2

∆, a=i : σ ⊢ τ1 <: τ2

∆ ⊢ τ1 <: ∀a=i : σ. τ2

a=j : σ ⊏− ∆ ∆ ⊢ τ1{i 7→ j} <: τ2

∆ ⊢ ∀a=i : σ. τ1 <: τ2

Figure 2.7: The subtyping relation.

variables in Θ to become bound in e, and generalizes its type. When choosing some
of the available implicit instances, we need to be careful about instance dependencies
which can arise within signatures. We can utilize the well-formedness relation for
signatures along with maintaining an appropriate instance context to define a relation
that expresses this.

Subtyping is defined to accommodate automatic instantiation and generalization
for effect instances. A subeffecting relation is also useful. The subeffecting relation
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∆ ⊢ ε1 <: ε2 is essentially set inclusion with the appropriate context-checking
premises, and as such is omitted.

The subtyping relation (Figure 2.7) includes the standard rules for reflexivity,
transitivity and function types. It also has two rules for the generalization and
instantiation of effect instance quantifiers. Note that, as in [3], effect signatures are
not subject to subtyping.

Combining the two quantifier rules and named instance application, we obtain
a useful feature: the order of instance arguments can now be changed, since subtyping
allows us to rearrange instance quantifiers, as in the following example (where
∆ ≡ b=j : σ′, a=i : σ).

a=i : σ ⊏− ∆
b=j : σ ⊏− ∆ ∆ ⊢ τ <: τ

∆ ⊢ ∀b=j : σ′. τ <: τ

∆ ⊢ ∀a=i : σ. ∀b=j : σ′. τ <: τ

b=j : σ′ ⊢ ∀a=i : σ. ∀b=j : σ′. τ <: ∀a=i : σ. τ

⊢ ∀a=i : σ. ∀b=j : σ′. τ <: ∀b=j : σ′. ∀a=i : σ. τ

2.3 Translation Semantics

2.3.1 Target Calculus for Translation

Designing direct semantics for the source calculus is not straightforward, as the
presence of instance names and implicit instances complicates matters due to their
somewhat dynamic nature. Therefore, instead of developing the semantics of the
proposed calculus from scratch, it may be preferable to translate its well-typed terms
to something more closely resembling other calculi. This also opens up the possibility
of benefiting from existing insight and results.

Variables r, x, y, z, . . .

Instance Variables i, j, . . .

Definitions d ::= val x = e

Expressions e ::= ( ) | x | let d̄ in e | λx. e | e e | λi. e | e i

| handle i e {x, r. e; x. e} | do i e

Figure 2.8: The target calculus for translation.

The syntax of the target calculus is shown in Figure 2.8, where modifications of
the source calculus are shaded. instance is no longer in the calculus, and instance
application follows a simple positional scheme, like regular function arguments. The
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dichotomy of instance names and variables is no longer necessary, and all the names
are erased.

2.3.2 The Translation

The target calculus, as presented, has no type system1. For this reason, the subef-
fecting derivations do not need to be considered during translation. The translation
to the target calculus contains two interesting components:

• instance generalization at let-definitions, analogously to the typing rule, and
• instantiation and generalization by adding coercions resulting from the subtyp-

ing derivations.

Therefore, we need functions to translate the typing and subtyping derivations of
the source calculus.

Translating expressions. The translation function for expressions takes a type
derivation tree as its input and returns an expression of the target language. Most
of the cases for translating expressions simply recurse into subtrees, and as such,
only a few cases are mentioned here to set an example. For the subsumption rule,
we apply the expression resulting from translating the subtyping premise to the
translation of the expression before subtyping.

s D :: Γ, x : τ1; ∆ ⊢ e : τ2 / ε

Γ; ∆ ⊢ λx. e : τ1 →ε τ2 / ι

{
= λx. JDK

u

wwww
v

D1 :: Γ; ∆ ⊢ e : τ ′ / ε′

D2 :: ∆ ⊢ τ ′ <: τ

∆ ⊢ ε′ <: ε

Γ; ∆ ⊢ e : τ / ε

}

����
~

= JD2K JD1K

. . .

Translating definitions. The derivations for typing definitions are translated into
definitions of the target calculus, with the standard syntactic sugar for a series of

1The type system could be easily defined, and like the calculus, would be similar to the one
presented by Biernacki et al. [3]. In fact, the implementation uses such a type system internally to
catch potential errors made in the earlier phases. However, for the purposes of this exposition of the
translation, it was not deemed important enough to warrant its inclusion.
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λ-abstractions in the second rule for val. Uses of instance may be simply erased.

J Γ; ∆; Θ ⊢ ∅⇝ Γ / ε K = ∅

t
D :: Γ; ∆; Θ, a=i : σ ⊢ d̄⇝ Γ′ / ε

Γ; ∆; Θ ⊢ instancea d̄⇝ Γ′ / ε

|

= JDK

u

w
v

D1 :: Γ; ∆ ⊢ e : τ / ε

D2 :: Γ, x : τ ; ∆; Θ ⊢ d̄⇝ Γ′ / ε

Γ; ∆; Θ ⊢ val x = e d̄⇝ Γ′ / ε

}

�
~ = val x = JD1K JD2K

u

wwww
v

D1 :: Γ; ∆, θ̄ ⊢ e : τ / ι

D2 :: Γ, x : ∀θ̄. τ ; ∆; Θ ⊢ d̄⇝ Γ′ / ε

∆ ⊢ θ̄ ≤ Θ

Γ; ∆; Θ ⊢ val x = e d̄⇝ Γ′ / ε

}

����
~

= val x = λi1, . . . , in. JD1K JD2K

(where θ̄ is a1=i1 : σ1, . . . , an=in : σn)

Translating subtyping derivations. The function translating subtyping deriva-
tion produces functions of the target calculus which are used for subsumption. The
style of this translation is similar to that of Breazu-Tannen et al. [4], but since our
target has no types, we only create terms, rather than typing derivations.

J ∆ ⊢ τ <: τ K = λx. x

s
D1 :: ∆ ⊢ τ1 <: τ D2 :: ∆ ⊢ τ <: τ2

∆ ⊢ τ1 <: τ2

{
= λx. D2 (JD1K x)

u

wwww
v

D1 :: ∆ ⊢ τ ′
1 <: τ1

∆ ⊢ ε <: ε′

D2 :: ∆ ⊢ τ2 <: τ ′
2

∆ ⊢ τ1 →ε τ2 <: τ ′
1 →ε′ τ ′

2

}

����
~

= λf. λx. JD2K (f (JD1K x))

s D :: ∆, a=i : σ ⊢ τ1 <: τ2

∆ ⊢ τ1 <: ∀a=i : σ. τ2

{
= λx. λi. JDK x

s
a=j : σ ⊏− ∆ D :: ∆ ⊢ τ1{i 7→ j} <: τ2

∆ ⊢ ∀a=i : σ. τ1 <: τ2

{
= λf. JDK (f j)



Chapter 3

Implementation

In this chapter we will discuss the proof of concept programming language that has
been implemented as a playground for implicit effect instances.

3.1 Interaction with Type Inference

Programmers, particularly those of functional programming languages, are accus-
tomed to type inference and let-polymorphism. Although polymorphism had no
bearing on the details of the source calculus described in the previous chapter, and
thus could be elided there, it needs to be considered when discussing the practical
implementation of a programming language. Our proof of concept interpreter offers
type inference based on first-order unification, with the expected let-polymorphism.
It sacrifices completeness of inference for simplicity, though in practice, the types of
useful programs can often be inferred.

3.1.1 Instance Variables

The considered calculus involves instance variable binding in types. When dealing
with unification, substitution for variables becomes tricky. However, there are a few
things we can do to avoid creating too much complexity. The crucial observation is
that instance variables can only be substituted for other instance variables. This is
reminiscent of the restrictions considered in the area of nominal logic [9]. As it turns
out, we can adopt some of the ideas from that field for our purposes. Urban et al.
[16] have proposed first-order unification for that setting, and the theory developed
therein serves as the basis for our type inference. Instead of substitution, we will
consider swapping, or permutation, of variables. In the presence of appropriate
freshness constraints, this is equivalent to variable-for-variable substitution, but offers
many attractive properties, such as invertibility.

21
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3.1.2 Unification Variables

Since our type system involves instance variables in types, we need to be careful
so that those variables do not escape their scope when instantiating a unification
variable. Every unification variable is associated with a constraint—the set of instance
variables that may occur free within.

When attempting to substitute instance variables within a unification variable,
we need some way to suspend this substitution with the particular occurrence of
the variable. Building on the insight from nominal unification, each occurrence is
associated with a permutation of instance variables.

3.1.3 Effect Rows

Though this is not a restriction of the source calculus, the implementation uses rows
to represent effects. This is a source of ambiguity when resolving inequalities with
unification variables, such as ⟨a | ?X⟩ <: ⟨a⟩, where ⟨a⟩ can be read as a closed row
containing only a, and ⟨a | ?X⟩ is an open row with a and the unification variable
?X. Since we treat our rows as sets rather than multisets, the two solutions are
?X = ⟨a⟩ and ?X = ⟨⟩ (the empty row). As this is a largely orthogonal concern,
we pay no heed to it and choose the solution that empirically tends to allow useful
programs to typecheck. Effect rows have seen much use in other implementations of
algebraic effects, and some of them boast complete type inference [6].

3.1.4 Generalization

Generalization of expressions bound within let is subject to the purity restriction.
Type variables are generalized as in normal let-polymorphism. Effect instance
generalization based on the val typing rules also occurs at this point, and as the
signatures may contain unification variables that are subject to generalization, it has
to take place first. The set of instances to generalize is determined by maintaining
the instances that are sufficient to type a given expression, which may be smaller
than the set of all instances available in context.

3.2 Other Language Features

Apart from type inference and polymorphism, the implementation has been equipped
with a variety of other features that enrich the core calculus into a programming
language that may already be used to write some larger programs.

Algebraic effect signatures. Compared to the source calculus, which has only
one operation, the implementation offers full-fledged algebraic signatures, with
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polymorphism for the signature and its operations. For example, the following
signature for exceptions may be written:

signature Exc e = throw : ∀ a. e ⇒ a

Algebraic data types. In the same spirit as algebraic signatures, ADTs may also
be defined. Moreover, type and signature definitions may be mutually recursive.

Standard library and built-in functions. The prelude defines various basic types
and effects, and exposes some built-in functions for integer and string manipulation
and standard input and output.

Recursive functions. Function definitions may be declared (mutually) recursive.

Syntactic sugar. Some common syntactic sugar is available, such as function
parameters in let-definitions, conditionals, and more.

let f x y = x

Primitive support for multiple files. Files consist of a preamble, which may
contain include statements, and a sequence of definitions. Included files are processed
as if they were input verbatim.





Chapter 4

Case Study

In this chapter we will work our way through a simplified interpreter for Prolog
(without features such as cuts or negation). Various details that have no bearing
on the usage of effects or are relatively standard have been omitted, and the full
interpreter is available in the examples/ subdirectory of the provided source code.

4.1 Prolog

Setting up the stage. We need to define some types and effects first. A term is
either a variable or a functor with a list of arguments, which are themselves terms.
Prolog programs are made up of a series of clauses, each consisting of a conclusion
and its goals.

type Term = Var String | Fun String (List Term)
type Clause = Cl Term (List Term)

We will certainly need to be able to unify terms, which may cause some of the
variables to become instantiated with a term. Therefore, we need some form of
state. The state can be modeled as an effect with two operations: set, which takes
a variable name and a term, and get, which, given a variable name, produces Some t

if there is a term associated with the variable, or None otherwise. Since we are
not restricted in the number of instances of an effect, we can go ahead and define
a polymorphic state effect signature, which will be useful later. Since the variable
state will be ubiquitous thorough our implementation, we may like to declare an
instance as implicit.

signature State a = get : () ⇒ a | put : a ⇒ ()
let update ’st f = put ’st (f (get ’st ()))

instance ’st : State (String → Option Term)
let var_get x = get ’st () x
let var_set x t = update (λs y. if string_eq x y then Some t else s y)

25
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When resolving a query, we need to consider every clause in the program, and to
backtrack from a unification that fails. The backtracking effect needs to provide
nondeterminism, for example with a “coin flip” operation, and a way to cut off
the computation. Once again, we will use an implicit instance. The syntax of the
language necessitates that the instance names be specified each time an operation is
used, but we generally only want one instance of BT at a time. We can get around this
by defining regular functions which are parametrized with these instances, as their
arguments will be provided automatically. Additionally, choose picks an element
from a list using these two operations.

signature BT = flip : () ⇒ Bool | fail : ∀ a. () ⇒ a
instance ’bt : BT
let flip = flip ’bt
let fail = fail ’bt
let rec choose ’bt xs = . . .

The pattern of defining functions for each operation turned out to be common,
and can be tedious with a large number of them, so syntactic sugar is available to
automate the creation of these definitions.

instance ’bt : BT with defaults

Now writing a variety of utility functions is straightforward without ever needing to
mention the instances used. Here, view is parametrized with ’st, while occurs gets
both ’st and ’bt.

let rec view t =
case t of
| Var x →

case get x of
| None → t
| Some t →

let t = view t in
set x t; t

end
| Fun f ts → t
end

let rec occurs x t =
case view t of
| Var y → if x = y then fail () else ()
| Fun f ts → iter (λt. occurs x t) ts
end

Using these, unify can be defined. To unify the arguments, we may use a higher-order
function such as iter2. If the lists turn out to have different lengths, iter2 will
signify this by throwing an exception, which is itself just another effect.

signature Exc e = throw : ∀ a. e ⇒ a
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let rec iter2 ’len_mismatch f xs ys = . . .

let rec unify t t’ =
case view t of
| Var x → . . .

| Fun f ts →
case view t’ of
| Var x → occurs x t; var_set x t
| Fun f’ ts’ →

if string_eq f f’ then
handle ’len_mismatch in iter2 unify ts ts’ with
| throw _ → fail ()
end

else fail ()
end

end

Evaluating queries. Now that unification is ready, we need a source of knowledge—
the list of rules available—and a way to search for solutions to queries. To increase
generality, the database may be yet another effect instance. A “reader” effect would
suffice for a read-only database, but using State with a different instance will allow
us to expand it over time.

instance ’db : State (List Clause)
let add_to_db c = update {’st = ’db} (Cons c)
let get_db = get ’db

The intended semantics of our interpreter are such that the variables are local to
each clause, so each time we retrieve a clause from the database, we need to refresh
its variables. We can add a source of fresh identifiers as another instance.

signature Fresh = fresh : () ⇒ String
instance ’fresh : Fresh with defaults

let rec eval t =
let cl = refresh_clause (choose (get_db ())) in
case cl of
| Cl t’ ts →

unify t t’;
iter eval ts

end

It is a routine matter of supplying some handlers for ’st, ’bt and ’fresh to resolve
a single query. The h_bt_bool handler returns a boolean signifying if any successful
execution was possible—in order words, whether there is a solution.

let query t =
h_varstate (λ’st ().
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h_bt_bool (λ’bt ().
h_fresh (λ’fresh (). eval t)))

With the addition of a parser, we now have a working REPL that can accept
:add CLAUSE commands, which modify the database, and run queries.

let rec main () =
handle ’eof in

let input = list_of_string (read_line ()) in
case parse_cmd input of
| Left e → print_endline (pp_parse_error e)
| Right r →

case fst r of
| Rule cl → add_to_db cl
| Query t → print_endline (if query t then "Yes." else "No.")
end

end;
main ()

with
| throw _ → print_endline "Quitting."
end

let _ = h_db main

Nevertheless, merely outputting whether the query succeeded appears lacking. The
resulting variable assignment, or a goal “trace” during execution, may also be useful.

Adding configurability. Providing all that information unconditionally is not
ideal, so we will augment the interpreter with some rudimentary runtime configuration.
Boolean flags are easily added and propagated; we only need to declare an implicit
instance and add a handler surrounding the main loop, and the extra state is added
anywhere necessary. In this case, query and main must be changed to return and
process the bindings, and to process a new command, :set show bindings on|off.

instance ’show_bindings : State Bool

. . .

let query t =
. . .

h_bt_opt (λ’bt ().
eval t;
if show_bindings () then

filter_map binding (term_vars t)
else [])
. . .

. . .
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let _ = h_db (λ’db _. h_config main)

We can proceed in a similar manner to add a toggle for goal traces, but on top of
that, we can improve modularity and extensibility further by using a Writer instance
for tracing output, giving more control over where it ultimately ends up, and the
ability to process it further. As an example, here we add tracing to the eval function.

signature Writer a = tell : a ⇒ ()

instance ’trace : Writer String
let trace = tell ’trace
let trace_enabled () = get ’enable_trace ()

. . .

let rec eval t =
trace ("Goal: " ˆ pp_term t);
let cl = refresh_clause (choose (get_db ())) in
case cl of
| Cl t’ ts →

unify t t’;
iter eval ts;
trace ("Success: " ˆ pp_term t)

end

. . .

let rec main () =
handle ’trace in
. . .

with
| tell s →

if trace_enabled () then print_endline s else ();
resume ()

end

4.2 Concluding the Case Study

The example program, while relatively small, used many different effects and separate
instances. A pleasant outcome is that even when we decided to go back and make
additions to the implementation, we could indeed manage to keep the changes local,
as we initially hoped to. Implicit instance declarations mostly occurred at the
top-level, and based on the nature of their usage, it is conceivable that in a larger
program with modules and multiple files, instances would frequently be declared
within the scope of those units. The code reads in a straightforward manner, and
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explicit instance abstractions were largely avoided, save for the usage of functions
implementing generic handlers, such as in the definition of query. Even this could
be alleviated with the addition of first-class handlers, however. Explicit instance
applications are used primarily for renaming instances when using a standard handler
for effects like State, such as when we defined add_to_db. The usage of instances is
invisible a lot of the time, especially in the cases where they are simply propagated
to the functions that need them, which were a pain point of effect instances. This
suggests that this approach may be viable.
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Related Work

5.1 Effect Instances

Over the years many research languages have been implemented with the goal of
studying algebraic effects, and the ideas thus developed are making their way into
languages with wider industry use as well, notably in the upcoming 5.0 version of
OCaml [14]. Yet few of these languages offer a simple mechanism to use multiple
instances of an effect, and many are not able to check what effects occur and whether
they are handled at compile time.

The Eff language. Version 3.0 of Eff [1] features effect instances that are dynam-
ically created. Unlike our language, instances are treated like normal expressions
and can be passed as function arguments, returned from functions, and so on. Any
language feature permitting omission of normal program variable binding and passing,
such as those already present in some other languages, would have generalized to this
notion of effect instance. However, this treatment of instances sacrifices the static
guarantees resulting from a type-and-effect system.

Later versions of Eff and OCaml 5.0. Multicore OCaml and modern imple-
mentations of Eff have no effect instances of any sort.

Helium. The current implementation of Helium is based on the work of Biernacki
et al. [3], and implements lexically scoped effect instances that are tracked statically
by its type-and-effect system. The resulting language is reasonably easy to use and
enjoys good static guarantees, but unlike the system underlying Eff, its effect instance
variables constitute a new entity and can only be used in specific contexts. They can
be bound, passed as an argument and used with an operation, but are not considered
as expressions in their own right.
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Helium already attempts to improve the economy of effect instance mentions by
allowing for the instance names to be omitted in an ad-hoc manner. Abstractions
and applications can be inferred whenever it is determined that there is only one
instance with a particular signature in a given scope. In our implementation, by
relying on names rather than signatures, we can easily deal with multiple instances
of an effect as well.

5.2 Implicit Binding

On the other axis, it is worthwhile to look at the efforts to reduce the need to
explicitly generalize and instantiate variables, even when they are not related to
algebraic effects. These may not entirely suit all our needs, given that we treat
instance variables as a special entity, but they still prove to be a valuable source of
inspiration and context.

Coq sections and implicit arguments. One such mechanism, and the initial
inspiration for this work, is the section feature of Coq [15] used along with the
Variable and Context keywords. An example usage of this is showcased in Listing 5.1.

Section a.
Variables n m : nat.
Definition f := n + m.
Check f : nat.

Variable (A : Type) (x : A).
Definition id := x.
Check id : A.

End a.

Check f : nat → nat → nat.
Check id : ∀ A : Type, A → A.

(a)

Section b.
Context {A : Type}.
Variable x : A.
Definition id := x.
Check id : A.

End b.

Check id 0 : nat.
Check id (A := nat) : nat → nat.

(b)

Listing 5.1: Coq sections in action.

Within the section of Listing 5.1a, the types of f and id are respectively
nat and A. After the End s command, these types become nat → nat → nat and
∀ A : Type, A → A, as the variables cease being visible and definitions from the
section are generalized. Furthermore, arguments can often be inferred by combining
sections with implicit arguments. The Context command can be used to declare them
implicit, as in Listing 5.1b. Coq’s implicit argument inference relies on types rather
than names, including information that can be obtained from the dependent type
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of a function and the surrounding context. However, they can be passed by name
explicitly using the f (name := expr) syntax. Since the section feature is a part
of the command language, it cannot be freely mixed with expressions, though the
sections may be nested.

Haskell’s ImplicitParams. Haskell offers a language extension that adds implicit
parameters [7], which share some similarities with the facilities we desire. Those
special parameters, like Haskell’s typeclasses, are tracked using constraints, and they
are propagated automatically when performing function calls. To bind an implicit
parameter, a binding form such as let needs to be used, functioning as a way of
passing them explicitly. Implicit parameters are distinguished from normal variables
by prepending ?. Unlike our solution, the parameters in Haskell need not be declared
beforehand. Another difference is that such parametrized functions are not considered
first-class entities, and must always be instantiated at point of use. As a result, they
cannot be passed to another function without instantiating the implicit parameters
at the call-site.





Chapter 6

Future Work and Conclusion

Though the proposed approach seems promising so far, it would be beneficial to
try to integrate it into a more feature-rich language to see how it can interact with
other functionality. A natural application of this is the usage of implicit instances in
tandem with ML-like modules, which could superficially resemble sections in Coq
[15] even more than what is available in our proof of concept. An obvious target
for this is to modify the front-end of Helium [3], as the translation semantics would
allow for much of the implementation to be reused.

Another point of interest from the perspective of a language implementer is to
evaluate the possible enhancements of type inference. As mentioned in Section 3.1,
the current implementation takes an approach that emphasizes simplicity, while
trading off completeness. Some notable directions to consider include the more refined
treatment of inference with subtyping proposed by Pottier [12] or an implementation
of effects that is not restricted to row types.

As for the theoretical foundations, though apparently nontrivial, designing direct
semantics for the calculus could provide new insight into the intuitions that can be
relied on while programming. If such semantics could be related to the translation
semantics, it could provide a programmer with additional tools for reasoning about
programs while still reaping the benefits of a translation-based implementation.

6.1 Conclusion

While lexically scoped effect instances such as those implemented in Helium [3]
provide a way to use multiple instances of an effect in a controlled and statically safe
manner, explicit instance abstraction and application can be tedious and inconvenient
to manage for the programmer. We suggest a possible systematic solution that makes
it possible to declare an instance that may be implicitly bound by the definitions in
its scope, and to perform automatic passing of instance arguments. To support our
belief that this solution may be practical, apart from describing the core calculus,
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an experimental implementation of a programming language has been developed.
Preliminary evidence gathered while using this implementations to write effectful
programs allows us to believe that this approach is a direction worth exploring in
the design space of languages of algebraic effects.
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